
Learnable Cube-based Video Encryption
for Privacy-Preserving Action Recognition

Yuchi Ishikawa, Masayoshi Kondo, Hirokatsu Kataoka
LY Corporation*, Tokyo, Japan

{yuchi.ishikawa, masayoshi.kondo, jpz4219}@lycorp.co.jp

Abstract

With the development of cloud services and machine
learning, there has been an inevitable need to enhance pri-
vacy and security when serving video recognition models.
Although existing image encryption methods can be used to
address this issue, applying them frame by frame to videos
is insufficient in two respects: model performance degrada-
tion and security strength. In this paper, we propose a novel
encryption approach for privacy-preserving action recog-
nition. It consists of two encrypting operations; Learnable
Cube-based Video Encryption (LCVE) and ViT Scrambling.
LCVE is video encryption based on spatio-temporal cubes,
which has a large key space and can provide robust privacy
protection. ViT Scrambling encrypts the Vision Transformer
(ViT) model, which enables it to recognize the encrypted
videos in the same manner as unencrypted videos without
modifying the model architecture or fine-tuning on the en-
crypted data. We evaluate our method in an action recogni-
tion task with seven datasets containing a variety of action
classes as well as motion and visual patterns. Empirical
results demonstrate that LCVE combined with ViT Scram-
bling can preserve video privacy while recognizing action
in encrypted videos as well as unencrypted videos. As a re-
sult, our approach outperforms existing privacy-preserving
action recognition methods.

1. Introduction

With the spread of web cloud services and machine
learning, it is becoming increasingly popular to develop and
serve computer vision applications on cloud servers (e.g.
human behavior recognition using surveillance cameras /
work recognition in manufacturing plants). Although us-
ing web cloud services provides reasonable prices and sta-
ble operation, analyzing real-world videos often requires
the preservation of personal information. A malicious at-
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Figure 1. Efficacy of our proposed method. Our proposed frame-
work demonstrates high accuracy while protecting privacy in the
action recognition task in comparison with existing methods.

tacker may obtain these videos in transmission or at rest on
cloud servers, allowing them to analyze private information.
Recent reports state that training data may be reconstructed
from the leak of information such as trained models [19]
or model confidence [16]. Therefore preventing the leak of
models trained with confidential data is also essential.

To mitigate these security concerns, some studies have
been conducted on privacy-preserving image and video
recognition. Most propose ideas for removing privacy infor-
mation from images and videos [31,46,58]. However, these
approaches are accompanied by degradation of model per-
formance because the spatial features of objects and persons
are lost as well. Some studies [37,55] have proposed image
encryption methods; however, the model structure needs to
be modified to recognize the encrypted images. Therefore,
it is difficult to leverage existing large-scale pretrained mod-
els that are optimized for recognition tasks. In addition,
most approaches for privacy-preserving video recognition
have only been evaluated on small datasets (to the best of
our knowledge, except for [10]). Therefore, it is unclear
whether these approaches scale to larger video datasets with
more varying action classes, motion patterns, and people
appearances.

To address these problems, we propose a novel encryp-
tion approach for privacy-preserving action recognition. It
consists of two encrypting operations; Learnable Cube-
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Figure 2. Overview of LCVE. LCVE consists of two shuffling operations; cube shuffling and pixel shuffling, using a single security key
that determines the way of shuffling. LCVE has a larger key space and can provide more secure encryption than image-level encryption.
The combination of LCVE and ViT Scrambling (Sec 3.3) enables ViT to recognize actions in encrypted videos.

based Video Encryption (LCVE) and ViT Scrambling.
LCVE performs shuffling operations on the spatio-temporal
cubes of a video instead of applying existing image en-
cryption methods to each frame (Sec. 3.2). ViT Scram-
bling shuffles part of the Vision Transformer (ViT) [11]’s
parameters in correspondence with LCVE for generating
invariant outputs (Sec. 3.3). This enables the model to rec-
ognize the encrypted videos without additional training or
modification of the model architecture. The combination
of LCVE and ViT Scrambling can protect private informa-
tion strongly while recognizing action in encrypted videos
(Fig. 1). The contributions of this study are threefold.

• We propose a novel encryption approach, called Learn-
able Cube-based Video Encryption (LCVE) and ViT
Scrambling, for privacy-preserving action recognition.
The encrypted model can recognize the encrypted
videos without additional training or modification of
the model architecture (Sec. 3.2 and 3.3).

• Our LCVE can provide greater privacy protection be-
cause it has a larger key space and is more secure than
existing image encryption methods (Sec. 3.4).

• We evaluate the effectiveness of our approach on seven
datasets, including both large and small datasets, in an
action-recognition task. We demonstrate that our ap-
proach can strictly protect private information without
performance degradation on benchmarks with a wide
variety of action classes, motion patterns, and the way
people appear in videos (Sec. 5).

2. Related Work
Privacy protection has become a growing interest in re-

cent years. In this section, we give an overview of privacy-
preserving methods in computer vision systems.

2.1. Federated Learning

Federated learning [27,33,38,66] enables a single shared
model to be learned on individual user devices. Because

federated learning does not require sending raw data to one
server, there is less data breach risk. However, several stud-
ies have shown that the training data can be reconstructed
from the leakage of information, such as the model confi-
dence [16], the difference between a model before and af-
ter being updated [49], the gradient [22], and trained mod-
els [19]. Therefore, for privacy protection, it is also essen-
tial to train and infer by using anonymized data instead of
raw data. In this work, we focus on encrypting videos to
hide private information.

2.2. Privacy-preserving Image Recognition

For privacy-preserving vision systems, there are early
image anonymization approaches using blur [1], edge mo-
tion history images [8], and pixelation [32]. There are also
several studies that focus on privacy protection at the hard-
ware level [23, 43, 44, 61], but these are outside the scope
of this paper. In recent years, image encoding approaches
have also been proposed [20, 25, 26, 53, 65]. For example,
there are several works on image transformation operations
to remove visual information from images using adversar-
ial training [26, 53]. However, these approaches lose spa-
tial features in an image in the process of anonymization,
which causes performance degradation. Also, some works
reported that encoded images by InstaHide [25] and Neu-
raCrypt [65] can be reconstructed [6, 7].

As another way of protecting private information, sev-
eral image encryption approaches have also been proposed.
In particular, image scrambling [40, 41, 67] is one of the
popular methods for image encryption. Image scrambling
is to change the order of pixels and the bit values in an im-
age with a secret key, making the image unrecognizable to
humans. This process is invertible and can be reconstructed
using the secret key. Recently, several studies proposed im-
age scrambling methods that can be learned by neural net-
works but unrecognized by humans [2, 37, 45, 52, 55]. For
example, [55] proposed Learnable Encryption (LE), which
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encrypts an image by dividing it into blocks, shuffling the
pixels in the blocks, and subsequently changing its pixel
values. However, these methods require modification of the
model structure to recognize encrypted images.

On the other hand, [2, 45] proposed image scrambling
methods that are easily applicable to Vision Transformer
(ViT) architectures. In [45], an image is divided into
patches and shuffled; then, its patches are further divided
into sub-patches, and the pixels in its sub-patches are shuf-
fled. The encryption method takes advantage of ViT’s abil-
ity to learn the relationship between shuffled pixels in a
sub-patch and the relationship between reordered patches.
So it does not require a dedicated model adapted for the
encrypted image and provides high recognition accuracy.
However, these encryption methods have a smaller key
space than [37, 55], so there is a trade-off between model
performance and confidentiality. Because of these issues,
we do not apply image-level encryption methods to each
video frame for privacy-preserving video understanding.

2.3. Privacy-preserving Action Recognition

With the emergence of large-scale datasets [18, 28, 29,
39], action recognition has become an active topic in com-
puter vision. The performance of action recognition has
been greatly improved by sophisticated architectures such
as CNN-based methods [13, 15, 21, 51, 57, 59, 63] and ViT-
based methods [3,5,12,17,35,42,64]. However, when con-
sidering the real-world application of these techniques, pri-
vacy protection should also be addressed.

For privacy-preserving action recognition, there are ex-
isting works using extreme low-resolution videos [9, 24,
47, 48]. Downsampling makes it more difficult to recog-
nize private information in videos, but these methods can
work effectively only for videos in which people are clearly
captured. On the other hand, there are video encoding
methods based on adversarial training to remove private
information from videos [10, 31, 46, 58, 62]. The authors
of [10, 58, 62] proposed an adversarial training framework
for privacy-preserving action recognition, which learns an
anonymization function that removes personal information.
[31] proposed a BDQ encoder that removes privacy infor-
mation through three modules: Blur, Difference, and Quan-
tization. However, when these methods remove private in-
formation from videos, the spatio-temporal features that are
necessary for action recognition can also be removed. This
degrades the performance of the models.

In summary, existing works have a trade-off between the
model performance and privacy protection, and require ex-
tra cost for a model to recognize anonymized videos. In
addition, their efficacy is limited to small-scale and less di-
verse datasets. To address these issues, we propose a novel
video encryption method for privacy-preserving video un-
derstanding. The video encrypted by our method can be

Local Client Server (Cloud Server)

In Training

Inference

Model

Training model 

Encrypted 
Model

Encrypted 
Model

Our method
• [ViT Scrambling] Shuffling model weights (position-embeddings 

and linear weights)
• [LCVE] Shuffling video cubes and pixels

Uploading

Sending
Adversary

Attack to encrypted
data and model

ViT Scrambling

LCVE

Figure 3. Overview of our scenario. On the client side, the data
and model are encrypted by a pre-defined security key. Thus, the
data and model sent by the client are securely encrypted. Even
when there is leakage or interception by attackers, our method en-
sures that the key space is sufficient and private information in the
videos is concealed.

recognized by ViT without extra cost or performance degra-
dation, while private information is protected. Our method
is also applicable to videos with various action classes, mo-
tion patterns, and the manner in which a person appears.

3. Proposed Method
In this section, we describe our approach, Learnable

Cube-based Video Encryption (LCVE) and ViT Scram-
bling. First, we define the scenario of our privacy-
preserving action recognition (Sec. 3.1). Next, we explain
the algorithm of our video encryption method and how to
recognize the encrypted videos (Sec. 3.2 and 3.3). Fi-
nally, we provide theoretical support for its security strength
(Sec 3.4).

3.1. Overview and Scenarios

Figure 3 shows the relationship between the encryption
process and the attacker when the system of action recog-
nition is being served in the cloud. In this scenario, it is
assumed that the video data is encrypted using a client-
generated encryption key and is sent to the cloud server.

Our method determines a unique shuffling of the param-
eters and weights given an encryption key such that the
encrypted video is recognized from the encrypted model
equivalently to that of unencrypted videos with an unen-
crypted model. This retains the same performance as stan-
dard action recognition models. Apart from existing ap-
proaches, our method does not require re-training on the
encrypted video data. We refer to this process of encryption
as ViT Scrambling in our work. (See Sec. 3.3 for details).

Since the encryption key is created and used only on the
client side, only the encrypted model and encrypted video
data are sent to the cloud server. Thus, even if attackers
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Figure 4. Overview of ViT Scrambling. ViT Scrambling consists of two shuffling operations on model parameters. The first operation
shuffles the linear weights that are multiplied to the flattened pixel sequence of the spatio-temporal cube to calculate the cube embedding.
The second shuffles the order of the positional encodings which correspond to the sequence of the cube embeddings. This way, calculated
cube embeddings xk are invariant, and the inputs to the transformer encoder only change order (except for the class token xcls and its
positional encoding ecls).

can intercept videos from the cloud server or during data
transmission, it will be difficult for the attackers to analyze
or use them. Here, we evaluate the difficulty of recovering
encrypted data and models by the size of the key space.

3.2. Learnable Cube-based Video Encryption

Next, we explain a novel video encryption method,
called Learnable Cube-based Video Encryption (LCVE).
Our approach is inspired by learnable image scrambling
methods [37,45,55]. Image scrambling is comprised of two
steps: confusion and diffusion [40]. The confusion step in-
volves changing the order of pixels in an image. For exam-
ple, [45] shuffles patches in an image as well as the pixel
positions in sub-patches. The diffusion step changes the bit
values to make them imperceptible to humans. For instance,
LE [55] and ELE [37] apply a negative-positive transform.
This transform reverses the intensities of pixels randomly
in a 6-channel image created from the upper 4-bit and the
lower 4-bit images. These two steps are processed using
a security key, and the images are then encrypted. Image
scrambling is invertible and encrypted images can be re-
stored using the same key.

For video encryption, we extend these image scrambling
approaches to videos. Our approach uses spatio-temporal
cubes in a video instead of the spatial patches in an im-
age. By expanding them in the time dimension, the en-
cryption method becomes more secure than image-level en-
cryption applied to each frame in a video. Given a video
V ∈ RT×H×W×C1, the algorithm for the proposed LCVE
is as follows:

1. Define a security key. Using the security key, deter-

1T is the number of frames in a video. H and W are the width and the
height of each video frame. C is the number of the channel.

mine the random order of the cubes K1 and the random
order of RGB values K2.

2. Divide a video V into cubes with a size of t × h × w
as x = {x1, x2, ..., xNc}, where Nc is the number of
cubes and is calculated as Nc =

T ·H·W
t·h·w .

3. Shuffle these cubes x in the order K1 =
[a1, ..., ai, aj , ..., aNc

], where ai ∈ {1, ..., Nc} and
ai ̸= aj if i ̸= j. We call this procedure Cube Shuf-
fling.

4. Flatten each cube into a vector y ∈ RL, where L =
t · h · w · C.

5. Shuffle RGB values in each cube in the order K2 =
[b1, ...., bi, bj , ...., bL], where bi ∈ {1, ..., L} and bi ̸=
bj if i ̸= j. We refer to this operation as Pixel Shuf-
fling. Note that the way of shuffling pixels is the same
over all cubes.

6. Reshape shuffled vectors into cubes with a size t×h×
w

7. Concatenate all cubes to generate the encrypted video.

Figure 2 shows the example process of our encryption
method. Our LCVE encrypts videos so that humans can-
not perceive visual information. For an action recogni-
tion model to recognize actions in the encrypted video, the
model architecture must be modified or fine-tuned to learn
spatio-temporal patterns. On the other hand, our encryption
method works as long as the model has a standard trans-
former architecture, so the encrypted videos can be recog-
nized with a simple operation to the ViT weights.

3.3. ViT Scrambling

In this section, we first give an overview of Vision
Transformer (ViT), and next describe our core method, ViT
Scrambling. ViT for action recognition divides a video V
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into spatio-temporal cubes and reshapes the flattened cubes
p ∈ RNc×L, where L = t · h · w · C. Then each cube is
fed into a linear projection W ∈ R(t·h·w·C)×D and mapped
to D-dimension cube embeddings x ∈ RNc×D. After con-
catenating the class token to cube embeddings, cube embed-
dings are added to positional encodings e ∈ R(Nc+1)×D.
This is an input to a transformer encoder.

To recognize LCVE-encrypted videos without extra cost,
we perform a simple operation to ViT, called ViT Scram-
bling. Using the same security key used in LCVE, ViT
Scrambling rearranges both the weights of the linear pro-
jection to generate cube embeddings and positional encod-
ings. This allows the ViT to treat the encrypted videos in
the same way as plain videos. Figure 4 shows the overview
of ViT Scrambling. ViT Scrambling consists of two steps;
(1) Rearranging the positional encoding e in the order K1

except for the positional encoding for the class token, (2)
Rearranging the linear projection W in the order K2.

Next, we explain why this operation works well. We
leverage the property that the output for the class token in a
standard transformer encoder is not influenced by the order
of input cube embeddings, as long as the correspondence
between shuffled cubes and positional encoding is the same
as that between original cubes and positional encoding. In
this work, our target task is action recognition. Therefore,
by rearranging positional encoding in the order K1, we can
obtain the same output from shuffled cubes as the original
video. In addition, since the linear projection of ViT takes
as input each cube, shuffling pixels in a cube affects only
the cube embeddings. Hence, rearranging the weight of the
linear projection in the order K2 enables ViT to generate the
same cube embeddings as the original embeddings. Note
that this process only needs to be applied to the model once
when the encryption key is determined, so the key is not
stored in the cloud server.

3.4. Security Strength

Here, we explain the security strength of LCVE, or the
size of the key space, which refers to the theoretical set of
all possible permutations of encryption. In our algorithm,
when we shuffle Nc cubes and t · h · w · C values in each
cube, the key space of LCVE is defined as below;

S = Nc! · (thwC)! (1)

When we assume that the video size is 16 × 224 × 224
and the cube size is 2×16×16, Nc and thwC are calculated
as Nc =

16×224×224
2×16×16 = 1568, thwC = 2× 16× 16× 3 =

1536. Therefore, the size of the key space S is;

S = 1568!× 1536! ≈ 3.5× 108560 (2)

Table 1 shows the comparison of the key space for each
encryption method. LCVE has a larger key space than exist-
ing image encryption methods such as LE [55] and [45]. We

Table 1. Key space comparison for image and video encryp-
tion methods. Note that when we use our LCVE as image-level
encryption, we shuffle patches in an image instead of cubes. We
also extend existing encryption methods [45, 55] to a temporal di-
mension. In this case, we apply the patch-wise processes to the
spatiotemporal cubes.

Method Level
Key Space

Order Our setting
Pixel Shuffle frame (hwC)! 1.8× 101884

Patch Shuffle frame Np! 5.1× 10365

LE [55] frame (2hwC)! · 22hwC 3.9× 104691

Z. Qi et al. [45] frame (hw/4)! ·Np! 6.4× 10454

LCVE (Ours) frame (hwC)! ·Np! 9.3× 102249

Pixel Shuffle video (thwC)! 1.6× 104229

Cube Shuffle video Nc! 2.1× 104331

LE [55] video (2thwC)! · 22hwtC 1.3× 1010306

Z. Qi et al. [45] video (hwt/8)! ·Nc! 2.7× 104420

LCVE (Ours) video (thwC)! ·Nc! 3.5× 108560

Table 2. Dataset details.

Dataset #class #video #train / #valid / #test

Kinetics400 400 306,245 241,181 / 19,877 / 38,671
SSV2 174 220,847 168,913 / 24,777 / 27,157
Diving48 48 18,404 15,026 / - / 1,970
UCF-101 101 13,320 9,536 / - / 3,783
HMDB51 51 6,766 3,570 / 1,666 / 1,530
IPN 13 4218 3117 / - / 1101
KTU 6 2390 1791 / - / 599

also compare the temporally extended versions of existing
image encryption methods. As seen in Table 1, the video-
extended LE is more secure than ours. However, it highly
degrades the model performance in action recognition be-
cause its complex diffusion process makes it more difficult
to recognize the encrypted videos (Sec. 5.1). On the other
hand, our approach consists of only confusion steps, and
combining with ViT Scrambling can achieve high model
performance (Sec. 5.3), while providing much more secure
encryption than video-extended [45].

4. Experiments

In this work, through three experiments, we demonstrate
the efficacy of our approach. First, to evaluate how well
the model understands the content from encrypted videos,
we evaluate the accuracy of action recognition tasks us-
ing encrypted videos. In addition to the popular datasets
used in previous studies, we evaluate our approach on large
datasets of action recognition to demonstrate its generality
(Sec. 5.1). Second, for evaluating how strictly privacy is
protected using our encryption, following [31], we conduct
privacy label prediction tasks (Sec. 5.2). Note here that we
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aim to achieve lower prediction accuracy for concealing pri-
vate attributes that are portrayed in videos. Third, we com-
pare several settings in our approach as an ablation study
to validate the impact of each component of our approach
(Sec. 5.3).

4.1. Datasets and Evaluation Metrics

Action Recognition: Our goal is to accurately recognize
actions in videos while preserving private information. To
evaluate the performance in an action recognition task, we
use a total of seven datasets with details in Table 2. Of these
seven, Kinetics400 (K400) [29], Something-Something V2
(SSV2) [18] and Diving48 [34] are large-scale datasets that
are often used as benchmarks for action recognition. UCF-
101 [54], HMDB51 [30], IPN Hand Dataset [4] and KTH
Dataset [50] are relatively small datasets and are often used
to evaluate privacy-preserving action recognition. Some
datasets do not provide validation sets. In that case, we
re-split the original training split into training and valida-
tion sets by a ratio of 9 to 1. We report top1 accuracy as in
existing works.

Privacy Label Prediction: To evaluate the performance
on privacy protection, we compare our method with existing
works in a privacy label prediction task. Our goal is to pre-
vent attackers to predict private attributes from encrypted
videos. Therefore, the lower the accuracy on the privacy
label prediction task is, the more strictly private informa-
tion is preserved. For this experiment, we use IPN Hand
Dataset and KTH Dataset. As privacy labels, We use gen-
der labels for IPN Hand Dataset and actor labels for KTH
Dataset aligned with [31]. We report top1 accuracy for the
privacy prediction tasks as in [31].

4.2. Comparative Methods

As comparative encryption methods, we use two image
encryption methods proposed in [55] and [45]. LE [55] di-
vides an 8-bit RGB image into h×w patches and splits each
patch to the upper 4-bit and the lower 4-bit patches, mak-
ing 6-channel image patches. Then, it applies to reverse
intensities of randomly selected pixel positions and shuf-
fling pixels in each patch. On the other hand, the method
proposed in [45] divides an image into h × w patches and
shuffles them. In addition, it splits each patch into h

2 × w
2

sub-patches and randomly shuffles pixel positions in a sub-
patch.

We also implement temporally extended versions of
these two methods by applying each process to a spatio-
temporal cube instead of a spatial patch. In our experiments,
we compare our LCVE with four encryption methods in to-
tal.

4.3. Implementation

On data processing, as a video, we take as input 16
frames of size 224×224 (i.e. 16×224×224). The size of the
cube in the LCVE is 2× 16× 16. Therefore, the number of
cubes Nc is 8×14×14. As an action recognition model, we
use a vanilla ViT backbone [11] pretrained on Kinetics400
using VideoMAE [56], one of the state-of-the-art methods.
ViT uses joint space-time attention [3, 35] alongside joint
space-time cube embedding [3, 12, 35], which treats a cube
of size 2× 16× 16 as a single token embedding. Note that
this is the same size as the LCVE cube. In training, we used
AdamW [36] as an optimizer. Except when we apply ViT
Scrambling to a model, we finetune a model with encrypted
videos. During the evaluation, we follow the method of
multi-view testing [15, 60] used in [14, 56]. We create 5
clips from each video and generate 3 spatial views for each
clip. The final prediction result is the average of these re-
sults obtained from all inputs. For privacy label prediction,
we use the same model and settings as in action recognition.
We experimented on 8 A100 Nvidia GPUs.

5. Result and Analysis
5.1. Privacy-Preserving Action Recognition

Comparison with Existing Methods: Table 3 shows
the accuracy of LCVE + ViT Scrambling and previous
methods on the encrypted action recognition task for three
datasets; HMDB51, UCF-101, and Diving48. Therein, ”Vi-
sion Transformer (unencrypted)” shows the performance
on a standard action recognition task, and ”Downsampling
N×” shows the results when the frame size of the input
video is reduced by the factor of N . Using our approach,
inference on LCVE videos shows identical accuracy to the
vanilla ViT when inferring on plain videos, therefore show-
ing superior to all comparative methods. On the other hand,
when ViT Scrambling is not applied for our method, in other
words, when the security key is unknown, Table 3 shows
that the performance of ViT trained on plain videos is sig-
nificantly degraded. This result indicates how well visual
information is concealed by encryption. When the security
key is unknown, it is difficult to recognize actions in en-
crypted videos, preventing attackers to obtain information
in case of a data breach.
Comparison with image encryption methods: We also
compare the case when image encryption methods are ap-
plied to videos. Here, we encrypt videos in two ways; to
patches within individual frames of the video, and to spatio-
temporal cubes within the video as mentioned in Sec. 4.2.
For extension of [55], the cube size is set to 2 × 16 × 16.
For that of [45], the cube size is set to 2× 16× 16 and the
sub-cube size to 1× 8× 8.

Table 3 shows the results on three datasets; UCF-
101, HMDB51, and Diving48. Although [45] performs
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Table 3. Comparison with the existing privacy-preserving action recognition methods on HMDB51, UCF-101 and Diving48.

Method
Encryption

Level
HMDB51 UCF-101 Diving48

Vision Transformer (unencrypted)
- Plain Video - 70.0 95.6 86.2
- Downsampling 2× - 54.1 78.8 34.8
- Downsampling 4× - 42.4 61.0 16.9

Extreme Low-resolution Video [48] - 28.5 - -
Extreme Low-resolution Video [47] - 37.7 - -
Extreme Low-resolution Video [24] - 54.6 71.1 -
Adversarial Training [58] - 42.3 62.1 -
Self-supervised Learning [10] - 43.1 62.0 -

Z. Qi et al. [45] frame 27.1 34.6 8.8
LE [55] frame 7.3 4.4 5.0

Z. Qi et al. [45] extended to videos video 40.7 59.8 14.5
LE [55] extended to videos video 9.6 6.0 4.5

Inference on LCVE videos (Ours)
- ViT trained on plain videos video 1.9 1.0 3.7
- ViT finetuned on LCVE videos video 19.0 33.0 7.9
- ViT trained on plain videos + ViT Scrambling video 70.0 95.6 86.2

Table 4. Top1 Accuracy on large datasets; SSV2 and K400.

Method SSV2 K400

Vision Transformer (unencrypted)
- Plain Video 69.0 80.2
- Downsampling 2× 54.5 71.5
- Downsampling 4× 39.8 53.4

Inference on LCVE videos (Ours)
- ViT trained on plain videos 0.4 0.3
- ViT finetuned on LCVE videos 19.2 59.5
- ViT trained on plain videos + ViT Scrambling 69.0 80.2

marginally better than LE [55] in the encrypted action
recognition task, [45] has smaller key space, providing
less encryption strength. Where model performance and
encryption strength are often a trade-off, LCVE with ViT
scrambling exhibits optimal performance while simultane-
ously having a large key space.

Evaluation on large-scale action recognition datasets:
We also evaluate LCVE on large-scale video datasets with
more diverse action classes and visual appearance. Table 4
shows the results on two large-scale datasets; Something-
Something V2 (SSV2) and Kinetics400 (K400). Since ViT
Scrambling enables the model to treat the encrypted videos
in the same manner as plain videos, the model can recognize
action without performance degradation. As seen from the
results, downsampling methods show a trade-off between
downsampling rate and recognition performance.

Table 5. Comparing our proposed method in both action recog-
nition and privacy label prediction tasks. Results with * are re-
ported by the authors of [31].

Method KTH IPN
Action ↑ Actor ↓ Action ↑ Gender ↓

Plain Video 96.0 98.8 85.2 93.8

Downsample 2×∗ 91.6 91.8 82.3 80.0
Downsample 8×∗ 91.2 91.6 79.5 70.1
Downsample 32×∗ 85.6 82.6 53.0 63.3
H. Wang et al. [58] 85.9 19.3 76.0 65.0
BDQ [31] 91.1 7.2 65.0 59.0

Ours 96.0 4.0 85.2 61.3

5.2. Evaluation of Privacy Protection

Here we assume the scenario when an attacker, who
does not know the encryption method, obtains the encrypted
data and tries to predict private attributes using a classifier
trained on unencrypted videos. In this experiment, we eval-
uate the encryption through two tasks; an action recogni-
tion task and a privacy label prediction task. Two datasets
(the IPN dataset and the KTH dataset) are used, and the
experimental settings follow [31]. Note that the privacy la-
bel prediction model is trained only on unencrypted videos,
and encrypted videos are used only during inference. For
the action recognition task, we evaluate the model with ViT
scrambling applied, as the client has the key.

Table 5 shows the results with existing methods. Our en-
cryption method successfully protects privacy on the KTH
dataset and also performs relatively well on the IPN dataset.
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Table 6. Comparing the performance impact of each component in our proposed method.

Pixel
Shuffling

Cube
Shuffling

ViT
Scrambling

HMDB51 UCF-101 Diving48
top1 top5 top1 top5 top1 top5

70.0 90.9 95.6 99.4 86.2 98.5
✓ 32.6 67.7 52.8 82.1 9.3 38.3

✓ 54.4 82.1 80.4 96.6 35.5 78.4
✓ 1.5 9.9 1.0 4.5 4.0 12.9

✓ ✓ 19.0 46.7 33.0 66.0 7.9 35.3
✓ ✓ ✓ 70.0 90.9 95.6 99.4 86.2 98.5

As for action recognition on the two datasets, our method
shows the best classification rate. On the IPN dataset,
BDQ [31] shows lower prediction rates for private labels,
but it requires training the image encoder by adversarial
learning. In contrast, our encryption method comprises of
simple shuffling of cubes and pixels within the video and
does not require re-training the recognition model. More-
over, applying ViT Scramble shows the same performance
on encrypted data as in unencrypted action recognition.
From these perspectives, our proposed method shows ef-
ficacy in privacy-preserving action recognition.

5.3. Ablation Study

In the ablation tests, we examine the performance im-
pact of each operation in our method. We test combina-
tions of three operations; Pixel Shuffling, Cube Shuffling,
and ViT Scrambling. For each of these settings, we eval-
uated the performance of the model based on the accu-
racy of action recognition tasks on three datasets; UCF-101,
HMDB51, and Diving48. Table 6 shows the accuracies.
First, we discuss the impact of data encryption, which are
the Pixel Shuffling and Cube Shuffling operations. Apply-
ing either Pixel Shuffling or Cube Shuffling significantly re-
duces classification performance, and when both are applied
together, performance degrades further. These demonstrate
the model’s inability to deal with encrypted data. This result
also implies that even when an attacker were to obtain the
encrypted data, the content is incomprehensible. Next, we
discuss the impact of ViT Scrambling, which encrypts the
model. When only applying ViT Scrambling, model perfor-
mance is significantly lower because the encrypted model
could not recognize unencrypted data. Therefore, attack-
ers would not be able to use the encrypted model when it
is compromised. Finally, when all operations are applied,
model performance is the same as that of unencrypted ac-
tion recognition.

6. Discussion and Limitation

Through our experiments, we demonstrated that LCVE
can strongly protect privacy. We also showed that the com-
bination of LCVE and ViT Scrambling enables ViT to rec-

ognize actions in encrypted videos in the same way as un-
encrypted videos. While LCVE + ViT Scrambling is effec-
tive in privacy-preserving action recognition, there are lim-
itations because we leverage two properties unique to the
transformer encoder.

The first property is that the input sequence order only
affects positional encodings. ViT Scrambling avoids per-
formance issues by preserving the logical positions for the
shuffled input sequence. On the other hand, ViT Scram-
bling might be difficult to apply to Convolutional Neural
Network-based models like [13, 15, 21] because the con-
volution operation relies on the local features for the input
sequential order.

The second property is that the first token, or class to-
ken, is not affected by the order of the input tokens in a
vanilla transformer encoder. Since our target task is action
recognition, we need only the first token. However, sequen-
tial labeling tasks generally require the correct ordering of
the outputs from the transformer encoder. In such a case,
because it is non-trivial to rearrange the ViT Scrambled-
outputs, the model would not work effectively.

7. Conclusion

In this paper, we proposed a novel encryption approach
for privacy-preserving action recognition; Learnable Cube-
based Video Encryption (LCVE) and ViT Scrambling.
LCVE is an encryption method for videos that are applied
on spatio-temporal cubes, which can provide high encryp-
tion strength and privacy protection. Vit Scrambling scram-
bles model weights in a way that enables the recognition
of encrypted videos in the same manner as non-encrypted
videos. No modifications to the model architecture or ad-
ditional training on the encrypted data is required. In
the experiments on seven datasets, we demonstrated that
LCVE preserves video privacy while ViT Scrambling aids
the recognition of encrypted videos as accurately as non-
encrypted videos. However, there still remain limitations
such as applications to CNN architectures and sequence-
labeling tasks. In future works, we will focus on solving
these issues and developing advanced encryption methods.
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