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Abstract

In this paper, we tackle the problem of visually guided
audio source separation in the context of both known and
unknown objects (e.g., musical instruments). Recent suc-
cessful end-to-end deep learning approaches adopt a single
network with fixed parameters to generalize across unseen
test videos. However, it can be challenging to generalize
in cases where the distribution shift between training and
test videos is higher as they fail to utilize internal infor-
mation of unknown test videos. Based on this observation,
we introduce a meta-consistency driven test time adaptation
scheme that enables the pretrained model to quickly adapt
to known and unknown test music videos in order to bring
substantial improvements. In particular, we design a self-
supervised audio-visual consistency objective as an auxil-
iary task that learns the synchronization between audio and
its corresponding visual embedding. Concretely, we apply
a meta-consistency training scheme to further optimize the
pretrained model for effective and faster test time adapta-
tion. We obtain substantial performance gains with only a
smaller number of gradient updates and without any addi-
tional parameters for the task of audio source separation.
Extensive experimental results across datasets demonstrate
the effectiveness of our proposed method.

1. Introduction
Recent advancements of convolutional neural networks

(CNNs) for audio-visual source separation [16, 17, 43, 50,
55, 56, 62] have lead to significant boost in performance.
However, separating sounds in the wild is still a challeng-
ing problem due to insufficient separation cues in a mix-
ture of sounds. Existing approaches use visual information
(e.g., lip movements in speech separation [17], musical in-
strument type in audio separation [4, 16, 23, 43, 50, 54–56,
62], etc.) to learn an audio-visual representation to pro-
mote the separation process. Furthermore, incorporating
other modalities (e.g., pose [43], motion [36, 55, 62], key-
points [14]) is shown to improve the separation performance
by learning a multi-modal representation. In this work we

follow the setup from similar prior works [16,23,43,50,54–
56, 62], where all the sounds in the video can be related to
on-screen objects. Despite their success, these methods are
limited to the scenario where both train and test sets contain
similar objects (e.g., musical instruments).

While music videos in the wild can include various mu-
sical instruments and different music styles and musical ex-
pressiveness, currently available datasets cover only a lim-
ited set of music video examples and only a part of the com-
prehensive list of the instrument categories. Working with
such datasets, prior works have demonstrated a limited gen-
eralization capability to unknown music videos and instru-
ment categories at test time, and a failure to overcome the
distribution gap between the training and testing data.

The main motivation of our work is to propose an adap-
tation framework to improve generalization to known and
unknown test videos, and in an extension, to specifically
promote generalization to new sound categories (e.g., new
music instruments). To achieve this, at test time we exploit
the internal information of each individual test sample.

Adapting a model on unknown test samples termed as
“online matching” or “test time adaptation” has shown to be
effective in various tasks (e.g., image recognition [5, 6, 34],
image deblurring [7], video [3]). However, most of these
methods adopt test time adaptation in a naive way [25, 48,
58] which requires considerable inference time or increased
amount of parameters. In addition, naive test time adap-
tation can drive the model to catastrophic forgetting [30].
Meta-learning techniques, such as model agnostic meta-
learning (MAML) [12] have been introduced to remedy
such limitations in test time adaptation. However, the idea
of meta-learning driven test time adaptation has not been
explored in the context of audio visual learning.

Motivated by existing works [6–8, 37], we combine the
idea of meta-learning [12] with self-supervised auxiliary
learning. To this end, we introduce a meta-auxiliary based
pipeline for visually guided audio source separation which
can quickly adapt to an unseen music video at test time, to
substantially improve the separation performance. In par-
ticular, we first design a self-supervised cross-modal consis-
tency objective [17,26,32,58] as an auxiliary task that learns
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the synchronization between audio and its corresponding
visual embedding. Note that both the primary task (i.e,
source separation) and the auxiliary task (i.e., audio-visual
consistency learning) share majority of the parameters. The
model parameters are learned in a meta-learning fashion, so
that the updated model performs well on the primary task
after adaptation using the consistency objective. However,
as mentioned earlier, naively updating the model parame-
ters via the consistency objective can lead to catastrophic
forgetting [30]. Therefore, we take one step further towards
the generalization of sound separation methods on a more
advanced setting, where the musical instruments in training
and testing are not the same in a general case. The contri-
butions of our paper are as follows:

• We propose a novel framework for visually guided au-
dio source separation in the context of both known and
unknown musical instruments.

• We introduce an effective meta-consistency driven test
time adaptation scheme that enables the pretrained
model to quickly adapt to unknown music videos. To
the best of our knowledge, the proposed approach is
the first work on meta-auxiliary driven test-time adap-
tation in the context of audio-visual learning.

• We provide experimental evidence that our method im-
proves generalization to both known and unknown mu-
sical categories. We further demonstrate consistent im-
provements on existing state-of-the-art methods.

2. Related Work

Audio-visual Sound Separation. Recent deep learning
based approaches separate visually indicated sounds for
various sources including speech [1, 2, 9, 11, 13, 17, 35, 41],
objects [15], musical instruments [4, 14, 16, 23, 43, 50, 54–
56,59–62], and universal purposes [15,45]. Zhao et al. [56]
introduced PixelPlayer, a framework to learn object sounds
and their location in the scene for sound source separation.
Gao et al. [16] introduced a novel co-separation objective
to associate consistent sounds to the objects of the same
category across all training samples. Tian et al. [50] pro-
posed sounding object visual ground network along with a
co-learning paradigm to determine if the object is audible to
further separate its source. Zhu et al. [61] adapted the clas-
sical slowfast networks to propose a three-stream slowfast
network along with a contrastive objective. Another line
of works focused on incorporating additional input modal-
ities (e.g., pose [43], motion [36, 55, 62], keypoints [14])
to improve the source separation performance by learning a
multi-modal representation. In particular, TriBERT [43] de-
vised a multi-modal transformer to utilize pose information
along with weak category supervision on pose and visual

embedding for fully supervised audio visual source separa-
tion. Our base network for visually guided audio separa-
tion is inspired by TriBERT [43] and VilBert [28]. How-
ever, unlike TriBERT, our method does not necessitate de-
lineation of visual ROIs for tokenization by weakly super-
vised segmentation, leading to a simpler training scheme,
yet achieving a superior performance. In addition, these
approaches adopted a single network with fixed parame-
ters to generalize across unseen test videos, while we in-
troduce a self-supervised audio-visual consistency objective
as an auxiliary task that learns synchronization between au-
dio and its corresponding visual embedding. Similar to our
work, Zhou et al. [58] proposed SeCo framework to sep-
arate unknown musical instruments by exploiting the con-
sistency constraints in online matching strategy, which can
bring stable enhancements with no cost of extra parame-
ters. However, SeCo [58] is neither designed nor trained for
adaptation in a low-data regime (one sample is the limit).
Auxiliary and Meta Learning. The goal of auxiliary learn-
ing is to enhance the generalization of the primary task [27].
The auxiliary task is employed for various purposes includ-
ing depth completion [29], super resolution [38], and de-
blurring [7]. In addition, meta-learning enables fast test
time adaptation via a few training examples. The idea of
combining auxiliary learning with meta learning [12] is al-
ready explored in existing works [6–8,37]; however, it is not
explored in the context of audio visual learning. To the best
of our knowledge, we are the first to apply meta-consistency
training scheme to further optimize the pretrained model for
effective test time adaptation.

3. Audio Visual Source Separation Network
We tackle the visual sound separation task where the

goal is to separate sounds from a mixed audio signal by in-
corporating visual information. Following [17, 21, 50, 56,
62], we adopt the “mix and separate” technique to train the
model. Given two video clips {V1,V2} with associated au-
dio signals {AV1

,AV2
}, we first mix the audio signals to

generate a synthetic mixed signal, AVmix = AV1
+AV2

. Fol-
lowing common practice [16, 17, 43, 50, 55, 56, 62], we ap-
ply short time Fourier transform (STFT) [19] on the raw
mixed signal AVmix to generate a log spectrogram, Sm, for
the ease of training. The overall architecture of our net-
work is illustrated in Fig. 1. The visual guidance network
(Sec. 3.2) guides the encoded feature of the audio separation
network (Sec. 3.1) which outputs separated audio spectro-
gram masks. We multiply the separated audio masks by the
mixed spectrogram, and apply inverse STFT to generate the
clean separated audio signals. To make our model adap-
tive to specific test samples, we customize it to utilize ad-
ditional internal information of each test sample separately,
which is available at test time. Towards this goal, we first
design a self-supervised cross-modal consistency objective
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Figure 1. Illustration of our architecture for visually guided sound separation. The visual guidance network (Sec. 3.2) extracts multi-modal
representation, fav, from the video frames and mixed spectrogram, Sm. The mixed spectrogram is also fed to the audio separation network
(Sec. 3.1) which generates the encoded audio feature, fa. Then, the multi-modal representation, fav, is combined with the audio feature,
fa, resulting in a guided audio feature map, fâ. The decoder of the audio separation network takes fâ as input and outputs separated audio
spectrogram masks, {MV1 ,MV2}. We then design a self-supervised cross-modal consistency objective (Sec. 3.3) as an auxiliary task that
learns synchronization between the audio and its corresponding visual embedding.

(Sec. 3.3) as an auxiliary task to learn audio-visual syn-
chronization. Finally, we apply meta-consistency training
scheme (Sec. 3.4) to further optimize the pretrained model
for effective test time adaptation.

3.1. Audio Separation Network

Following existing works [16, 17, 43, 55, 56, 58], we use
an attention U-Net [44] style encoder-decoder network with
skip connection to generate separated audio spectrograms.
Note, the U-Net contains seven convolutions and seven de-
convolutions layers. The encoder of attention U-Net takes a
mixed audio spectrogram Sm ∈ R1×256×256 as input and
extracts an audio feature map fa ∈ R1024×16×16. The
encoded representation, fa, is combined with the multi-
modal representation fav (obtained from the visual guid-
ance network described in Sec. 3.2) with a self-attention
based fusion technique used in [14, 43]. Note that before
the fusion, we adjust the dimension of audio and multi-
modal features. The fused feature fâ is fed into the de-
coder of the attention U-Net which predicts the final magni-
tude of the spectrogram masks, {M1,M2}. Finally, we acti-
vate the predicted spectrogram masks via the sigmoid func-
tion to obtain the predicted separation masks {MS1 ,MS2}.
For the sound separation task, since our goal is to sepa-
rate spectrogram masks for each individual object, we ap-
ply separation loss, Lmask, between the predicted separated
masks and the binary ground-truth masks. Lmask uses a
per-pixel sigmoid cross entropy objective. Following prior
works [43, 50, 56, 62] the binary ground-truth mask of each
video is calculated by observing whether the target sound
is the dominant component in the mixture sound. This loss
provides the main supervision to enforce the separation of
the clean audio.

3.2. Visual Guidance Network

Inspired by the success of multi-modal transformer in
various tasks [28, 31, 41, 43, 49], we build our visual guid-
ance network on top of ViLBERT [28] and TriBERT [43].
ViLBERT is a two stream architecture which jointly learns
from image and text while TriBERT extends ViLBERT’s
architecture to three stream (vision, audio, and pose) to
learn a human-centric audio-visual representation. In con-
trast, we build a two-stream visual guidance network to
learn an audio-visual representation. Unlike visual guid-
ance networks in existing works [16, 17, 50, 55, 56, 62]
which only use visual cues, our guidance network takes
both video frames and mixed spectrogram as input, and out-
puts a joint audio-visual representation. The joint represen-
tation is used to guide the audio separation network. Sim-
ilar to [28, 41, 43], we use a bi-directional transformer en-
coder [51] as the backbone of the guidance network. We
first generate the visual tokens by directly feeding video
frames to a CNN architecture. We then apply a tiny VGG
network [46] on mixed audio spectrogram to generate the
audio tokens. The two sets of tokens are fed to the multi-
modal transformer encoder, which refines them using bi-
modal co-attention, to output a multi-modal representation.
Visual Representations. TriBERT uses an end-to-end seg-
mentation network which outputs detected object features to
feed into multi-modal transformer. In contrast, we directly
use input frames for each video separately to extract global
semantic representation rather than using detected bounding
box features [16,43,50]. We use the 2D ResNet-50 architec-
ture [20] as the visual analysis network which takes a video
as input, and outputs 1024 dimensional feature vector after
the last spatial average pooling layer. We then reshape the
feature vector along the temporal dimension (i.e, number of
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video frames) and the resultant visual embedding is fed to
the multi-modal transformer as visual token.
Audio Representations. The mixed audio spectrogram,
Sm ∈ R1×256×256 (used in Sec. 3.1) is fed to a tiny VGG-
like [46] architecture which outputs the high-level global
audio embedding. The audio embedding is repeated to gen-
erate audio sequences which are used as tokens for audio
stream of the multi-modal transformer.
Bi-modal Co-attention. Following [28, 41, 43], we use bi-
modal co-attention layer in the transformer encoder to learn
effective representations. While TriBERT [43] extends the
ViLBERT’s co-attention layer to take intermediate repre-
sentation of three different modalities, we extend it to take
intermediate vision and audio representation as input. We
keep the rest of the transformer encoder architecture similar
to ViLBERT [28]. The resultant audio-visual representation
is used to guide the encoded features from the audio separa-
tion network. Note that our guidance network does not use
any audio level category information or other modality (i.e.,
pose) as used in TriBERT [43].

3.3. Cross-Modal Consistency Network

In addition to the audio visual source separation net-
work, a properly chosen self-supervised auxiliary task can
complement the primary separation task in a way that can
be used to adapt the network on test samples. Unlike the
original setting (i.e., separating the known musical instru-
ments), we are also interested in exploring a more challeng-
ing scenario to separate the unknown musical categories by
achieving stronger adaptation ability. Motivated by existing
works [24, 26, 32, 58], we introduce an audio-visual con-
sistency analysis network which learns the synchronization
of video and corresponding separated audio. The consis-
tency network is likely to capture the audio-visual correla-
tion when adapted to new samples leading to better audio
separation result. Note that the auxiliary audio-visual con-
sistency task is self-supervised.

To learn audio-visual synchronization, we use inter-
modal consistency [17, 26, 32, 58] based on the predicted
audio masks from the separation network. We multiply the
predicted audio spectrograms {M1,M2} by the mixed spec-
trogram, Sm, to obtain the separated audio spectrograms,
{Spred

1 ,Spred
2 }. For consistency computation, we further use

a ResNet18 [20] to encode the two predicted audio spec-
trograms into a lower dimensional embedding space suit-
able for direct comparison with the visual embeddings ob-
tained by the visual guidance network. The consistency
network takes the separated spectrograms, {Spred

1 ,Spred
2 },

as input and outputs 256 dimensional consistency embed-
ding, {fpred

1 , fpred
2 } for each spectrogram separately. Simi-

lar to [17, 26, 58], the audio-visual associations in videos
are learned in a straight-forward efficient way, where the
training objective is to minimize the distance of the posi-

tive pairs while maximizing the distance for negative pairs.
We consider the synchronized audio-visual samples (i.e, the
separated audio embedding and their corresponding visual
embedding) as a positive pair {fpred

i , fv
i } where i ∈ {1, 2}.

In contrast, we obtain the negative pairs by cross pair-
ing the audio and visual embedding, {fpred

i , fv
j } where i ̸=

j & (i, j) ∈ {1, 2}. We normalize all the embeddings be-
fore consistency computation using sigmoid function. The
overall audio-visual consistency loss can be defined by the
following:

LCons = L2(fpred
1 , fv

1) + L2(fpred
2 , fv

2)

−L2(fpred
1 , fv

2)− L2(fpred
2 , fv

1) (1)

This loss forces the overall network to learn cross-modal
visual audio embeddings such that the distance between the
embedding of the separated music and the visual embedding
for the corresponding musical instrument should be smaller
than that between the separated audio embedding and the
visual embedding for the other musical instrument.

Note that the separation results at the beginning of train-
ing are not sufficiently accurate to learn audio-visual as-
sociation, in fact they can confuse the network to identify
positive and negative pairs reliably. To address this limi-
tation, following [26, 58], we incorporate ground-truth au-
dio features to help the association learning process in the
beginning of the optimization process. More specifically,
we pass the ground-truth audio masks to the consistency
network and generate embeddings {fGT

1 , fGT
2 } to include an

additional loss term, λ = δ(L2(fGT
1 , fv

1) + L2(fGT
2 , fv

2)) for
regularization in Eq. 1. Note that the regularizer λ is only
used at the beginning of the learning process to help “warm-
start” the learning. It is excluded during meta-consistency
training and test time adaptation in Sec. 3.4. The weight
δ decays fast over the course of training (see S2 in supple-
ment). The overall loss function for training is as follows:

L = Lmask + γ ∗ (LCons + λ) (2)

where γ is the weight for the consistency loss.

3.4. Meta-Consistency Learning for AVSS

Existing works [3,5,52,58] utilize online matching strat-
egy also termed as ‘test-time adaptation’ which adapts a
learned model to unknown samples during inference. This
is achieved by fine-tuning the model parameters for each
test sample based on the error signals from a self-supervised
auxiliary loss. However, there exist works [6–8, 37, 53, 57]
which pointed out that naively applying test-time adaptation
as in [48, 58] can lead to catastrophic forgetting as the pa-
rameters updated via self-supervised loss are biased towards
improving the auxiliary self-supervised task rather than the
primary task. To address this limitation, some works [6–8,
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37,53,57] introduced a learning framework which integrates
meta learning with auxiliary self-supervised learning. Mo-
tivated by these works [6–8, 37, 53, 57], we introduce meta-
consistency training framework for audio-visual source sep-
aration, with the goal of further improving the separation
results and adapting to known/unknown samples.

The overall meta-consistency learning pipeline is pre-
sented in Algorithm 1. We first initialize the parameters
from the pre-trained audio-visual separation model which
is already capable of separating audios. During meta-
consistency learning, we enforce the constraint that the pa-
rameter update via the cross-modal consistency loss (Eq. 1)
should improve the audio separation task. We now describe
the flow of our algorithm in more detail. We decompose
the parameters of our entire model as θ = {θS , θP , θCons},
where θS denotes the shared weights, θP and θCons are
the weights for the primary source separation branch and
the auxiliary audio-visual consistency branch, respectively.
Note that θP is also required for our auxiliary task, since the
auxiliary consistency task uses the output from the primary
separation task. We denote the gradient update iterations for
each sample as the inner loop and the meta-update iterations
as the outer loop. During the inner loop training, given an
audio-visual pair and the parameters of pretrained model θ,
we perform a small number of gradient updates on the input
pair using the consistency loss:

θ̂n = θ − α∇θLCons(fpred
n , fv

n; θ), (3)

where α is the adaptation learning rate. fpred
n , fv

n refer to au-
dio and visual embeddings, respectively. Here, θ̂n involves
all the model parameters, {θ̂Sn , θ̂Pn , θ̂Cons

n }. Our goal is to
force the updated {θ̂Sn , θ̂Pn } to enhance the audio separa-
tion task by minimizing the separation loss, Lmask. Follow-
ing [7, 8, 37, 57], we define the meta-objective as:

min
θS ,θP

N∑
n=1

Lmask(MS
n,Mgt

n ; θ̂
S
n , θ̂

P
n ), (4)

where Lmask is a function of θ̂n but the optimization is over
θ. MS

n,Mgt
n refer to the predicted and the ground-truth audio

masks, respectively. The meta-objective in Eq. 4 can be
minimized as following:

θ ← θ − β

N∑
n=1

∇θLmask(MS
n,Mgt

n ; θ̂
S
n , θ̂

P
n ), (5)

where β is the meta learning rate and following existing
practice [6–8,37,53,57], we use a mini-batch in Eq. 5. Note
that we only update consistency network parameters, θCons,
in the inner loop while update audio separation network pa-
rameters, θS and θP , in the outer loop.

Algorithm 1: Meta-Consistency Learning
Input: Consistency pretrained model parameters
Output: Meta-consistency learned parameters, θ

1 Initialize the model with pre-trained parameters:
θ = {θS , θP , θCons}

2 while not converged do
3 Sample a batch, N of audio-visual pairs {Ia, Iv}

foreach pair (Ia
n, Iv

n) ∈ N do
4 while iter ≤ number of updates, k do
5 Evaluate∇θLCons using Eq. 1
6 Compute adapted parameters with GD:

θ̂n = θ − α∇θLCons(fpred
n , fv

n; θ)
7 Update: θCons ←

θCons − α∇θLCons(fpred
n , fv

n; θ
Cons)

8 Evaluate the audio separation task and update:
θ ← θ − β

∑N
n=1∇θLmask(MS

n,Mgt
n ; θ̂

S
n , θ̂

P
n )

Meta auxiliary testing. During meta-testing, given an
audio visual pair, we obtain the adapted parameter θ̂ by sim-
ply applying Eq. 3. The final separation masks are obtained
from the adapted parameters, θ̂. The model parameters are
switched back to the original meta-trained state before eval-
uating the next pair.

4. Experiment

4.1. Implementation Details

We implement our pipeline using the PyTorch frame-
work [39]. Following previous works [43, 50, 56], we con-
sider three consecutive RGB frames with a spatial resolu-
tion of 224×224 as an input sequence to our visual stream
of the multi-modal transformer. We set the video frame rate
to 1fps and randomly sample 3 consecutive frames from 6s
video clip. Similar to existing works [43, 50, 56], we sub-
sample 6s of audio signals at 11KHz from the same clip,
to reduce the computational cost. We use STFT with a
hop length of 256 and Hann window size of 1024 for the
spectrogram generation process. We use an ImageNet [10]
pretrained ResNet50 architecture to extract visual features.
We use the BERT Adam optimizer with an initial learning
rate of 1e−5 and batch size of 12 to train our base model
on two Tesla V100 GPUs for 100 epochs. The weight γ
in Eq. 2 is set to 0.01. During the meta-consistency train-
ing, we set the learning rate to 1e−9 and 1e−10 for the
outer loop update and the inner loop updates, respectively.
During meta-testing, we set the learning rate to 2e−5. We
follow the line of works [50, 56, 62] which run inference
on pairs of test videos. We report numbers for the fol-
lowing variants that are described in what follows: AVSS:
This is our baseline audio visual source separation net-
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work which consists of visual guidance network (Sec. 3.2)
and audio separation network (Sec. 3.1). AVSS+CMC:
This network applies the cross-modal consistency mod-
ule (Sec. 3.3) with AVSS. AVSS+CMC+Meta: This net-
work applies meta-consistency training scheme (Sec. 3.4) to
AVSS+CMC. AVSS+CMC+Naive TTA: This variant ap-
plies test time adaptation on the trained AVSS+CMC (i.e.,
test time adaptation without meta-consistency learning) to
demonstrate that TTA performs well with a meta-trained
model. AVSS+CMC+Meta TTA: This is our final method
which applies meta-consistency driven test time adaptation
on the trained AVSS+CMC+Meta.

4.2. Dataset and Evaluation Metrics

Dataset. We quantitatively evaluate our model on MIT
MUSIC [56] and MUSIC-21 [55] datasets. The MUSIC
dataset consists of 11 classes of musical instrument and
composed of untrimmed videos crawled from the YouTube.
Following CCoL [50], we gather 510 online available mu-
sical solo videos from the MUSIC dataset and split it into
training/validation/test sets, which have 420/45/25 videos
from different categories, respectively. The MUSIC-21
dataset consists of 21 classes and contains 1365 untrimmed
videos. For a fair comparison, we use the split provided by
TriBERT [43] to report results on the MUSIC-21 dataset.
Note that we include the evaluation performance of our
method and the baselines when we use only single-source
videos (solos) or multi-source videos (solos+duets).
Evaluation Metrics. We use the widely used mir eval li-
brary [40] to quantify the performance under three stan-
dard metrics: Signal-to-distortion ratio (SDR), Signal-to-
interference ratio (SIR), and Signal-to-artifact ratio (SAR).

4.3. Quantitative Results on MUSIC

We compare our approach with recent state-of-the-art
methods under two different MUSIC test splits for audio-
visual source separation task. Table 1 and Table 2 sum-
marize the results for separating two sound sources on the
split provided by [50] and [16], respectively. As we can
see from Table 1, our approach outperforms (11.77dB vs
7.27dB in SDR) the compared methods by large margins
in terms of SDR and SIR. Similarly, our proposed model
outperforms its closest competitor ( Table 2) by substantial
margins of around 0.5dB SDR and 1.3dB SIR on the MU-
SIC test set. Figure 2 illustrates the qualitative comparison
results. It is clear that our approach, both quantitatively and
qualitatively, outperforms the baselines in sound separation.

To further demonstrate the superiority of our approach,
we follow [43] to report the results on MUSIC test set un-
der the setting when we first train on MUSIC-21 dataset
and then apply meta-consistency learning scheme (Alg. 1)
on MUSIC dataset. For this setting, we follow the split pro-
vided by Co-Separation [16] for a fair comparison. Table 3

Method SDR ↑ SIR↑
RPCA [22]⋆ -0.48 3.13
Sound of Pixels [56]⋆ 3.42 4.98
Co-Separation [16]⋆ 2.04 6.21
CCoL [50]⋆ 7.27 12.77
Ours 11.77 19.36

Table 1. The separation performance comparison on MUSIC test
split provided by [50]. The results indicated with ⋆ are obtained
from [50]. Our method achieves SOTA in SDR and SIR metrics.

Method SDR ↑ SIR↑ SAR↑
Sound of Pixels [56]⋆ 6.1 10.9 10.6
Minus-Plus Net [54]⋆ 7.0 14.4 10.2
Sound of Motion [55]⋆ 8.2 14.6 13.2
Co-Separation [16]⋆ 7.4 13.8 10.6
Music Gesture [14]⋆ 10.1 15.7 12.9
AVSGS [4]⋆ 11.4 17.3 13.5
Ours 11.9 18.6 13.5

Table 2. The audio separation performance comparison on MU-
SIC test split provided by [16]. The results indicated with ⋆ are
obtained from [4]. Our method outperforms all the existing ap-
proaches in terms of SDR and SIR metrics and levels with the best
previous approach for SAR.

Method SDR ↑ SIR↑ SAR↑
NMF-MFCC [47]⋆ 0.92 5.68 6.84
AV-Mix-and-Separate [16]⋆ 3.23 7.01 9.14
Sound of Pixels [56]⋆ 7.26 12.25 11.11
Co-Separation [16]⋆ 7.64 13.8 11.3
Mask Co-efficient [42]⋆ 9.29 15.09 12.43
TriBert [43]⋆ 12.34 18.76 14.37
Ours 12.81 19.56 14.16

Table 3. The performance comparison on MUSIC test split [16]
when the models are pretrained on MUSIC-21 dataset. The results
indicated with ⋆ are obtained from [43]. Our method outperforms
all the existing approaches in terms of SDR and SIR metrics, and
is somewhat outperformed only by TriBERT in the SAR metric.

summarizes the comparison results. Our method consis-
tently outperforms the baselines in separation accuracy for
most cases with a large margin. Note that TriBERT [43]
requires human pose keypoints as an input, while our ap-
proach does not require this additional information. The
main limitation of test time adaptation is that it comes at
the cost of longer inference time; however, in most cases,
we demonstrated substantial improvements with only one
or two gradient updates. This slight increase in inference
time is balanced well with significant generalization boost,
particularly in the case of unknown test categories.

4.4. Adaptation Results on MUSIC-21

To show model compatibility to separate sounds of un-
known musical instrument, we evaluate our framework on
the MUSIC-21 dataset [55]. More specifically, we use the

3019



Figure 2. Qualitative sound separation results on the MUSIC test
set. Here, we show a comparison with SoP [56] and CCoL [50].

Method SDR ↑ SIR↑ SAR↑
AVSS 3.38 9.28 8.45
AVSS + CMC 3.98 9.85 8.91
AVSS + CMC + Naive TTA 4.05 10.0 8.77
AVSS + CMC + Meta TTA 4.43 10.26 9.05

Table 4. Adaptation results on the MUSIC-21 multi-source set.

Method SDR ↑ SIR↑ SAR↑
AVSS 3.87 9.98 8.73
AVSS + CMC 4.70 10.93 9.19
AVSS + CMC + Naive TTA 4.75 10.96 9.20
AVSS + CMC + Meta TTA 4.94 11.07 9.22

Table 5. Adaptation results on the MUSIC-21 single-source set.

meta trained model from MUSIC dataset and adapt it on
each sample of the MUSIC-21 test set. For each test pair,
we optimize the meta-trained model parameters using the
cross-modal consistency loss for several inner loop itera-
tions. Unlike SeCo [58] which showed the adaptation re-
sults on different splits of the MUSIC-21 dataset (i.e., train
on randomly selected 16 music classes from MUSIC-21 and
evaluate on the other five classes), we evaluate on the whole
MUSIC-21 without using it during training. Our setting is
more challenging than SeCo [58] as our method has never
seen any multi-source (i.e., duet) videos during training on
the MUSIC dataset. Table 4 and 5 summarize the adap-
tation results on the MUSIC-21 multi-source (solo+duets)
and single-source (solo), respectively, under different vari-
ants of our approach. Interestingly, cross-modal consis-
tency learning promotes the separation results more aggres-
sively when adapting to unknown music classes than known
classes (see Table 7). This result further strengthens the
importance of designing meta-consistency learning frame-
work. The performance is further improved (0.45dB SDR)
by applying meta-testing. In contrast, applying naive TTA
only marginally improves the performance (0.07dB SDR).

4.5. Adaptation Results on AudioSet

We also evaluate our framework on the AudioSet
dataset [18] to further demonstrate models ability to sep-
arate unknown sound. Table 6 shows the comparison re-

Method Train on AudioSet SDR ↑ SIR↑
Sound of Pixels [56] ✓ 1.66 3.58
AV-MIML [15] ✓ 1.83 -
Co-Separation [16] ✓ 4.26 7.07
Ours ✗ 2.71 7.27

Table 6. Performance comparison on AudioSet test set split pro-
vided by [16]. Note that previous methods are both trained and
tested on AudioSet. However, ours is only tested on AudioSet.

Method SDR ↑ SIR↑ SAR↑
AVSS 10.35 16.71 12.43
AVSS + CMC 10.41 17.06 12.13
AVSS + CMC + Meta 10.53 17.51 12.14
AVSS + CMC + Naive TTA 10.42 17.06 12.13
AVSS + CMC + Meta TTA 10.80 17.87 12.30

Table 7. The ablation results comparing different variants of our
proposed pipeline on MUSIC val set. Our final method which
incorporates both cross-modal consistency and meta-consistency
training, outperforms all other baselines by a substantial margin.
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Figure 3. Illustration of SDR after each gradient update for the
fully meta-trained models trained with k = {1, 2, 3, 4} and the
pre-trained consistency model with no meta-training on MUSIC
(left) and MUSIC-21 (right) test set. Overall, the meta-consistency
learned models improve performance via test time adaptation for
all the values of k used in meta-consistency training.

sults with other approaches. Interestingly, our method out-
performs two out of three methods without any training on
this challenging dataset and without any labeled examples
to guide test-time adaptation.

4.6. Ablation Study

4.6.1 Audio-Visual Consistency and Meta Learning

We conduct experiments on MUSIC val split [50] to exam-
ine the significance of different components of our method
and summarize the results in Table 7. Our baseline AVSS
achieves SDR of 10.35dB and 16.71dB of SIR without any
audio-level class labels. When we include the cross-modal
consistency loss with AVSS, AVSS+CMC marginally out-
performs AVSS (10.35dB SDR vs 10.41dB SDR and
16.71dB SIR vs 17.06dB SIR). The meta-consistency
training (AVSS+CMC+Meta) further promotes the separa-
tion performance marginally (10.53dB SDR and 17.71dB
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Figure 4. Illustration of unfolded adaptation process for various number of gradient updates during test time adaptation. Interestingly, more
cleaner and visually close to ground-truth separated spectrograms are generated with k = 4.

SIR). Finally, meta-consistency based test time adaptation
(AVSS+CMC+Meta TTA) reasonably improves the overall
separation performance (0.27dB SDR improvement). In-
terestingly, naive test time adaptation (AVSS+CMC+Naive
TTA) can not improve separation performance (0.01dB
SDR improvement) which reveals the importance of our
meta-consistency based training for audio separation task.
It is clear that the cross-modal consistency loss and meta-
consistency training based test time adaptation promote the
separation performance and we achieve the best results by
employing both cross-modal consistency loss and meta-
consistency training regarding all evaluation metrics.

4.6.2 Effects on the Number of Inner Loop Updates

To analyze the effect of varying number of inner loop up-
dates during meta consistency training on MUSIC val split
and test time adaptation on MUSIC test split, we conduct a
series of experiments. Figure 3 demonstrates how the over-
all separation performance changes while varying the inner
loop gradient updates from 0 to 5 during meta-testing. We
use five different meta-trained models with k = {1, 2, 3, 4}
and the pretrained consistency model in our experiment set-
tings. In general, test time adaptation with smaller number
of inner loop updates (i.e., k = {2, 3, 4}) shows the most
SDR gain, while increasing the number of updates, k does
not have any impact on improving separation performance.
Note that the results for k > 4 is not shown as we do not
observe any improvement for those values of k. Interest-
ingly, the separation performance is even diminished with
more gradient updates, which is somewhat counter-intuitive
of the hypothesis (i.e., larger k allows the model to bet-
ter adapt to the test sample) compared to the tendency re-
ported in existing works [7, 12, 37]. However, recent work
on video frame interpolation [8] achieved best performance
with just one gradient update. The possible reasons for this
phenomena can be two folds. Firstly, it might cause sever
overfitting to the data used for the inner loop updates. In
fact, the inner loop may concentrate too much on learn-
ing cross-modal consistency and forget the generic prior
knowledge learned by baseline pretrained model to sepa-

rate audios from the mixture. Secondly, the complexity of
training grows with the increase of gradient updates, which
makes the task harder for the model to find the optimal lo-
cal minima [12,33]. Interestingly, naively adapting the pre-
trained model can not facilitate test time adaptation to im-
prove the separation performance as the meta-consistency
learned models. While the existing work [7] pointed out
that number of gradient updates should match during meta-
auxiliary training and test time adaptation, we found that
the separation performance is minimally changed when us-
ing different gradient updates during training and test time
adaptation. Figure 4 shows the unfolded adaptation process.

5. Discussion and Conclusion

In this paper, we introduced a novel method for visu-
ally guided audio source separation. To promote the adap-
tation ability on known and unknown samples, we designed
a cross-modal consistency learning module that learns the
synchronization between visual embedding and its corre-
sponding audio embedding to improve separation perfor-
mance. In addition, we integrated meta consistency learning
to constrain the model so that the gradient updates via the
consistency loss bring in the performance improvement and
promote the ability for faster and effective test time adap-
tation by quickly adapting its parameters accordingly. Our
experimental results demonstrated consistent performance
improvement on multiple benchmark datasets. We further
conducted extensive ablation studies to emphasize the im-
portance of the key components of our overall method. The
main novelty we introduce comes from the overall system
design, as opposed to methodological details of individual
components. While we re-use certain components from the
prior art (e.g. multi-modal transformer [28,43], audio-visual
consistency [58]), we focus on their novel and optimal com-
bination to effectively support meta-consistency driven test-
time adaptation and that way enable quick adaptation of the
pretrained model. We envision extensions to a more uni-
versal sound separation to include off-screen sounds is an
interesting future direction.
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