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Abstract

This paper addresses the problem of reconstructing
scenes behind optical diffusers, which is common in appli-
cations such as imaging through frosted glass. We propose
a new approach that exploits specular reflection to capture
sharp light distributions with a point light source, which
can be used to detect reflections in low signal-to-noise sce-
narios. In this paper, we propose a rasterizer-based differ-
entiable renderer to solve this problem by minimizing the
difference between the captured and rendered images. Be-
cause our method can simultaneously optimize multiple ob-
servations for different light source positions, it is confirmed
that ambiguities of the scene are efficiently eliminated by
increasing the number of observations. Experiments show
that the proposed method can reconstruct a scene with sev-
eral mirror-like objects behind the diffuser in both simu-
lated and real environments.

1. Introduction

The reconstruction of scenes behind an optical diffuser,
such as frosted glass windows or fogging windshields of
cars, is desirable for safety and inspection. Examples in-
clude inspecting potentially hazardous objects in a space
covered with frosted glass for privacy, or inspecting the
shape of packaged goods. A similar problem setting can
also be found in a study on non-light-of-sight imaging [45].
However, this is a difficult task because the scene is severely
blurred by the diffuser and cannot be observed directly. In
a typical scenario, an object behind the diffuser is assumed
to be a daily commodity with both diffuse and specular re-
flections. Because specular reflection is usually stronger
than diffuse reflection, if the object is illuminated by a
point light source, sharp and high-frequency patterns are
observed on the diffuser, which are called caustics. Al-
though several algorithms are proposed for “shape from
caustics,” they mainly focus on designing the shape of mir-
ror or glass to generate a specific target pattern onto the
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Figure 1. Overview of the proposed method. There are two target
mirrors (top right) behind the diffuser (top left); however, under
ambient light, these mirrors are hardly observed. We use narrow
beams to reconstruct the scene (bottom right) from multiple obser-
vations made at different light source locations (bottom left).

screen or wall [8, 16], and there is no practical solution
which can be applied for general conditions, such as recov-
ering a shape of objects behind a diffuser.

The main reason why few solutions have been proposed
is that it is theoretically difficult to determine the correspon-
dences between the reflected patterns and light sources. For
example, the reflected light of a point light source creates
high-frequency patterns not only by high-frequency shapes
of mirrors but also by smooth surfaces such as paraboloidal
mirrors, which concentrate the light intensity at a single
point of the focus of the paraboloid. Moreover, a unique
surface cannot be reconstructed from a single observation
because of the degenerated nature of reflected light. To
solve this problem, we propose a new technique to estimate
the shape of an object from the reflection pattern on dif-
fuser images of the reflected light distribution using a dif-
ferentiable renderer by minimizing the difference between
the rendered and several observed images under different
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Figure 2. Illustration of light-transport modeling. When a narrow
beam strikes the diffuser, the light incident on the i–th and j–th
patches is reflected to the diffuser again through the mirror reflec-
tion.

lighting conditions. Note that the reflected pattern can-
not be reproduced by nonphysics-based differentiable ras-
terizers [4, 17, 21, 22, 33]. This is a difficult task even for
publicly available unidirectional path-tracing based differ-
entiable renders [19, 23, 28, 49] because paths connecting
the diffuser, specular surfaces, and point light sources are
difficult to sample. Bidirectional path-tracing based differ-
entiable renderers, such as [48], are capable of handling the
paths; however, they still suffer from high computational
costs and sampling noise, resulting in instability in numer-
ical optimization. Therefore, to make the rendering pro-
cess of reflected light more efficient, we propose a new type
of differentiable renderer that can optimize parameters in a
scene with reflection. In the proposed method, reflective ob-
jects, such as mirrors, are represented by a polygon mesh,
and the light rays emitted from the light sources are re-
flected on the mesh and finally projected onto the target, that
is, a diffuse surface. Considering that the light energy emit-
ted from a light source is conserved until it is projected onto
the diffuser, the irradiance on the diffuser can be calculated
analytically. The resulting image is rendered using a differ-
entiable rasterizer for sampling the radiance. This two-pass
algorithm allows for the rendering of smooth caustics, for
which existing physics-based renderers are still poor at. In
addition,the rendering cost depends only on the number of
mesh vertices and is always constant during the optimiza-
tion process, independent of the complexity of the reflec-
tion pattern. The experimental results confirmed that the
proposed method can reconstruct scenes behind a diffuser
in both simulated and real environments. In summary, this
study makes the following contributions.

• A differentiable renderer considering light transport is
proposed, where the renderer efficiently calculates the

intensity distribution according to the linear calcula-
tion of the direct paths between the light source and
scene surface.

• A method of estimating the position and surface nor-
mal of a mirror-like object behind a diffuser is pro-
posed, utilizing multiple images of the reflected pat-
terns captured by a camera while a light source is
freely moved.

• Real experiments with special data capturing process
to avoid noise and direct reflection from a diffuser are
conducted to confirm that the proposed algorithm can
reconstruct the scene behind a diffuser.

2. Related work
2.1. Differentiable and non-differentiable rendering

techniques

2.1.1 Rendering of reflected light

Unidirectional rendering algorithms, such as those involv-
ing path and light tracing, are widely used in photorealistic
rendering. However, these unidirectional algorithms can-
not handle scenes containing ideal pinhole cameras and in-
finitely small point light sources. Bidirectional path tracing
and photon mapping algorithms are reasonable rendering
choices for such scenes; however, they still involve large
computations and are thus not suitable for our iterative op-
timization. An efficient method of rendering reflections and
refractions by beam tracing is proposed in an early work
and is shown to be faster and more accurate than path trac-
ing [5, 7, 10, 14, 37, 43]. This rendering technique is em-
ployed for the reflector design in [8] through analysis-by-
synthesis via global optimization. We extend the beam-
tracing algorithm to differentiable rendering, which allows
efficient optimization.

2.1.2 Differentiable rendering

Differentiable rendering has become an important tech-
nique for understanding 3D geometry by combining it with
machine learning approach [12, 32, 38, 46, 51].
Differentiable rasterizers Rasterization is an operation in
mesh rendering, in which 3D polygons are sampled into 2D
pixels. The operation involves discrete computation at the
boundaries, which prevents differential calculations. The
problem is addressed for the shadow region in [27] and for
the occluding boundaries in [4, 17, 21, 22]. We follow Soft-
Ras [21] for handling the occluding boundary.
Physics-based differentiable rendering Physics-based
differentiable rendering algorithms reproduce complex light
transport effects and compute derivatives with respect to the
material properties [19, 23, 49]. Methods have been pro-
posed for specific types of light propagation; for example, a
method based on photon splatting for caustic rendering [9]
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and another for handling the effects of shadows or global
illumination [19].

Path-tracing based differentiable rendering algorithms
allow us to optimize scene parameters via photorealistic
rendering. Most publicly available implementations such as
Mitsuba [15, 28] are based on unidirectional Monte Carlo
integrals, which are poor at rendering caustics. In general,
the light-tracing method performs better in rendering caus-
tics than path tracing. The particle tracer implemented in
Mitsuba is an example of a light-tracing method; however, it
cannot handle infinitesimal light sources in our scene prop-
erly, resulting in the failure shown in Fig. 3.

Path-space differentiable rendering [48], which is based
on bidirectional Monte Carlo integration, can render caus-
tics; therefore, it is theoretically applicable in our case.
However, a sufficient number of samples per image are re-
quired for the rendering results to converge, and the com-
putational cost is multiplied by the number of observations.
The proposed method can explore a large solution space for
a number of shape parameters at a practical computational
cost because the quality of rendering is independent of the
number of samplings.

2.2. Shape reconstruction from optical phenomena

The shape reconstruction of an object for a complicated
optical property has been intensively researched; e.g., re-
search on the shape reconstruction of a transparent ob-
ject [16,18,30,44], shape reconstruction for translucent me-
dia [6, 26], shape reconstruction from specularity [24, 42]
and defocus [39, 50]. A shape from caustics via differen-
tiable rendering is proposed in [16]. This method relies on
the refractive properties of the glass volume; therefore, it
is not directly applicable to reflective caustics. In [8], the
geometry of a reflective surface is constructed using caus-
tic images. This problem setting differs from ours because
their goal is to design any surface geometry that generates
a target caustic image, whereas our goal is to reconstruct a
geometry that generates a caustic pattern. For the techni-
cal aspect, beam tracing is employed for rendering, which
is based on a mesh-based intensity calculation similar to
our method. The shape parameters is estimated via global
optimization, which is independent of the rendering algo-
rithm. In contrast, we perform back-propagation through
the rendering process for effective optimization. Moreover,
we design the scene representation and sampling strategy to
be consistent throughout the optimization. Similarly, goal-
based caustics also aims to design glass shapes that produce
target caustics [25, 31, 36, 47].

Shape reconstruction of non-line-of-sight (NLOS) ob-
jects that cannot be directly observed has been widely
studied in recent years. Although most approaches adopt
time-resolved imaging to reconstruct the shape of an ob-
ject [3,11,13,29,40,41], conventional camera methods have

Mitsuba Proposed

Figure 3. Comparison between Mitsuba3 [15] and the proposed
method for LDSDE path, where almost nothing rendered in the
scene.

also been proposed [2, 35]. Additionally, object shape re-
construction using a diffuser is proposed [20]. These meth-
ods cannot be applied to objects with high specularity, be-
cause the material of the object is assumed to be diffuse or
retroreflective. We use specularity to recover the shape of
many general objects that contain specular reflective com-
ponents, such as glossy plastics. In [45], specular light
paths were exploited for reconstructing an object not in
sight. They demonstrated transmissive NLOS imaging uti-
lizing time-resolved measurements, which is similar to our
problem setting.

3. Scene parameter optimization with differen-
tiable rendering for object reconstruction

3.1. Scene setting and light transport modeling

We consider a scene with light sources, a mirror or re-
fractive surface, and a diffuse transmitter. The spatial distri-
bution of light is observed using a camera. The light source
is assumed to be a narrow beam, as shown in Fig. 2; how-
ever, other types of light sources, such as point light and
directional light, can be handled in the same manner.

In our scene setting, it is necessary to handle light-
diffuse-specular-diffuse-eye (LDSDE) path, which is im-
possible to be rendered by the path tracing because we sup-
pose infinite thin spot lights. Our insight into the rendering
of reflected light is that the energy of the propagating light
should be conserved as a consequence of these events. We
modeled propagation by considering a small surface area on
the reflector. The energy of the incident light over a small
area on reflector ∆S should be preserved in the correspond-
ing area A∆S in which the reflected light arrives. From the
conservation law, the flux is the same on the mirror and on
the diffuser, therefore, the irradiance on the mirror EM and
on the diffuser ED are

EM =
cos θM∆ϕ

∆S
,ED =

cos θD∆ϕ

A∆S
, (1)

respectively, where a small area on the mirror ∆S receives
flux ∆ϕ, θM is the angle between the mirror normal and in-
cident beam direction, A is the area in which the reflected
light arrives, and θD is the angle between the diffuser nor-
mal and the direction of the reflected beam. Finally, the
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irradiance on the diffuser is the inverse of the ratio of the
reflected and reflector areas,

ED =
cos θD

A cos θM
EM . (2)

3.2. Differentiable rendering pipeline and optimiza-
tion

We optimize the scene parameters with respect to the
renderer’s output by following a common supervised op-
timization framework using a differentiable renderer. We
consider scene parameters comprising (1) light parameters,
such as positions and intensities, (2) mirror parameters,
such as depth, surface normal maps, and the reflectance
maps of mirrors. Errors computed from the measured and
rendered images are backpropagated through the differen-
tiable renderer, and the scene parameters are updated di-
rectly. We adopt the gradient descent algorithm for the op-
timization. We consider the data-fidelity term with respect
to the output of the renderer. The renderer generates M
images that correspond to M light sources. In the follow-
ing notation, symbols with a hat represent the output of the
renderer and those without a hat represent the ground truth.
The data-fidelity term for RGB images IRGB

i under the i-th
light is LRGB = 1

M ∥ ˜IRGB
i − IRGB

i ∥22. The total variation
regularization for the normal is added to the loss function to
smoothen the estimated normal: LTV = λTV ∥Ñ∥TV . The
cost function is formulated as

L=LRGB + LTV . (3)

Given the interdependence of the scene parameters, it is
impossible to determine a unique solution from a single ob-
servation. For example, there are ambiguities in reflectance,
normal, and distance, even for a flat mirror that does not
produce caustics. We input multiple observation images for
different light source positions to limit the space of consis-
tent scene parameters in each image.

3.3. Reflection rendering based on the differentiable
rasterizer

3.3.1 Mesh representation

The surface of the mirror is represented by a polygon mesh.
The reflected light distribution is also represented by a
mesh, with each face corresponding to the face of the mirror
mesh where reflection occurred. The mesh of the mirror sur-
face comprises a quadrilateral face with four vertices. Nor-
mals are defined per face instead of per vertex to constrain
the mesh to the shape of the face and prevent divergence of
the solution due to its area being zero. Each face normal is
sampled from the normal map based on the uv coordinate.

3.3.2 Bidirectional rendering algorithm

The proposed bidirectional rendering algorithm comprises
a light pass that assesses light propagation from the light
source, and a camera pass that samples the reflected light
intensity from the camera.

In the light pass, the distribution of reflected light is com-
puted in a mesh-based calculation; i.e., The reflected light
rays that strike the mesh of the mirror are projected onto
the diffuse surface, where the mesh irradiance is calculated.
First, the direction from the light source to each vertex is
calculated. The direction of the reflected ray is calculated
as R = 2(N ·L)N−L, where R denotes the reflection vec-
tor, N denotes the normal vector, and L denotes the lighting
vector. The position of the i-th vertex of the mesh of the re-
flected light Pi is determined by computing the intersection
of the reflected ray and diffuser surface. The normal of a
vertex is considered the same as that of the face containing
the vertex.

The irradiance of the reflected light is calculated by con-
sidering the ratio between the area and the corresponding
area on the mirror surface following Eq. (2). The received
irradiance on the mirror surface is attenuated and is approx-
imated using the average distance EMj of each vertex of
face j. The bidirectional transmittance distribution func-
tion (BTDF) is used to account for the diffuser transmit-
tance. We assume a model in which the function depends
on the angle of incidence to the diffuser and a parameter
α as F (ωi, α) = cosα ωi. Letting Fi and Fo be BTDF at
incidence and emission, respectively, the irradiance on the
diffuser is calculated as

EDj =
R · L

A(N · L)
FiFoEMj . (4)

The calculated irradiance is stored as the texture color of
each face of the mesh, representing the reflected light uni-
formly.

In the camera path, the path starting from the camera is
connected to the path from the light source. Because the
path from the light source is represented as a reflected light
mesh, it can be easily sampled at each pixel of the camera
by rasterizing the mesh. The intensity of each pixel is the
sum of the intensities of the faces of the mesh on that pixel
to reproduce the overlap of the reflected light. We calcu-
late the probability map around each triangle by following
SoftRas [21] to make the mesh boundary differentiable.

4. Experiment
4.1. Simulation experiment

4.1.1 Reconstruction of scene with multiple mirrors

In this section, we reconstruct the geometry of the multiple
mirrors. The experiments are performed on the different
combination of the optimization parameters.
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Figure 4. Simultaneous estimation of depth and shape. (a) The reflectance distributions of the two mirrors are correctly decomposed,
although the reflected light from the two mirrors overlap in the observational images. (b) Reflectance distribution of 3D volume. Each
mirror is estimated at a different depth.

Table 1. Estimated depths of two flat mirrors. The mirror size to
be reconstructed is 1 for simulation and 10 cm for the real world.

Simulation Real-world
estimated GT estimated GT

mirror 1 0.41 0.40 10.37 10.44
mirror 2 0.62 0.60 13.73 14.05

Simultaneous estimation of depth and shape Two flat
mirrors with a different boundary shape are placed at dif-
ferent depths. Given a known normal direction, the depth
of each mirror and the mirror boundary are reconstructed.
There is the ambiguity between the depth and the re-
flectance, for example, a wrong depth and the mirror with
shifted reflectance map also can generate the same observa-
tion image. 16 observation images under different light po-
sitions are provided. The size of the reconstruction region
of the mirror is set to 1 × 1, and the shape of the mirrors
is estimated as the reflectance map. As shown in Fig. 4(a),
the light reflected from the two mirrors overlaps in the ob-
served image. The proposed method successfully separates
the reflectance distributions of two mirrors. Noise in the
reflectance map is thought to be caused by the ambiguity
in the region where the reflected light from the two mirrors
overlaps. As shown in table 1, the depth is estimated with
high accuracy and it is visually confirmed in Fig. 4(b).
Simultaneous estimation of depth and normal direction
Two flat mirrors in the scene are placed at different depths,
and oriented in different directions. Given a mirror bound-
ary, the depth of each mirror and the normal directions are
reconstructed. Nine observation images at different light
positions are provided. The initial value for the depth is
0.3, and the normal direction is front-parallel for each mir-
ror. As shown in Fig. 6, the GT and estimated observed
images closely matched. The estimated depths and normal
directions are estimated with a few error as shown in ta-
ble 2. The results suggest that providing multiple observa-
tions successfully mitigates ambiguity; however, it is still

Table 2. Numerical evaluation of Simultaneous estimation of
depth and surface normal.

Mirror 1 Mirror 2
Distance (GT) 0.189 (0.200) 0.411 (0.400)

Angle error [degree] 10.41 9.65

insufficient to determine the exact solution.

4.1.2 Normal reconstruction of an object behind the
diffuser

Accuracy of the normal reconstruction is estimated in this
experiment. The ground-truth observation images are gen-
erated by the physics-based renderer LuxCore [1], whose
bidirectional path tracing algorithm can efficiently generate
reflective caustics. The input data and results are presented
in Fig. 5(b). It is noteworthy that even a simple normal dis-
tribution of #1 generates complex sharp reflection patterns
that vary according to the incident light positions, as shown
in Fig. 3. The normal is reconstructed from 16 observations
corresponding to 16 incident light positions arranged on a
4 × 4 grid with a distance of 0.5 between adjacent sources.
The size of the mirror area is 2 × 2, and the distance between
the diffuser and object is 0.4. The resolution of the obser-
vation image is 128 x 128 and the resolution of the normal
map is 64 x 64. λTV is set to 0.01.

The results show that all the reconstructed normal maps
and rendered images represent the global ground truth. #1
and #2 represent concave and convex shapes, respectively,
producing caustics at different locations. #3 consists of two
planes of different orientations and wavy region in the mid-
dle. #4 shows a letter composed of curves which is raised
from the plane and #5 shows the concave relief in the shape
of pepper. In all cases, the reconstructed normals reproduce
the edges of the original normal; however, we can observe
a slight disturbance at the edges of the curves. This is be-
cause the caustics rendered from the discretized normals of
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Figure 5. Shape reconstruction results in simulation environment.
It is confirmed that the proposed method can estimate normals
for multiple shapes including concave and convex surfaces, and
straight and curved edges.
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1 2

diffuser

Scene

Figure 6. Simultaneous estimation of depth and surface normal of
mirrors placed at different depths in different directions (left). The
GT (middle) and estimated observations (right) under nine light
source positions are closely matched.

the proposed method do not fully reproduce the sharp caus-
tics generated from the smooth surfaces. The mean angular
errors (MAE) for #1 to #5 are 1.91, 0.98, 1.06, 1.00, 1.84,
and 4.14, respectively.
Evaluation on observation number We investigate the
dependence of the reconstruction accuracy on the number
of observations. Multiple images corresponding to differ-
ent light-source configurations are synthesized for the same
scene. The number of light sources is one, or 4, 9, 16, or
25 incident points placed on a uniform grid of 1 × 1 area.
The error between the reconstructed normal and the ground-
truth normal is averaged over five different scenes. The nor-
mal step at which the cost function is minimized is consid-
ered as the reconstructed result.

The results are shown in Fig. 7. When there is no noise
in the observations (green), the error is large for one obser-
vation because of the ambiguity in the normal that generates
a caustic pattern. While four observations are sufficient for
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Figure 7. Normal error corresponding to observation number. It is
confirmed four input are sufficient for noiseless observations, how-
ever, the error increases as the number of observations increases,
which may suggest the side-effect of total-variation regularization.

estimating correct normal, for nine or more observations,
the error increases as the number of observations increases
without noise. This is because the resolution of the image is
higher than that of the normal map, and the total variation
is included in the cost; thus, the normals are oversmoothed
and become closer to flat. The results for different noise
levels (blue lines) confirm that for a sufficient number of ob-
servations (n = 4), the accuracy degrades with the magni-
tude of the noise. For more observation numbers, noise im-
pacts both the stability of computational optimization and
the precision of normal estimation, engendering a trade-off
between these aspects. Regarding computational stability,
introducing a moderate level of noise can forestall conver-
gence towards local optima. Conversely, excessive noise
tends to yield flat normals due to inconsistent observations.
We found that at σ = 0.2, a balance between these two ef-
fects was achieved, resulting that the error consistently de-
creases as the number of observations increases. It can be
concluded that there is a possibility to obtain more accurate
normals with a larger number of measurements. However,
there is a range of appropriate noise levels, and noise must
be properly controlled in a real environment.
Comparison with other methods To evaluate the accu-
racy of the proposed method, experiments are conducted
for comparison with the other methods. Because no prior
method existed, we compared the normal reconstruction ac-
culacy with a CNN-based baseline method and the modi-
fied implementation of [16]. The CNN-based method has
a UNet [34] structure in which takes multiple observations
that are stacked in the channel direction as input and out-
put normals. The network is trained in a supervised manner
using the ADAM optimizer with a learning rate of 0.00001
and an epoch count of 5000. A dataset for training consist-
ing of 1,000 synthesized normals and observation images
generated from the corresponding normal. Each synthe-
sized normal represents a single spherical concave surface
of random radius, scaled by a factor of 0.1 in x, y direc-
tion. The dataset is divided into 800 training data and 200
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Figure 8. Comparison with baseline methods. While proposed
method correctly estimates the normal distribution, CNN-based
method fails to estimate the normal. [16] performs poorly for the
reflective setup.

test data. For [16] that assumes refractive systems is appro-
priately modified to accommodate reflective systems. We
chose Landweber-pixel method for the reconstruction, and
set hyper-parameters τp = 0.1 as recommended in the pa-
per. The height map is estimated from a sinle observation
and it is converted into normal map for the evaluation. The
number of observations is fixed at 16.

The results are shown in Fig. 8. The mean angular er-
rors (MAE) for CNN, [16], proposed are 4.049, 15.23, and
0.487, respectively. While the CNN-based method success-
fully estimates the sphere’s position, the direction and mag-
nitude of the normal deviate from the ground truth. This
indicates the difficulty in estimating the normal from the ob-
served images only, without prior physical knowledge. [16]
performs poorly for the reflective setup, because it relies
physical constraints of the refractive volume which is not
available.

4.2. Real-world experiment

4.2.1 Experimental setup

The experimental setup is shown in Fig. 9. The target ob-
ject is placed on a stage behind optical diffuser made of
polyethyleneterephthalate sheets, and a red laser and cam-
era (Sony ILCE-7SM3) is placed in front of the diffuser.

For each incident light position, two images are taken:
one with the object and one without the object to extract
and remove the region of incident light on the diffuser by
calculating the difference between the two images. We as-
sume the light is incident at the brightest pixel. The per-
spective transformation is performed to obtain the image on
the diffuser.

4.2.2 Position and shape estimation of the flat mirror

In this experiment, the placement and shape of the mirrors
comprising planes are estimated. Flat mirrors in the shape
of the letters ‘C’ and ‘V’ are placed in the scene, as shown

Diffuser

Target
Camera

Laser light

Figure 9. Experimental setup. Because the target object is placed
behind the diffuser, it cannot be observed directly.

in Fig. 1. The size of the reconstruction region of the mirror
is set to 10cm×10cm. Input are four observation images at
different light source positions. The rendered images after
convergence and estimated shape are shown in Fig. 10(a)
and a volume rendering in (b). It is confirmed that the two
mirror-like objects are estimated correctly. An artifact ex-
ists at the top of the image, which is considered to be the ef-
fect of the remaining backscattered light in the observed im-
age and possibly wrong BTDF parameters which adjusted
manually. As shown in table 1, the depth is estimated with
error, which is possible because of the ambiguity between
the position and surface normal.

4.2.3 Estimation of the normal for arbitrary objects

Multiple measurements are performed for each real object
in order to estimate the surface normal. Nine input images
are 9 images. The incident point of the light source is ad-
justed such that the reflected light falls within the plane of
the diffuser, and the incident points are selected such that
they do not overlap with the reflected light as much as pos-
sible. Observations 1 and 2 (first and third columns) in
Fig. 11(a) show examples of observation images. The ob-
ject is represented by a planar polygon, the depth and size
of the plane are given, and the normal map and reflectance
map (fifth and sixth columns) are the parameters to be op-
timized. The initial values of the normal map are set uni-
formly to roughly match the orientation of the object, as
measured manually. The observation images generated us-
ing the estimated parameters are presented in the second
and fourth columns of the figure.

A and B are objects consisting of a single plane. The
estimated reflectance represents the shape of the object and
the normal map is uniform, indicating that the estimation is
successful. The estimated observation image has the same
profile as that of the ground-truth image. However, the
estimated radiance distribution does not vary significantly,
whereas the ground-truth image shows a large gradation
range. This may be due to the fact that the given depth and
BTDF of the diffuser are different from the actual values.

C consists of two planes. The estimated reflectance rep-
resents two separate mirror planes. The normals of each
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Figure 10. Reconstruction of flat mirrors at different depths. (Top) The estimated depth and reflectance distribution almost reproduce the
ground-truth observed image. Artifacts in the reflectance distribution are caused by light reflected from the background in the observed
images. (Bottom) Each mirror is estimated at a different depth in 3D volume of the reflectance distribution.
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GT Estimated Reflectance Normal
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C.

D.

Target

(a) (b)

E.

F.

Observation

GT Estimated Reflectance NormalTarget

Figure 11. (a) Normal and reflectance reconstruction of real mirror-like objects. Normal and reflectance are simultaneously reconstructed
for A–C. Only the normal is reconstructed for D–F. using nine observations. (b)3D reconstruction of shape C.

plane are uniform, and their directions are different, as can
be seen from the normal (rightmost column), indicating that
the estimation is successful. Figure 11(b) shows 3D recon-
structed of this shape using Poisson integration, which cor-
rectly represents the angle between two mirrors.

D-F is a complex shape containing multiple curved sur-
faces. The reflected light produced by the convex shape is
weak and cannot be captured by the dynamic range of the
camera due to the luminance difference from the caustics.
To prevent the reflectance from being estimated to be zero
due to the convex shape, reflectance maps are generated
using the reflected light from the flat planes at the object
boundaries. In the reflectance map, the interior of the ob-
ject region is filled with uniform values. For D-F, only the
normal map is optimized. The pot lid in D has an uneven
shape, and caustics can be seen in the observed image. As
shown in Fig. 1, the reflection pattern of such a shape varies
in distribution and brightness. In the result of D, the normal
distribution shows that a shape with a concave center and
multiple steps is estimated. In the result of E, the shape of
the dish with larger normal variations is estimated, and, in

F, smaller normal variations that produce complex caustics
are successfully estimated.

5. Conclusion

We demonstrated that our rasterizing-based differen-
tiable rendering method optimizes the parameters of a
scene, including specular reflection, and demonstrated mea-
surements for actual and simulated scenes. The proposed
differentiable rendering has a clear advantage in efficiently
reproducing smooth caustics at a low computational cost,
and allows us to optimize the object shape represented by
many parameters. One limitation of the proposed method
is that it cannot render scenes with more than two bounces.
Resolving this issue will be addressed in future research.
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Interactive rendering of caustics using interpolated warped
volumes. In Proceedings of Graphics Interface 2005, GI
2005, pages 87–96, School of Computer Science, Univer-
sity of Waterloo, Waterloo, Ontario, Canada, 2005. Canadian
Human-Computer Communications Society. 2

[8] Manuel Finckh, Holger Dammertz, and Hendrik P.A.
Lensch. Geometry construction from caustic images. ECCV,
6315 LNCS(PART 5):464–477, 2010. 1, 2, 3

[9] Jeppe Revall Frisvad, Lars Schjøth, Kenny Erleben, and Jon
Sporring. Photon differential splatting for rendering caustics.
Comput. Graph. Forum, 33(6):252–263, Sept. 2014. 2

[10] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygo-
nal objects. In Proceedings of the 11th Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’84, page 119–127, New York, NY, USA, 1984.
Association for Computing Machinery. 2

[11] Felix Heide, Lei Xiao, Wolfgang Heidrich, and Matthias B.
Hullin. Diffuse mirrors: 3d reconstruction from diffuse in-
direct illumination using inexpensive time-of-flight sensors.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014. 3

[12] Tao Hu, Zhizhong Han, Abhinav Shrivastava, and Matthias
Zwicker. Render4completion: Synthesizing multi-view
depth maps for 3d shape completion. In ICCV workshop,
pages 4114–4122, 10 2019. 2

[13] Julian Iseringhausen and Matthias B. Hullin. Non-line-of-
sight reconstruction using efficient transient rendering. ACM
Trans. Graph., 39(1), jan 2020. 3

[14] K. Iwasaki, Y. Dobashi, and T. Nishita. Efficient rendering
of optical effects within water using graphics hardware. In

Proceedings Ninth Pacific Conference on Computer Graph-
ics and Applications. Pacific Graphics 2001, pages 374–383,
2001. 2
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