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Abstract

For artists or graphic designers, the spatial
arrangement of a scene is a critical design choice.
However, existing text-to-image diffusion models provide
limited support for incorporating spatial information.
This paper introduces Composite Diffusion as a
means for artists to generate high-quality images by
composing from sub-scenes. The artists can specify
the arrangement of the sub-scenes through a free-form
segment layout and can describe the content of each sub-
scene using natural text and additional control inputs.
We provide a comprehensive and modular framework
for Composite Diffusion that enables alternative ways
of generating, composing, and harmonizing sub-scenes.

We further argue that existing image quality metrics
lack a holistic evaluation of image composites. To
address this, we propose novel quality criteria especially
relevant to composite generation. We believe that our
approach provides an intuitive method of art creation.
Through extensive user surveys and quantitative and
qualitative analysis, we show how it achieves greater
spatial, semantic, and creative control over image
generation. In addition, our methods do not need to
retrain or modify the architecture of the base diffusion
models and can work in a plug-and-play manner with
the fine-tuned models.

1. Introduction

Recent advances in diffusion models [9], such as
Dalle-2 [18], Imagen [21], and Stable Diffusion [19]
have enabled artists to generate vivid imagery by
describing their envisioned scenes with natural language
phrases. However, it is cumbersome and occasionally
even impossible to specify spatial information or sub-
scenes within an image solely by text descriptions.
Consequently, artists have limited or no direct
control over the layout, placement, orientation,
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Figure 1. Image generation using Composite Diffusion:
The artist’s intent (A) is manually converted into input
specification (B) for the model in the form of a free-form
sub-scene layout and conditioning information for each sub-
scene. The conditioning information can be natural text
description, and any other control condition. The model
generates composite images (C) based on these inputs.

and properties of the individual objects within a
scene. These creative controls are indispensable for
artists seeking to express their creativity [24] and
are crucial in various content creation domains,
including illustration generation, graphic design, and
advertisement production. Frameworks like Controlnets
[27] offer exciting new capabilities by training parallel
conditioning networks within diffusion models to
support numerous control conditions. Nevertheless, as
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we show in this paper, creating a complex scene solely
based on control conditions can still be challenging. As a
result, achieving the desired imagery may require several
hours of labor or maybe only be partially attainable
through pure text-driven or control-condition-driven
techniques.

To overcome these challenges, we propose
Composite-Diffusion as a method for creating
composite images by combining spatially distributed
segments or sub-scenes. These segments are generated
and harmonized through independent diffusion
processes to produce a final composite image. The
artistic intent in Composite Diffusion is conveyed
through the following two means:

(i) Spatial Intent: Artists can flexibly arrange sub-
scenes using a free-form spatial layout. A unique color
identifies each sub-scene.

(ii) Content intent:Artists can specify the desired
content within each sub-scene through text descriptions.
They can augment this information by using examples
images and other control methods such as scribbles, line
drawings, pose indicators, etc.

We believe, and our initial experience has shown, that
this approach offers a powerful and intuitive method
for visual artists to stipulate their artwork.

This paper seeks to answer two primary research
questions: First, how can native diffusion models
facilitate composite creation using the diverse input
modalities we described above? Second, how do we
assess the quality of images produced using Composite
Diffusion methods? Our paper contributes in the
following novel ways:

1.We present a comprehensive, modular, and flexible
method for creating composite images, where the
individual segments (or sub-scenes) can be influenced
not only by textual descriptions, but also by various
control modalities such as line art, scribbles, human
pose, canny images, and reference images. The method
also enables the simultaneous use of different control
conditions for different segments.

2. Recognizing the inadequacy of existing image
quality metrics such as FID (Frechet Inception Distance)
and Inception Scores [11,23] for evaluating the quality
of composite images, we introduce a new set of quality
criteria. While principally relying on human evaluations
for quality assessments, we also develop new methods of
automated evaluations suitable for these quality criteria.

We rigorously evaluate our methods using various
techniques including quantitative user evaluations,
automated assessments, artist consultations, and
qualitative visual comparisons with alternative
approaches.

2. Related work

In this section, we discuss the approaches that are
related to our work from multiple perspectives.

The work that comes closest to our approach in
diffusion models is inpainting where the model edits
a portion of an image specified by a segment mask
(and an optional textual description). Almost all the
popular diffusion models such as Dalle-2 [18], Imagen
[21], and Stable Diffusion [19], and frameworks like
Controlnets [27] support some form of inpainting such
as repaint [15], blended-diffusion [3], latent-blended
diffusion [1], and RunwayML [19]. As we show in this
paper, one can conceive of an approach for Composite
Diffusion by repeatedly applying inpainting. However,
this approach has some drawbacks such as it requires a
suitable background image (refer to Supp Sec. 4.2).

Some works look at the composition or editing
of images through a different lens. These include
prompt-to-prompt editing [3, 10, 16], composing scenes
through composable prompts [13, 14], and methods for
personalization of subjects in a generative model [20].
We concentrate specifically on composing the spatial
segments specified via a spatial layout. So our methods
can be complementary to these techniques.

Some related concurrent works such as SpaText
[2], eDiff-I [1], and Multi-diffusion [5] provide some
methods for composing images from spatially
free-form layouts with natural text descriptions.
SpaText [2] achieves spatial control by training the
model to be space-sensitive by additional CLIP-based
spatial-textual representation. eDiff-I [1] proposes a
method called paint-with-words which exploits the cross-
attention mechanism of U-Net in the diffusion model to
specify the spatial positioning of objects. Multi-diffusion
[5] proposes a mechanism for controlling the image
generation in a region by providing the abstraction of
an optimization loss between an ideal output by a single
diffusion generator and multiple diffusion processes
that generate different parts of an image. We utilize
a pre-trained text-conditioned diffusion model or a
control-conditioned model without the need to retrain
them (unlike SpaText [2]), and without the need for
architectural modification (unlike eDiff-I [4]). Refer to
Supp Sec. 6 for a more detailed discussion.

In comparison to all the above approaches, we have a
fundamental difference in the artistic approach as we lay
emphasis on composing through sub-scenes. Unlike all
these approaches we achieve additional control over the
orientation and placement of objects within a segment
through reference images and control conditions specific
to the segment. Further, our approach is more generic,
has a wider scope, and provides alternative ways of
composition in its two-stage composition process.
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Figure 2. Use of reference images for scaffolding: The scaffolding factor (k) ( Sec. 3.3) controls the influence of reference
images on the final composite image. At low x values, the reference images are heavily noised and exercise little control; the
segments merge drastically. At high k values, the reference images are lightly noised and the resulting image is nearer to the
reference images. A middle x value balances the influences of reference images and textual descriptions.

3. Our Composite Diffusion method

We present our method for Composite Diffusion. We
first formally define our goal. We define a subscene as
a scene making up part of a larger scene. We will use
the term ‘segment’ to particularly denote a sub-scene.

We want to generate an image x which is composed
entirely based on two types of input specifications:

1. Segment Layout: a set of free-form segments
S = [st,s?,...,s"], and

2. Segment Content: a set of natural text
descriptions, D = [d',d?,...,d"], and optional

additional reference images, R = [r!,r2?,...,7"], or

control conditions, C' = [¢!, ¢?, ..., c"].
Each segment s’/ in S describes the spatial form
of a sub-scene and has a corresponding natural text

description d’ in D, and optionally a corresponding

reference image 77 in C, or a control condition ¢/ in C.

The segments don’t non-overlap and fully partition the
image space of x. Additionally, we convert the segment
layout to segment-specific masks, M = [m!,m?,...,m"],
as one-hot encoding vectors.

Our method divides the generative process of a
diffusion model into two successive temporal stages:
(a) the Scaffolding stage and (b) the Harmonization
stage. We define a parameter called the scaffolding
factor, denoted by x (kappa), whose value determines
the percentage of the diffusion process that we assign to
the scaffolding stage. K = = TP rriacs Stops
The number of harmonization steps is calculated as
total diffusion steps minus the scaffolding steps. We
explain the two generative stages below:

3.1. Scaffolding stage

We introduce the concept of scaffolding, which we
define as a mechanism for guiding image generation

number of scaffolding steps % 100.

Algorithm 1: Composite Diffusion: Scaffolding
Stage. The input is as defined in the Sec. 3.

—

if Segment Reference Images then

2 for all segments i from 1 to n do
3 229 « Noise(r', k) ; < Q-sample reference
images to last timestep of scaffolding stage.

4 end

5 else if Only Segment Text Descriptions then

6 for allt from T to k do

7 for all segments i from 1 to n do

8 257« Noise(z***/f 1) ; < Q-sample
scaffold.

9 2599 « Denoise(xe, x5 mi d) ;
< Step-inpaint with the scaffolding image.

10 end

11 end

12 else if Text and Segment Control Conditions then

13 for allt from T to k do

14 for all segments i from 1 to n do

15 %% < Denoise(zy, m', d', ) ;
< Scaffold with the control condition and
denoise.

16 end

17 end

com n seg; )
18 o P =Y i omt

K—1
19 return z;°""

<4 Merge segments.

within a segment with some external help. We borrow
the term ‘scaffolding’ from the construction industry
[26], where it refers to the temporary structures that
facilitate the construction of the main building or
structure. These scaffolding structures are removed in
the building construction once the construction work is
complete or has reached a stage where it does not require
external help. Similarly, we may drop the scaffolding
help after completing the scaffolding stage.
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The external structural help, in our case, can be
provided by any means that help generate or anchor
the appropriate image within a segment. We provide
this help through either (i) scaffolding reference image
- in the case where reference example images are
provided for the segments, (ii) a scaffolding image -
in the case where only text descriptions are available
as conditioning information for the segments, or (iii) a
scaffolding control condition - in the case where the base
generative model supports conditioning controls and
additional control inputs are available for the segments.

3.1.1 Scaffolding with reference image

An individual segment may be provided with an
example image called scaffolding reference image to
gain specific control over the segment generation. This
conditioning is akin to using image-to-image translation
[19] to guide the production of images in a particular
segment. Algorithmically, we directly noise the reference
image (refer to Q-sampling in Supp sec 2) to the time-
stamp t = k that depicts the last time-step of the
scaffolding stage in the generative diffusion process
(Algo. 1, 1-4, and Supp Fig. 5, A). The generated
segment can be made more or less in the likeness of the
reference image by varying the initializing noising levels
of the reference images. Refer to Fig. 2 for an example
of scaffolding using segment-specific reference images.

3.1.2 Scaffolding with scaffolding image

This case is applicable when we have only text
descriptions for each segment. The essence of this
method is the use of a predefined image called
scaffolding image (x*¢*/7), to help with the segment
generation process. Refer to Algo. 1, 5-11 and Supp Fig.
5, B. Algorithmically, to generate one segment at any
timestep ¢ : (i) we apply the segment mask m to the
noisy image latent z; to isolate the area x; ©® m where
we want generation, (ii) we apply a complementary
mask (1 —m) to an appropriately noised (g-sampled to
timestep t) version of scaffold image z:°*// to isolate a
complementary area 2“7 © (1—m), and (iii) we merge
these two complementary isolated areas and denoise
the composite directly through the denoiser along with
the corresponding textual description for the segment.
Refer to Supp Fig. 6(a) for an illustration of the single-
step generation. We then replicate this process for all
the segments.

These steps are akin to performing an inpainting [1]
step on each segment but in the context of a scaffolding
image. Please note that our method step (Algo. 1, 9) is
generic and flexible to allow the use of any inpainting
method, including the use of a specially trained model

Progressively increasing
values of scaffolding factor k

1.skull with light inside
2.scary dark cave

3.medieval priest with robes
4.stone with engravings

Figure 3. Effect of scaffolding factor on Artworks. For the
given inputs and generations from top to bottom: At the
lower extreme, k = 0, we get an image that merges the
concepts of text descriptions for different segments. At the
higher end, k = 80, we get a collage-like effect. In the middle,
x = 40, we hit a sweet spot for a well-blended image suitable
for a story illustration.

(e.g., RunwayML Stable Diffusion inpainting 1.5 [19])
that can directly generate inpainted segments. We
repeat this generative process for successive time steps
till the time step t = k. The choice of scaffolding image
can be arbitrary. Although convenient, we do not restrict
keeping the same scaffolding image for every segment.

3.1.3 Scaffolding with control image

This case is applicable where the base generative model
supports conditioning controls, and, besides the text-
conditioning, additional control inputs are available for
the segment. In this method, we do away with the need
for a scaffolding image. Instead of a scaffolding image,
an artist provides a scaffolding control input for the
segment. The control conditioning input can be a line
art, an open pose model, a scribble, a canny image, or
any other supported control input that can guide image
generation in a generative diffusion process.
Algorithmically, we proceed as follows: (i) We use

7234



Lineart Control + Text

Generated Samples

“Painting of a rock climber
at the edge of a cliff on the
left, a boy superman
flying in the sky on top,
and two persons shouting
for help with hands in the
air at the bottom”

Openpose Controls +
Text conditioned Segments

“*Two persons
shouting for help
with hands in air”

Openpose Controls + Text

“Top left, house in spring,
top right house in summers,
bottom left house in autumn,
and bottom right house in

winters”

Lineart Controls +

Text conditioned Segments

“A house in spring” “A house in summer”

Ve

“A house in autumn”

“A house in winter” 8

Figure 4. Control+ Text conditioned composite generations: For the two cases shown in the figure, getting correct compositions
is extremely difficult with text-to-image models or even (text+control)-to-image models (For example, in Al the image
elements don’t cohere, and in A2 the fours seasons do not show in the output image). Composite Diffusion with scaffolding
control conditions can effectively influence sub-scene generations and create the desired overall composite images(B1, B2).

a control input specifically tailored to the segment’s
dimensions, or we apply the segment mask m to
the control condition input ¢! to restrict the control
condition only to the segment where we want generation,
(ii) The image latent x; is directly denoised through a
suitable control-denoiser along with conditioning inputs
of natural text and control inputs for the particular
segment. We then repeat the process for all segments
and for all the timesteps till t = k. Refer to Algo.1,
12-17, and Supp Fig. 5, C.

Note that since each segment is denoised
independently, the algorithm supports the use of
different specialized denoisers for different segments.
For example, refer to Fig. 1 where we use three distinct
control inputs, viz., scribble, lineart, and openpose.
Combining control conditions into Composite Diffusion
enables capabilities more powerful than both - the
text-to-image diffusion models [19] and the control-
conditioned models [27]. Fig. 4 refers to two example
cases where we accomplish image generation tasks that
are not feasible through either of these two models.

At the end of the scaffolding stage, we construct
an intermediate composite image by composing from
the segment-specific latents. For each segment-specific
latent, we retain the region corresponding to the
segment masks and discard the complementary region

(Refer to Supp Fig. 5 and Algo. 1, 20-21). The
essence of the scaffolding stage is that each segment
develops independently and has no influence on the
development of the other segments. We next proceed
to the ‘harmonization’ stage, where the intermediate
composite serves as the starting point for further
diffusion steps.

3.2. Harmonizing stage

The above method, if applied to all diffusion
steps, can produce good multi-segment inpainted
images. However, because the segments are being
constructed independently, the composite tends to be
less harmonized and less well-blended at the segment
edges. To alleviate this problem, we introduce a new
succeeding stage called the ‘harmonization stage’. The
essential difference from the preceding scaffolding stage
is that in this stage each segment develops in the context
of the other segments. We also drop any help through
scaffolding images in this stage.

We can further develop the intermediate composite
from the previous stage in the following ways: (i)
by direct denoising the composite image latent via
a global prompt (Algo. 2, 2-3, and Supp Fig. 7, A),
or (ii) by denoising the intermediate composite latent
separately with each segment specific conditioning and
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Algorithm 2: Composite Diffusion: Harmonization
Stage. Input same as Algo. 1, plus P

k—1
for allt from xk — 1 to 0 do

1

2 if Global Text Conditioning then

3 ‘ x¢—1 + Denoise(zy, D) ; <4 Base Denoiser

4 else if Segment Text Conditioning then

5 for all segments i from 1 to n do

6 ‘ x:igf + Denoise(xy, di) ; < Base Denoiser

7 end

8 x;iqw — E?:l Lrtsigf om' ; < Merge segments

9 else if Segment Control+Text Conditioning
then

10 for all segments i from 1 to n do

11 %% < Denoise(x:,d, c') ; < Controlled

Denoiser
12 end
13 a2 = 3" @% O m' 5 < Merge segments

14 end

15 return z°"? « (z°"7) ; < Final Composite

then composing the denoised segment-specific latents.

The segment-specific conditions can be either pure
natural text descriptions or may include additional
control conditions (Refer to Algo. 2, 4-8 and 9-13, and
Supp Fig. 7, B and C). While using global prompts, the
output of each diffusion step is a single latent and we
do not need any compositional step. For harmonization
using segment-specific conditions, the compositional
step of merging different segment latents at every time
step (Algo. 2, 8 and 13) ensures that the context of all
the segments is available for the next diffusion step. This
leads to better blending and harmony among segments
after each denoising iteration. Our observation is that
both these methods lead to a natural coherence and
convergence among the segments of the composite image
(Supp Fig. 8 provides an example illustration).

3.3. Impact of Scaffolding factor «:

Increasing the x value allows the segments to develop
independently longer. This gives better conformance
with the segment boundaries while reducing the
blending and harmony of the composite image. Our
experience has shown that the appropriate value of x
depends upon the domain and the creative needs of an
artist. Typically, we find that values of kappa around

20-50 are sufficient to anchor an image in the segments.

Figure 3 illustrates the impact of k¥ on image generation
that gives artists an interesting creative control on
segment blending. Supp Tab. 4 provides a quantitative
evaluation of the impact of the scaffolding factor on the
various parameters of image quality.

4. Quality criteria and evaluation

As stated earlier, one of the objectives of this research
is to ask the question: Is the quality of the composite
greater than or equal to the sum total of the quality
of the individual segments? In this section, we first lay
out our quality criteria and the evaluation approach,
and then discuss the results of our implementations.

4.1. Quality criteria

We argue that the present methods of evaluating
the image quality of image generation models are not
sufficient for our purposes. For example, methods such
as FID, Inception Score, Precision, and Recall [6, 11,22,

| that are traditionally used for measuring the quality
and diversity of generated images, do so only with
respect to the set of reference images used in training.
Further, they do not evaluate some key properties of
concern to us such as conformity of the generated images
to the provided inputs, the harmonization achieved
when forming images from sub-scenes, and the overall
aesthetic and technical quality of the generated images.
These properties are key to holistically evaluating the
Composite Diffusion approach. Hence, we propose the
following set of quality criteria:

1. CF: Content Fidelity: The purpose of the text
prompts is to provide a natural language description
of what needs to be generated in a particular region of
the image. The purpose of the control conditions is to
specify objects or visual elements within a sub-scene.
This parameter measures how well the generated image
represents the textual prompts (and/or the control
conditions) used to describe the sub-scene.

2. SF: Spatial Layout Fidelity: The purpose of the
spatial layout is to provide spatial location guidance to
various elements of the image. This parameter measures
how well the parts of the generated image conform to
the boundaries of specified segments or sub-scenes.

3. BH: Blending and Harmony: When we compose
an image out of its parts, it is important that the
different regions blend together well and we do not
get abrupt transitions between any two regions. Also,
it is important that the image as a whole appears
harmonious, i.e., the contents, textures, colors, etc. of
different regions form a unified whole. This parameter
measures the smoothness of the transitions between the
boundaries of the segments, and the harmony among
different segments of the image.

4. QT: Technical Quality: The presence of noise
and unwanted artifacts that can appear in the image
generations can be distracting and may reduce the
visual quality of the generated image. This parameter
measures how clean the image is from the unwanted
noise, color degradation, and other unpleasant artifacts
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boundaries or other regions of the image.

5. QA: Aesthetics Quality: Aesthetics refers to the
visual appeal of an image. Though subjective in nature,
this property plays a great part in the acceptability
or consumption of the image by the viewers or the
users. This parameter measures the visual appeal of the
generated image to the viewer.

4.2. Evaluation baselines

We measure the performance of our Composite
Diffusion approaches, using text-only conditioning
(Ours:CD-T) and text+control  conditioning
(Ours:CD-TC). To measure the performance of our
approaches using the above quality criteria, we deploy
the following three baselines:

1. Baseline B1: Base models This baseline has
two forms: (i) B1-T: [19] This is the Text to Image
base diffusion model that takes only text prompts as
the input. Since this input is unimodal, the spatial
information is provided solely through natural language
descriptions. (ii))B1-TC: [27] This is the Text+Control
to Image base diffusion model that takes additional
control condition inputs besides the text prompts.

2. Baseline B2: Serial inpainting As indicated
in the Sec. 2, we should be able to achieve a
composite generation by serially applying inpainting to
an appropriate background image and generating one
segment at a time. We use two serial inpainting methods:
one based on blended latent diffusion (B2:BLD) [1],
and another based on a specially trained inpainting
method for stable diffusion (B2:RSD) [19].

3. Baseline B3: Related approaches For this, we
consider two publicly available implementations of the
related methods - ediff-I paint-by-word (B3:ediff-I) [4]
and Multidiffusion (B3:MD) [5].

B3:ediff-I Ours:CD-TC

/

Figure 5. Samples of composite images generated through different baselines (Sec. 4.2) and Composite Diffusion methods.

4.3. Evaluation methods

We perform following different kinds of evaluations:

(i) Human evaluation We utilized social outreach
and Amazon MTurk to conduct the surveys and used
two different sets of participants: (i) a set of General
Population (GP) comprised of people from diverse
backgrounds, and (ii) a set of Artists and Designers
(AD) comprised of people with specific background and
skills in art and design field. The users were then asked
to rate the image on a scale of 1 to 5 for the five different
quality criteria.

(ii)Automated evaluation We consider and
improvise a few automated methods that can give us
the closest measure of these qualities. We adopt CLIP-
based similarity [17] to measure content(text) fidelity
and spatial layout fidelity. We use Gaussian noise as
an indicator of technical degradation in generation and
estimate it [7] to measure the technical quality of the
generated image. For aesthetic quality evaluation, we
use a CLIP-based aesthetic scoring model [12] that was
trained on - a dataset of 4000 Al-generated images and
their corresponding human-annotated aesthetic scores.
ImageReward [25] is a text-image human preference
reward model trained on human preference ranking of
over 100,000 images; we utilize this model to estimate
human preference for a comparison set of generated
images. We refer readers to Supp Secs. 7 and 8 for
more details on the human and automated evaluation
methods.

Additionally, we also do (iii) a qualitative visual
comparison of images (e.g., Fig. 5) and Supp Figs. 17,18,
and 19, and (iv) an informal validation by consulting
with an artist (Supp Sec. 10). We have implemented our
algorithms using Stable Diffusion 1.5 [19] for the base
diffusion model and Controlnets 1.1 [27]for controls. The
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Table 1. Automated evaluation results. The best-performing algorithm in a category is marked in bold

B1:T | B1:TC | B2:RSD | B2:BLD | B3:ediff-I | B3:MD | Ours:CD-T | Ours:CD-TC

Content Fidelity 1 0.23 0.24 0.25 0.25 0.25 0.25 0.26 0.26

Spatial Fidelity 1 0.24 0.26 0.26 0.27 0.26 0.27 0.27 0.28
Technical Quality | 1.34 1.89 2.69 1.15 0.49 1.02 1.24 2.26
Aesthetic Quality 1 6.3 6.5 5.5 5.6 5.0 6.4 6.4 6.6
Blend&Harmony | 6903 2999 725 1112 2696 5239 7404 5302
Human Preference | 8 4 5 6 7 2 3 1
CreateTime(s)/Art | 5 7 9 7 10 13 13 19

Human Survey - General Population

Content Fidelity

Spatial Layout Fidelity |
I

Blending and Harmony |
I, ———————

Technical Quality

Aesthetic Quality |
e

0 1 2 3 4 5

B1 - Text-to-Image H B2 - Serial Inpainting B Ours - Composite Diffusion

Figure 6. Human evaluation results from the set - General
Population(GP) for Composite Diffusion with Text and
Segment Layout input. Refer to Supp Fig. 22 for additional
human evaluation results from a more specific set of
population, viz., Artists and Designers(AD).

implementation details for our algorithms and baselines
are available in Supp Secs. 3, 4, and 5.

4.4. Results Summary

In this section, we highlight the main trends we
observed in our evaluation. For a detailed analysis and
further insights, please refer to Supp Sec. 9. We present
the automated evaluation results in Tab. 1.

For content and spatial fidelity, Ours:CD-TC,
followed by Ours:CD-T, gets the highest score. This
result reinforces our claim that our approach allows for
better textual and spatial conformity. In particular,
baseline B1:TC gets a lower spatial fidelity score
compared to Ours:CD-TC and Ours:CD-T, indicating
that using conditional control through, for example,
ControlNet [27] alone may not be sufficient to get
spatial control. Ours:CD-TC gets the highest aesthetic
score, and Ours:CD-T follows closely along with the
baseline B3-MD. While B1:TC secures the second-
highest aesthetic score, it compromises the critical
parameters of spatial and textual conformity. B3-ediff-1
exhibits minimal noise, although it sacrifices aesthetics
and input conformity. Ours:CD-T has comparable noise

levels to baseline B1:T, while Ours:CD-TC has slightly
higher noise than the baseline B1:TC; both of our
approaches result in much higher input conformity and
aesthetics.

B2:RSD gets the best blending and harmonization
score. We can attribute this result to B2:RSD generating
composite images directly in a single diffusion process.
However, in our case, we could tune the generation
towards blending by using the explicit harmonization
stage to generate holistic images. B2:BLD, although
it shows better blending scores, performs the worst
in a visual examination, which might indicate the
shortcomings of our automated method for blending
and harmonization. Our approach’s run-time efficiency
is similar to the related methods but is higher than the
baselines B1 and B2. The human preference ranking,
which gives an overall measure of human preference,
text alignment, and image fidelity, Ours:CD-T ranks
the highest, followed by B3:MD and Ours:CD-T.

In Fig. 6, Supp Fig. 22, and Supp Tabs. 2 and 3,
we share the outcomes of human evaluation surveys
regarding these quality parameters. The overall patterns
in these surveys mostly align with those seen in
automated results, thus also providing validation for
our automated evaluation methods.

5. Conclusion

From the artists’ affordance perspective, we proposed
a sub-scene-based composition of a generated image
as it provides an intuitive and easy method for art
creation. The finer level of control is best served by
segment-specific control conditions. We showed that
dividing the composite generation process into two
stages - scaffolding and harmonizing modularizes the
development of algorithms for composite diffusion. The
researchers can, in the future, independently improve
the respective stages. We also find that diffusion
processes are inherently harmonizers and it is best to
exploit the inherent composition of diffusion models
rather than blending through external means as tried
in the past with image blending methods.

7238




References

(1
2l

3]

4]

(5]

(7l

(9]

[10]

(11]

[12]

(13]

Omri Avrahami, Ohad Fried, and Dani Lischinski.
Blended latent diffusion, 2022. 2, 4, 7

Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal
Gupta, Yaniv Taigman, Devi Parikh, Dani Lischinski,
Ohad Fried, and Xi Yin. Spatext: Spatio-textual
representation for controllable image generation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 18370~
18380, June 2023. 2

Omri Avrahami, Dani Lischinski, and Ohad Fried.
Blended diffusion for text-driven editing of natural
images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18208-18218, 2022. 2

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash
Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan
Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i: Text-
to-image diffusion models with an ensemble of expert
denoisers, 2023. 2, 7

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and
Tali Dekel. Multidiffusion: Fusing diffusion paths
for controlled image generation. arXiv preprint
arXiv:2302.08113, 2023. 2, 7

Ali Borji. Pros and cons of gan evaluation measures:
New developments. Computer Vision and Image
Understanding, 215:103329, 2022. 6

Guangyong Chen, Fengyuan Zhu, and Pheng Ann Heng.
An efficient statistical method for image noise level
estimation. In Proceedings of the IEEFE International
Conference on Computer Vision, pages 477485, 2015.
7

Guillaume Couairon, Jakob Verbeek, Holger Schwenk,
and Matthieu Cord. Diffedit: Diffusion-based semantic
image editing with mask guidance. arXiv preprint
arXiv:2210.11427, 2022. 2

Prafulla Dhariwal and Alex Nichol. Diffusion models
beat gans on image synthesis, 2021. 1

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir
Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross attention control.
2022. 2

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local
nash equilibrium. In I. Guyon, U. Von Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. 2,6

LAION-AI aesthetic-predictor. https://github.com/
LAION-AI/aesthetic-predictor, 2022. 7

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B Tenenbaum. Compositional visual generation
with composable diffusion models. arXiv preprint
arXiv:2206.01714, 2022. 2

(14]

(15]

[16]

(17]

(18]

(19]

[20]

21]

(22]

23]

24]

(25]

[26]

7239

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional visual generation
with composable diffusion models, 2022. 2

Andreas Lugmayr, Martin Danelljan, Andres Romero,
Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 11461-11471, June 2022. 2

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch,
and Daniel Cohen-Or. Null-text inversion for editing
real images using guided diffusion models. arXiv
preprint arXiv:2211.09794, 2022. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. 2021.
7

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. 2021.
1,2

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjérn Ommer. High-resolution image
synthesis with latent diffusion models. https://github.
com/runwayml/stable-diffusion, 2021. 1, 2,4, 5, 7
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion
models for subject-driven generation. 2022. 2
Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho,
David J Fleet, and Mohammad Norouzi. Photorealistic
text-to-image diffusion models with deep language
understanding, 2022. 1, 2

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier
Bousquet, and Sylvain Gelly. Assessing generative
models via precision and recall. Advances in neural
information processing systems, 31, 2018. 6

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen.
Improved techniques for training gans. In D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016. 2, 6
Viktoria Solidarnyh. This artist combines real photos
and turns them into amazing digital art. DIY
Photography, 2023. 1

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong,
Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human
preferences for text-to-image generation, 2023. 7

Zhe Yin and Carlos Caldas. Scaffolding in
industrial construction projects: current practices,



27]

issues, and potential solutions. International Journal
of Construction Management, 22(13):2554-2563, 2022
3

Lvmin Zhang and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models.
https://github.com/11llyasviel/ControlNet-vi-1-
nightly, 2023. 1,2, 5,7, 8

7240



