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Abstract

In the realm of Unsupervised Domain Adaptation
(UDA), Vision Transformers (ViTs) have recently demon-
strated remarkable adaptability surpassing that of tradi-
tional Convolutional Neural Networks (CNNs). Neverthe-
less, the patch-based structure of ViTs heavily relies on lo-
cal features within image patches, potentially leading to re-
duced robustness when confronted with out-of-distribution
(OOD) samples. To address this concern, we introduce a
novel regularizer tailored specifically for UDA. By leverag-
ing negative views, i.e. target-domain samples applied by
negative augmentations, we make the learning process more
intricate, thereby preventing models from taking shortcuts
in spatial context recognition. We present a novel loss func-
tion, rooted in contrastive principles, to effectively distin-
guish between the negative views and original target sam-
ples. By integrating this novel regularizer with existing
UDA methodologies, we guide ViTs to prioritize context re-
lationships among local patches, thereby enhancing the ro-
bustness of ViTs. Our proposed Negative View-based Con-
trastive (NVC) regularizer substantially boosts the perfor-
mance of baseline UDA methods across diverse benchmark
datasets. Furthermore, we release new dataset, Retail-71,
comprising 71 classes of images commonly encountered in
retail stores. Through comprehensive experimentation, we
showcase the effectiveness of our approach on traditional
benchmarks as well as the novel retail domain. These re-
sults substantiate the robust adaptation capabilities of our
proposed method. Our method is implemented at our repos-
itory.

1. Introduction

The field of deep learning has witnessed remarkable
progress across a variety of recognition tasks, notably in im-
age classification. Within the domain of Computer Vision
(CV), extensive research has been conducted on a plethora

§These authors contributed equally.

Figure 1. Schematic representation of our proposed Negative
View-based Contrastive (NVC) regularizer. For a given anchor
sample xt

i from the target batch BT , we identify its positive view
xtp
i (indicated by a blue square) to form a positive pair, thereby

aligning xt
i with xtp

i . Conversely, all other samples within BT

are designated as negative views (denoted by red triangles), each
forming a negative pair with the anchor, ensuring their strategic
separation in the learned representation space.

of methodologies. These encompass Convolutional Neu-
ral Networks (CNNs) [9, 10, 14, 29, 31] and, more recently,
Vision Transformers (ViTs) [3–5,18,33] — the latter draw-
ing foundational inspiration from [36]. ViTs, in particular,
have showcased a remarkable aptitude for generalization in
supervised learning scenarios, often outperforming CNN-
based techniques.

Notwithstanding these advancements, Deep Neural Net-
works (DNNs) grapple with the phenomenon of domain
shifts, wherein models trained on a source dataset strug-
gle with data from a dissimilar distribution in the target
domain [6]. A conventional solution involves annotating
the target domain data, which is not always feasible due
to the associated costs. Unsupervised Domain Adaptation
(UDA) has emerged as a strategic alternative, relying on a
labeled source dataset and an unlabeled target dataset, typi-
cally exhibiting significant domain disparities, such as syn-
thetic versus real-world images. UDA aims to narrow this
domain gap, thereby enhancing model performance on the
target dataset.

In the realm of UDA, a variety of CNN-based methods
have been continuously proposed [6, 12, 15, 19–21, 25, 28,
32, 34]. Concurrently, ViT-based UDA approaches have
gained prominence [26,30,38], outshining CNNs on bench-
marks like Office-31 [27], Office-Home [37], and VisDA-
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Figure 2. Illustrative examples from the Cl domain of the Office-
Home dataset, juxtaposed with their negative views. The baseline
UDA method [26] yields high confidence for negative views, de-
spite human non-recognition, indicating a local feature bias resis-
tant to negative augmentation, such as P-Shuffle.

2017 [23]. Nevertheless, ViTs face challenges with local
feature dependence [24], impacting robustness to out-of-
distribution (OOD) samples in classification tasks. To com-
bat this, Qin et al. [24] introduced ‘negative augmentation’,
enhancing ViT robustness by contrasting negatively aug-
mented images with their original counterparts.

We have empirically investigated ViT’s local feature de-
pendence in a UDA context, specifically in the Ar→Cl sce-
nario within the Office-Home dataset, employing SDAT as
a baseline [26]. The employment of negative augmentation,
herein patch-based shuffling, revealed ViT’s limitations, as
noted by Qin et al. [24], within UDA frameworks (refer to
Figure 2). Considering the disparate distributions in UDA
settings, negative views may encourage ViTs to internalize
contextual information pertinent to the target domain, thus
improving model robustness and UDA efficacy. Following
Qin et al. [24], we propose a novel contrastive learning-
based regularizer loss to enhance UDA methodologies.

In a practical context, consider an autonomous retail
store. Here, the ordering system — comprising top-view
webcams, object detection models, and image classifiers —
is critical. This system’s efficiency is contingent on the ro-
bustness and precision of the image classifier. However, the
frequent product rotation in retail necessitates an adaptive
approach to image classification, as direct labeling of onsite
product images is cost-prohibitive.

An alternative involves compiling and labeling product
images in a controlled, in-lab environment, yet this intro-
duces a domain gap when applied to real-world scenarios,
potentially compromising performance. Addressing this,
we align product image classification with UDA, using la-
beled in-lab images as the source dataset and unlabeled real-
world images as the target dataset to train a classifier robust
to common disturbances like motion blur and hand occlu-
sions.

We introduce Retail-71, a novel UDA dataset tailored to
the retail sector, featuring both source and target domain
images and a test set with varying difficulty levels. Ad-
ditionally, we propose a rule-based synthesis technique to
foster smoother domain adaptation on Retail-71.

Our principal contributions are summarized as follows:

• We introduce a simple yet effective Negative View-
based Contrastive (NVC) regularizer loss. This loss
can be applied to a wide array of datasets and seam-
lessly integrated into existing UDA methodologies.
The NVC regularizer is designed to promote the cap-
ture of global image context by Vision Transformers,
thereby enhancing UDA performance across several
benchmarks.

• We present a novel UDA benchmark, dubbed Retail-
71, tailored to the retail sector. This benchmark is
specifically curated to assess the resilience of mod-
els against noisy product images that exhibit char-
acteristics such as hand occlusion and motion blur,
distinguishing it from existing UDA datasets. The
Retail-71 test set is stratified into three levels of dif-
ficulty, enabling nuanced evaluations of model robust-
ness against varying degrees of image degradation. We
release new benchmark at our repository.

• We develop a rule-based synthesis technique for prod-
uct classification, aimed at generating an intermediate
domain that facilitates smoother domain adaptation on
Retail-71. This synthesis approach, serving as an aug-
mentation method, enhances the training process by
interpolating between the source and target domains,
which in turn bolsters UDA performance.

2. Related works

2.1. Unsupervised Domain Adaptation

Frameworks for UDA Unsupervised domain adaptation
(UDA) leverages a labeled source dataset and an unla-
beled target dataset to train a network, such as a Vision
Transformer (ViT) or a Residual Network (ResNet), with
the objective of enhancing generalizability to the target
domain. Several frameworks have been advanced to ad-
dress the domain discrepancy issue. Approaches such
as Domain-Adversarial Neural Networks (DANN) [6] and
Contrastive Domain Adaptation (CDAN) [20] draw insights
from adversarial training principles in generative adversar-
ial networks (GANs) [7], implementing Domain Adversar-
ial Training (DAT) to bridge domain gaps. Meanwhile,
Domain Adaptive Neural Networks (DAN) [19] and Joint
Adaptation Networks (JAN) [21] aim to minimize domain
divergence by employing statistical measures like Maxi-
mum Mean Discrepancy (MMD) and Joint MMD, respec-
tively. The Prototypical Contrastive Transfer (PCT) model
[32] seeks to align source-domain prototypes with target
samples to minimize class-wise dissimilarity. In contrast to
the predominant CNN-based methods, CDTrans [38] adopts
a transformer-based architecture, capitalizing on a cross-
attention mechanism to facilitate domain adaptation.
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Regularizers for UDA In addition to framework design,
certain studies have introduced regularizers to bolster UDA
efficacy. Minimum Class Confusion (MCC) [11] focuses
on minimizing the confusion of class predictions within the
target domain. The Self-supervised Safe Training Routine
(SSRT) [30], designed for transformer-based models, em-
ploys the minimization of Kullback–Leibler divergence be-
tween the predictions of perturbed and original target sam-
ples to foster robustness. The Nuclear norm-based Wasser-
stein Distance (NWD) [1] proposes a metric incorporating
the first-order Wasserstein distance and nuclear norm to pro-
mote prediction certainty and diversity within the model.
Similarly, Selective Domain Adversarial Training (SDAT)
[26] advocates for applying Sharpness Aware Minimization
(SAM) selectively, based on theoretical and empirical eval-
uations. This study introduces a negative view-based regu-
larizer, which enhances UDA by augmenting existing meth-
ods, requiring only unlabeled target data.

2.2. Contrastive Learning

Contrastive learning has seen significant advancements
within self-supervised paradigms. Pioneering methods such
as Momentum Contrast (MoCo) [8] and SimCLR [2] have
underscored the efficacy of the Normalized Temperature-
scaled Cross Entropy (NT-Xent) loss, with SimCLR demon-
strating its effectiveness in large batch settings. Subse-
quently, the Supervised Contrastive (SupCon) loss [13] ex-
hibited the benefits of NT-Xent in a supervised context.
Within UDA, contrastive learning frameworks have shown
promise. Contrastive Adaptation Network (CAN) [12] in-
tegrates an MMD-based contrastive approach, while Prob-
abilistic Contrastive Learning (PCL) [16] and Contrastive
Pseudo-Labeling Graph Alignment (CPGA) [25] utilize
losses akin to NT-Xent, such as the InfoNCE loss [22]. This
work proposes a novel contrastive regularizer loss employ-
ing negative views of target samples, emphasizing the po-
tential of negative pairings in UDA scenarios.

3. Methodology
We commence with an examination of the Unsupervised

Domain Adaptation (UDA) paradigm and delineate our in-
novative approach to patch-based negative augmentation.
Subsequently, we introduce a regularizer loss that capital-
izes on this augmentation technique.

3.1. Unsupervised Domain Adaptation

Ltask =

Ns∑
i=1

ℓ(G(F (xs
i )), y

s
i ), ℓ(ŷ, y) = −

C∑
c=1

yc log ŷc

(1)
In the UDA framework, a neural network (e.g., Vision
Transformer, ViT) integrates a feature extractor F and a

classification head G. It is trained on a labeled source data
set XS = {(xs

i , y
s
i )}

Ns
i=1 and an unlabeled target data set

X T = {xt
i}

Nt
i=1, both presumed to share an identical la-

bel space. The classifier G yields a C-dimensional vector
ŷ, representing the confidence scores across classes. Or-
dinarily, the network is optimized using a task-specific loss
Ltask (as per Equation 1), typically employing cross-entropy
for classification tasks, calculated exclusively on the labeled
source data. A network honed solely with Ltask on source
data is referred to as a source-only model.

However, a source-only model is inherently susceptible
to performance degradation due to domain discrepancies,
prompting UDA techniques to introduce an additional adap-
tation loss Ladapt. This loss leverages unlabeled target data
to adjust the network to the target domain characteristics.
Furthermore, the UDA corpus encompasses several propo-
sitions [1,11,26,30] for an auxiliary loss function Lreg, tak-
ing the form of a regularizer. These can be amalgamated
with other UDA strategies, enhancing the overall adaptabil-
ity of the model. The comprehensive loss function for UDA
is articulated in Equation 2. The contribution of this work
lies within the realm of Lreg, wherein we proffer a novel
regularizer loss formulation.

LUDA = Ltask + Ladapt + Lreg (2)

3.2. Patch-based Negative Augmentation

Yao Qin et al. [24] introduced an innovative aug-
mentation approach termed as patch-based negative aug-
mentation. This methodology encompasses three dis-
tinct techniques: patch-based shuffling (P-Shuffle), patch-
based rotation (P-Rotate), and patch-based infilling (P-
Infill). Contrary to conventional semantic-preserving aug-
mentations, also known as positive augmentations, these
negative augmentations disrupt the inherent semantic in-
tegrity of images, rendering the global structure—or con-
text—unrecognizable. The resulting images, whose seman-
tics have been obscured, are referred to as negative views.

Despite the compromised global context, the local fea-
tures within image patches remain intact (as illustrated in
Figure 2). Yao Qin et al. have elucidated that Vision Trans-
formers (ViTs), due to their intrinsic patch-based architec-
ture, place substantial emphasis on these local features that
persevere in the aftermath of negative augmentation.

3.3. Negative View-based Contrastive Regularizer

Lours =
1

|BT |
∑

xt
i∈BT

(
e(d(F (xt

i),F (xtp
i ))/τ)∑

xj∈BTN∪{xtp
i } e

(d(F (xt
i),F (xj))/τ)

)

=
1

M

∑
xt
i∈BT

(
e(d(f

t
i ,f

tp
i )/τ)∑

xj∈BTN∪{xtp
i } e

(d(ft
i ,fj)/τ)

)
(3)
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Figure 3. Overview of the Unsupervised Domain Adaptation (UDA) framework employing our Negative View-based Contrastive (NVC)
regularizer loss, denoted as Lours = LNVC. This integrative approach can be seamlessly incorporated with any preceding UDA method-
ologies Ladaptation, such as the SDAT framework [26], SSRT framework [30], etc. It incentivizes the underlying network, such as a Vision
Transformer (ViT), to discern and leverage contextual interrelations amongst local patches, thereby advancing the UDA performance.

In this work, we introduce the Negative View-based
Contrastive (NVC) loss, delineated in Equation 3, and ex-
pound upon its formulation in this subsection. Draw-
ing inspiration from SimCLR [2], we harness the princi-
ples of contrastive learning to shape the NVC loss into
a form of contrastive loss, specifically the Normalized
Temperature-scaled Cross Entropy (NT-Xent). Our inten-
tion is to leverage the unlabeled target samples to steer a
Vision Transformer (ViT)-based classifier towards compre-
hending global context within the target domain. A pivotal
aspect of contrastive learning involves the identification of
positive and negative sample pairs relative to a given anchor
sample.

A positive sample, in this framework, is one that must
be brought into closer proximity to its anchor in the feature
space. In contrast to the approach by Yao Qin et al. [24], our
UDA scenario does not provide access to the target sample
labels. We navigate this constraint by generating a single
positive sample for each anchor through the application of
a sequence of positive augmentations denoted by pos aug.
For a target-domain minibatch BT = {xt

i}Mi=1 ⊂ X T , we
formulate a positive view xtp

i = pos aug(xt
i) for each an-

chor xt
i ∈ BT , thereby establishing it as the positive coun-

terpart. We adopt the augmentation sequence verified by
SimCLR [2], which confirms the value of such a compo-
sition in contrastive learning. The sequence is accessible
from the PyTorch-based SimCLR repository1. The pseudo-
code for pos aug is provided in the supplementary material.

Conversely, a negative sample is one that should be dis-
tanced from the anchor. Again, diverging from the approach
by Yao Qin et al. [24], the absence of label access for
the target domain precludes classification of original sam-
ple classes. Nevertheless, negative augmentation can be
conducted label-free, enabling the assignment of negative
views {xtn

i }Mi=1 = neg aug(BT ) to each sample in BT as
negative samples for the anchor. We select P-Shuffle for

1PyTorch-based SimCLR

neg aug as it is considered more disruptive due to its alter-
ation of all local patch positions.

In essence, for an anchor sample xt
i ∈ BT , the pos-

itive sample is acquired by xtp
i = pos aug(xt

i), and
all corresponding negative views BTN = {xtn

i }Mi=1 =
neg aug(BT ) are utilized as negative samples. The regu-
larizer loss, calculated from the total M + 1 pairs, propels
M negative samples away from the anchor while pulling
a single positive sample nearer. Through this contrastive
learning approach, the ViT-based architecture is prompted
to focus on global context within the target domain, thereby
enhancing its robustness against out-of-distribution (OOD)
samples in the target domain, ultimately reinforcing UDA
performance. The regularizer is computed using the latent
vector f t

i = F (xt
i). Equation 3 presents the NVC regu-

larizer loss Lreg = αLours, where α and τ represent a
trade-off coefficient and a temperature parameter, respec-
tively, and d(·, ·) denotes cosine similarity. Notably, the nu-
merator of Equation 3 exclusively includes positive pairs,
whereas the denominator encompasses both positive and
negative pairs.

4. New Dataset: Retail-71
We introduce Retail-71, a dataset comprised of 71 fre-

quently encountered products in convenience stores. Retail-
71 is curated for object classification within the UDA
paradigm. However, it diverges from existing benchmarks
in notable ways:

• Retail-71 is specifically designed to focus on the do-
main gap introduced by hand occlusions and mo-
tion blur, providing a unique avenue to assess the
robustness of neural networks against domain shifts
prompted by these two factors.

• In contrast to other benchmarks, Retail-71 is accom-
panied by a test set stratified into three levels of dif-
ficulty—easy, medium, and hard. The degree of diffi-
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(a) Exemplars from the
source domain.

(b) Exemplars from the target
domain.

Figure 4. Representative samples from the source and target do-
mains.

Figure 5. Hand image examples extracted from the Ego2Hands
dataset [17].

culty is scaled by the intensity of motion blur and the
prevalence of hand occlusion in the test samples.

Subsequent subsections provide an overview of Retail-71’s
fundamentals, while the comprehensive construction pro-
cess is elucidated in the supplementary material.

4.1. Source Domain: Clean Images

The source domain encompasses clean images with each
class containing 150 samples, culminating in a total of
71× 150 = 10, 650 images. Every image presents a singu-
lar product against a uniform gray background. Figure 4a
illustrates a selection of examples from the source domain.

4.2. Target Domain: Noisy Real-World Images

In contrast to the source dataset, the target domain com-
prises noisy samples exhibiting motion blur, hand occlu-
sion, slight device noise, and reduced resolution, along with
backgrounds that are distinct from those of the source sam-
ples. Figure 4b displays a selection of these images. The
target training set encompasses a total of 44,020 samples,
allocating 620 samples per class, whereas the test set con-
tains 10,650 samples, with 150 per class. Intrinsically, the
test set is partitioned into three subsets calibrated for easy,
medium, and hard difficulties, each encompassing 3,550
samples (i.e., 50 samples per product). Visual exemplars
of the test samples across these difficulties are provided in
Figure 6. Detailed criteria for the test set’s varying levels of
difficulty are delineated in the supplementary material.

4.3. Construction of the Intermediate Domain for
Retail-71

The domain shift between the source images, henceforth
denoted as O (Original domain), and the target-domain im-
ages in Retail-71, is mainly attributed to hand occlusion and
motion blur. The images from O typically exhibit lower res-
olution, introducing additional noise in comparison to the

Figure 6. Rule-based synthesis examples for constructing the in-
termediate domains of Retail-71. The goal is to create graded steps
between the Original domain (O) and the target domain, desig-
nated as E (Easy), M (Medium), MP (Medium Plus), and H (Hard).
By training neural networks on combinations of O and these inter-
mediate domains (e.g., O+E+M), the domain gap to the target can
be effectively reduced.

target domain. To facilitate a smoother transition for do-
main adaptation, we propose synthesizing an intermediate
domain that intermediates the gap between O and the target
domain. This process involves augmenting images from O
with (1) hand overlays using images from the Ego2Hands
dataset [17], (2) artificial motion blur, (3) noise addition,
and (4) zero-padding to simulate occlusion. The intensity
of these augmentations is varied to create intermediate do-
mains with differing difficulty levels - Easy (E), Medium
(M), Medium Plus (MP), and Hard (H) - each progressively
closer to the target domain conditions. These intermediate
domains can be utilized during the training of neural net-
works by combining them with O (e.g., using O+E+M in
place of just O). Figure 6 shows examples of the synthesized
intermediate domains alongside the target-domain images.
Detailed descriptions of the synthesis process and difficulty
levels are included in the supplementary materials.

5. Experiments
5.1. Datasets

We evaluate our proposed method using several bench-
mark datasets including Office-31 [27], Office-Home [37],
VisDA-2017 [23], and our newly introduced Retail-71. De-
tailed descriptions of each dataset, including the number
of classes, samples, and domain-specific characteristics, are
provided in the supplementary materials.

5.2. Experimental Settings

In our experimental framework, we employ SDAT [26], a
state-of-the-art technique, as the primary baseline to which
we apply our novel NVC regularizer. For the majority of
the datasets, we utilize the ViT-Base model architecture,
whereas for Retail-71, we adopt the smaller variants, ViT-
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Method Backbone Ar−→Cl Ar−→Pr Ar−→Rw Cl−→Ar Cl−→Pr Cl−→Rw Pr−→Ar Pr−→Cl Pr−→Rw Rw−→Ar Rw−→Cl Rw−→Pr Avg.

Source Only

R
es

N
et

50

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [20] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
CDAN+E [20] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+BN [26] 54.3 70.6 76.8 61.3 69.5 71.3 61.7 55.3 80.5 74.8 60.1 84.2 68.4
PCT [32] 57.1 78.3 81.4 67.6 77.0 76.5 68.0 55.0 81.3 74.7 60.0 85.3 71.8
SDAT [26] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2

Source Only [30]

V
iT

-B
as

e

54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5
CDTrans [38] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT [30] 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4
CDAN [26] 62.6 82.9 87.2 79.2 84.9 87.1 77.9 63.3 88.7 83.1 63.5 90.8 79.3
SDAT [26] 70.8 87.0 90.5 85.2 87.3 89.7 84.1 70.7 90.6 88.3 75.5 92.1 84.3
SDAT∗ 70.8 87.0 90.5 85.3 87.7 89.7 83.7 71.0 90.5 88.2 75.4 92.1 84.3
SDAT† 74.1 88.1 91.6 87.0 90.0 89.9 84.3 71.5 91.6 87.0 74.5 93.2 85.2
SDAT†+Ours 75.1 89.0 91.5 86.4 88.6 90.2 84.8 73.7 91.7 87.1 74.6 92.9 85.5

Table 1. Classification accuracy (%) on Office-Home dataset. The symbol ∗ indicates reproduction of results under the original experimen-
tal conditions as detailed in [26]. ‘CDAN+BN’ refers to ‘CDAN with Batch Normalization’ as reported in the same study.

Method Backbone Plane Bcycl Bus Car Horse Knife Mcyle Persn Plant Sktb Train Truck Mean

Source Only [30]

R
es

N
et

10
1 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [6] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN+E [26] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
CDAN+BN [26] 94.9 72.0 83.0 57.3 91.6 95.2 91.6 79.5 85.8 88.8 87.0 40.5 80.6
CAN [12] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

Source Only

V
iT

-B
as

e

99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
CDTrans [38] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT [30] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
CDAN [26] 94.3 53.0 75.7 60.5 93.9 98.3 96.4 77.5 91.6 81.8 87.4 45.2 79.6
SDAT [26] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
SDAT∗ 97.8 90.9 82.0 79.3 98.7 96.9 93.8 87.6 95.7 97.1 94.1 61.3 89.6
SDAT† 98.5 89.8 89.2 84.5 98.1 96.9 95.6 82.9 96.4 97.2 95.3 51.8 89.7
SDAT†+Ours 98.5 89.0 88.5 92.0 98.5 98.3 96.2 88.4 98.5 97.9 95.0 55.4 91.4

Table 2. Classification accuracy (%) on VisDA-2017. For the performance of ‘CDAN+E’, we base our comparison on the findings in [26].

Small and ViT-Tiny, considering the dataset’s unique char-
acteristics and constraints. The batch size is meticulously
set to 96, ensuring each minibatch accurately represents the
underlying distribution of the training dataset. This con-
sideration is critical for maintaining the integrity of the
stochastic gradient descent optimization process. A com-
prehensive account of the experimental procedures, includ-
ing hyperparameter settings, optimization strategies, and
additional implementation details, is systematically delin-
eated in the supplementary materials.

Method Backbone A−→D A−→W D−→A D−→W W−→A W−→D Avg.

Source Only

R
es

N
et

50

68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN [6] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
CDAN [20] 89.8 93.1 70.1 98.2 68.0 100.0 86.6
CDAN+E [20] 92.9 94.1 71.0 98.6 69.3 100.0 87.7
PCT [32] 93.8 94.6 77.2 98.7 76.0 99.9 90.0
CAN [12] 95.0 94.5 78.0 99.1 77.0 99.8 90.6

Source Only [30]

V
iT

-B
as

e

90.4 91.2 81.1 99.2 80.6 100.0 90.4
CDTrans [38] 97.0 96.7 81.1 99.0 81.9 100.0 92.6
SSRT [30] 98.6 97.7 83.5 99.2 82.2 100.0 93.5
SDAT† 98.6 98.9 84.9 99.2 84.9 100.0 94.4
SDAT†+Ours 99.2 98.4 85.1 99.2 85.6 100.0 94.6

Table 3. Classification accuracy (%) on Office-31 dataset. Entries
marked with † denote results reproduced using a batch size of 96.

5.3. Comparison Results

Office-31 As illustrated in Table 3, our evaluation on
Office-31 reveals that models with ViT-Base backbones
generally surpass those with ResNet50 backbones across

various ResNet-based methodologies. Our reproduction of
SDAT, utilizing a batch size of 96, demonstrates superior
performance over other UDA methods. Furthermore, the
integration of the NVC regularizer enhances UDA effec-
tiveness, notably achieving performance gains in A→D and
W→A scenarios.

Office-Home Table 1 details the performance on Office-
Home, underscoring that ViT-Base backbones outperform
the ResNet50 backbones with all considered UDA meth-
ods. Reproducing SDAT with both the batch size of 96
and the original batch size as per [26], we find that a larger
batch size more accurately represents the dataset’s distri-
bution. The NVC regularizer contributes additional perfor-
mance enhancements, particularly evident in the Ar→Cl,
Ar→Pr, and Pr→Cl transitions, which suggests its efficacy
in mining global image semantics.

VisDA-2017 The findings for VisDA-2017 are presented
in Table 2, a dataset comprising a broad range of synthetic
and real imagery. Given the scale and diversity of VisDA-
2017, we hypothesized that the extraction of global image
semantics would be crucial. Our approach notably improves
mean class accuracy and significantly outperforms the base-
line SDAT in specific classes such as car and person. This
underlines the impact of learning global contexts on large-
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Method Backbone Val. Easy Test Medium Test Hard Test Avg. Test

Source Only

V
iT

-S
m

al
l

49.0 72.4 43.5 18.7 44.9
Source Only+RS 55.8 77.4 52.1 27.5 52.3
DANN [6] 92.3 97.4 93.2 81.8 90.8
CDAN [20] 94.4 98.4 95.2 85.3 93.0
CDAN+E [20] 93.5 97.7 94.2 84.3 92.1
SDAT† 95.2 97.7 95.7 87.5 93.7
SDAT†+RS 96.0 98.6 96.6 89.4 94.9
SDAT†+Ours 96.0 98.6 96.5 88.3 94.4
SDAT†+Ours+RS 97.0 99.1 97.5 90.9 95.9

Source Only

V
iT

-T
in

y

41.3 58.9 37.3 19.0 38.4
Source Only+RS 48.2 67.1 45.5 25.7 46.1
DANN [6] 89.1 96.1 91.3 74.4 87.3
CDAN [20] 91.3 95.5 92.1 79.9 89.2
CDAN+E [20] 91.4 95.5 92.1 79.8 89.1
SDAT† 93.4 95.8 93.7 83.2 90.9
SDAT†+RS 95.1 98.4 95.9 86.4 93.6
SDAT†+Ours 94.8 97.8 95.2 85.2 92.7
SDAT†+Ours+RS 95.8 99.1 96.8 87.7 94.5

Table 4. Classification accuracy (%) on Retail-71, including ex-
periments with rule-based synthesis (RS).

scale datasets.

Retail-71 Results for Retail-71 are summarized in Ta-
ble 4. The NVC regularizer uniformly enhances accuracy
across all metrics for both ViT-Small and ViT-Tiny. Ex-
periments incorporating rule-based synthesis (RS), which
combines the source dataset with intermediate datasets, in-
dicate performance improvements, thereby aiding smoother
domain adaptation. Notably, combining the NVC regular-
izer with RS yields even greater advancements, suggesting
their complementary nature in enhancing adaptation.

5.4. Novel Metrics: Negative View Accuracy and
Negative Confidence

We present a novel evaluation framework for ViT-based
models trained using baseline SDAT [26] and SDAT en-
hanced with our NVC regularizer, utilizing negative views
generated from the original images. Two new metrics are
introduced: (1) Negative Accuracy and (2) Average Nega-
tive Confidence Score.

Negative Accuracy measures the model’s classification
accuracy over negative views xtn

i , with an ideal value be-
ing 100/C(%), where C is the class count. For Average
Negative Confidence Score avg confneg , we consider a la-
beled target-domain test set BT

test = {(xt
i, y

t
i)}

Ntest
i=1 and its

negative counterparts BTN
test = neg aug(BT

test). This met-
ric is calculated using Equation 4, with ⊮ as the indicator
function, representing confidence scores aligned with the
ground-truth class, aiming ideally at 1/C. A comprehensive
discourse on avg confneg is available in the supplementary
materials.

avg confneg =
1∣∣BTN
test

∣∣ ∑
xtn
i ∈BTN

test

C∑
c=1

G(F (xtn
i ))c ⊮(c = yti)

(4)

Method Backbone Easy Test Medium Test Hard Test Avg. Test

SDAT†

V
iT

-S
m

al
l 94.2 87.7 73.4 85.1

SDAT†+RS 96.2 89.2 73.7 86.4
SDAT†+Ours 1.44 1.41 1.41 1.42
SDAT†+Ours+RS 4.99 1.47 1.41 2.62

SDAT†

V
iT

-T
in

y 92.6 86.9 70.2 83.2
SDAT†+RS 97.2 90.1 75.6 87.6
SDAT†+Ours 5.89 1.47 1.41 2.92
SDAT†+Ours+RS 12.87 2.34 1.52 5.58

Table 5. Negative Accuracy (%) on Retail-71 for UDA tasks.
Ideally, the Negative Accuracy equates to the chance level:
1/(# of classes) = 1/71 ≈ 1.41%.

Method Backbone Easy Test Medium Test Hard Test Avg. Test

SDAT†

V
iT

-S
m

al
l 0.9358 0.8673 0.7218 0.8416

SDAT†+RS 0.9546 0.8818 0.7238 0.8534
SDAT†+Ours 0.0144 0.0141 0.0141 0.0142
SDAT†+Ours+RS 0.0419 0.0147 0.0141 0.0236

SDAT†

V
iT

-T
in

y 0.9217 0.8621 0.6929 0.8256
SDAT†+RS 0.9657 0.8929 0.7427 0.8671
SDAT†+Ours 0.0507 0.0143 0.0141 0.0264
SDAT†+Ours+RS 0.1215 0.0194 0.0141 0.0517

Table 6. Average Negative Confidence Score for UDA tasks on
Retail-71, with the ideal value being 1/(# of classes) ≈ 0.0141.

Table 5 delineates the Negative Accuracy on Retail-71.
With 71 classes, the target value for Negative Accuracy and
avg confneg is theoretically set at 1.41(%) and 0.0141, re-
spectively. Both with and without RS, SDAT evidences
higher-than-ideal Negative Accuracy, whereas our approach
achieves values approximating the theoretical ideal.

Concurrently, Table 6 corroborates the trend seen in Ta-
ble 5. The results confirm that our NVC regularizer diverts
the ViT’s focus away from local peculiarities towards global
contexts, bolstering its robustness. Additionally, the NVC-
induced models exhibit human-like discernment in process-
ing negative views, which are generally uninterpretable by
humans due to their devoid semantic content. Detailed re-
sults for additional benchmarks are documented in the sup-
plementary section.

5.5. Representation Visualization

To illuminate the model’s internal representation, we vi-
sualized the distribution of source-domain samples, target-
domain samples, and their respective negative views. Figure
7 exhibits the t-SNE [35] projections for ViT-Tiny represen-
tations after training with baseline SDAT [26] and SDAT
enhanced by our method on the Retail-71 dataset. Both the
baseline and our approach demonstrate well-defined clus-
tering to certain degrees. However, as shown in Figure 7b,
our method distinctly segregates the target samples from
their negative views, in contrast to the baseline (Figure 7a),
which suggests that our model is adept at identifying seman-
tically rich features and spatial correlations that are exclu-
sive to the target samples and absent in the negative views.
This capacity is attributed to the NVC regularizer’s influ-
ence in guiding the network towards a global feature repre-
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(a) Baseline: SDAT. (b) Enhanced: SDAT+Ours.

Figure 7. t-SNE projections of ViT-Tiny features learned by SDAT (a) and enhanced by SDAT+Ours (b) on the Retail-71 dataset. Colors
represent different domains, with negative views of target samples highlighted in yellow.

(a) Reference Image
Label: 052 (Oh-yes)

(b) Baseline: SDAT
(Erroneous)

Prediction: 004
(Pringles Original)

(c) Enhanced: Ours
(Accurate)

Prediction: 052
(Oh-yes)

(d) Reference Image
Label: Flowers

(e) Baseline: SDAT
(Erroneous)

Prediction: Fan

(f) Enhanced: Ours
(Accurate)

Prediction: Flowers

Figure 8. Attention map visualizations for ViT-Tiny with SDAT
(b) and SDAT+Ours (c) on Retail-71, and ViT-Base with SDAT
(e) and SDAT+Ours (f) for the Office-Home Ar→Cl scenario.

sentation, thus enhancing robustness, as discussed in Sec-
tion 5.3. Additional visualizations are provided in the sup-
plementary materials.

5.6. Attention Map Visualization

We extend our visualization efforts to the attention mech-
anisms within ViT trained with the baseline SDAT [26]
and our NVC regularizer. Figure 8 presents these atten-
tion maps. Through these visualizations, it is evident that
the NVC regularizer directs ViT’s attention towards class-
specific objects, diminishing undue focus on less reliable
local features. Notably, in Figures 8e and 8f, while both the
baseline and our model appear to focus on similar image
patches, only our model correlates these patches to the cor-
rect semantic labels. This observation suggests that mere at-
tention to objects does not equate to capturing their seman-
tic significance. In contrast, our method integrates local and
global contextual information, as evidenced by its accurate

classification. Further examples of attention map visualiza-
tions are available in the supplementary documents.

6. Conclusion
Through this study, we spotlighted an inherent limita-

tion in Vision Transformers concerning patch-based nega-
tive augmentation and introduced the Negative View Con-
trastive (NVC) regularizer as a remedy. This regularizer,
seamlessly compatible with existing UDA frameworks, en-
dows ViT-based models with the dual capability to discern
both macro and micro-level features, enhancing robustness.
The newly proposed Retail-71 dataset—emphasizing mo-
tion blur and hand occlusion—served as a testament to the
NVC regularizer’s efficacy in mitigating domain shift. Ad-
ditionally, a novel rule-based synthesis technique for Retail-
71 was suggested, proving effective in facilitating domain
adaptation by generating intermediate samples. In essence,
our work underscores the latent prowess of negative aug-
mentation within UDA endeavors and sets the stage for its
expanded exploration in future research.
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