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Abstract

Identification of cracks is essential to assess the struc-
tural integrity of concrete infrastructure. However, robust
crack segmentation remains a challenging task for com-
puter vision systems due to the diverse appearance of con-
crete surfaces, variable lighting and weather conditions,
and the overlapping of different defects. In particular re-
cent data-driven methods struggle with the limited avail-
ability of data, the fine-grained and time-consuming nature
of crack annotation, and face subsequent difficulty in gen-
eralizing to out-of-distribution samples. In this work, we
move past these challenges in a two-fold way. We introduce
a high-fidelity crack graphics simulator based on fractals
and a corresponding fully-annotated crack dataset. We then
complement the latter with a system that learns generaliz-
able representations from simulation, by leveraging both a
pointwise mutual information estimate along with adaptive
instance normalization as inductive biases. Finally, we em-
pirically highlight how different design choices are symbi-
otic in bridging the simulation to real gap, and ultimately
demonstrate that our introduced system can effectively han-
dle real-world crack segmentation.

1. Introduction

The process of structural monitoring and assessment of
civil infrastructure is an important task to ensure safety and
usability. Executed primarily by humans, the inspection
process is time consuming and labor-intensive, as it needs
to be carried out at the target location, is potentially danger-

ous and can lead to down-times in the infrastructure use. To
alleviate these challenges, the deployment of robots with
integrated computer vision systems is emerging as an ex-
citing, safe and low cost addition to traditional inspection
methods[29, 51].

In general, such a computer vision system should be ro-
bust and invariant to a variety of nuisance variables such
as illumination, object scale or pose. Early works achieved
these desiderata by stacking and combining quasi-invariant
transformations specified by a domain expert to guarantee
that the output remains unchanged for a range of transfor-
mations that are irrelevant to the application domain [7, 12].
In contrast, modern data-driven systems may learn these
transformations by relying on large amounts of labeled data.
In recent years, deep learning techniques in conjunction
with labelled datasets were introduced for structural inspec-
tion tasks like crack identification [30, 14, 26].

However, gathering appropriate real-world data for train-
ing is tremendously challenging. Data acquisition is partic-
ularly tough in the case of cracks on concrete bridges, where
defects tend to be located in difficult to capture areas and
overlap with other defects like spalling, exposed metal bars
etc. Moreover, data labeling is not only excessively time
consuming, it is prone to errors due to the fine-grained na-
ture of cracks and requires highly specialized experts (who
may not end up agreeing) to provide precise ground-truth
[3]. Previous works have thus proposed datasets addressing
the crack identification challenge from a multi-target clas-
sification perspective [37], but similar real-world efforts are
still needed for semantic segmentation in diverse contexts.

Faced with a lack of appropriately annotated and diverse

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8636



data, one may resort to physics based rendering, which
has enabled the creation of photorealistic synthetic data for
training and testing computer vision models [35, 17]. Com-
pared to data-driven based generative models, the approach
promises full control over the scenes and automatically gen-
erated ground truth maps. Alas, there is a typical statistical
mismatch between simulated and real images due to model-
ing assumptions and computational approximations. There-
fore, purely data-driven neural networks trained with syn-
thetic images tend to suffer from performance degradation
when applied to real images.

In this work, we seek to overcome existing limitations by
combining the strengths of context specific modeling and
data-driven designs (hybrid system), enabling us to fully
leverage physics based rendering as an underlying source
of data. For this purpose, we first introduce a fractal-based
concrete crack simulation pipeline and investigate the use
of synthetic images for learning in the context of crack seg-
mentation. We also propose a model that can achieve better
performance by leveraging image-based pointwise mutual
information as well as style transfer techniques for better
generalization. To empirically examine the latter, we anno-
tate a subset of a prominent real-world concrete defect clas-
sification dataset [37] and thoroughly experimentally cor-
roborate our proposed design choices in additional settings.
In summary, our contributions are as follows:

• We propose the “Cracktal” high-fidelity simulator for
cracks on concrete surfaces to generate pixel wise an-
notated data with depth and surface normal maps 1.

• We present an approach to close the gap between
performance on simulated and real data through
Consistency enforced training between Adaptive in-
stance normalization and Pointwise mutual informa-
tion, CAP-Net for short.

• We annotate real-world images of concrete bridges
with cracks from the popular CODEBRIM dataset [37]
to empirically corroborate our approach.

• We investigate the performance of different algorithms
in the context of crack detection and empirically val-
idate our approach on the annotated CODEBRIM im-
ages as well as other public crack segmentation bench-
marks.

2. Related Work

We summarize related work for crack detection, the
use of synthetic data for training neural networks and ap-
proaches to reduce the Sim2Real gap.

1Code as well as datasets are availabe at: https://github.com/
achrefjaziri/SimCrack.

2.1. Crack Identification

Traditional works on crack recognition focus on using
image processing algorithms like edge and boundary detec-
tion techniques [1], morphological operation based methods
[57], principle component analysis [2], or automatic clus-
tering for segmentation based on Canny and K-Means [31].
The work of Koch et. al [29] presents an exhaustive litera-
ture review on the common practices of assessing the state
of concrete infrastructure and crack detection.

Recent works leverage data-driven approaches for crack
identification using classification or semantic segmentation
neural architectures [11, 14, 16]. The works of Cao et. al [8]
and König et. al [30] provide a review of current data-driven
crack detection approaches. However, one of the main lim-
itations of current approaches is that the training data are
mostly composed of simple and small datasets with uniform
asphalt or concrete backgrounds [61, 20, 45, 5, 63], which
hinders effective generalization of data-driven approaches
in the context of precise semantic crack segmentation.

More recent works considered the generation of syn-
thetic scenes for civil engineering tasks, including crack de-
tection on pavement surfaces [58, 56, 60, 41]. These works
collectively illustrate the importance of synthetic data gen-
eration with pixel-accurate labels in overcoming limitations
posed by the availability of large annotated datasets.

In our work, we overcome the data hurdles by proposing
a high-fidelity data simulator, which we can fully leverage
by proposing a model that incorporates necessary inductive
biases while enabling effective learning.

2.2. Simulating Data and the Sim2Real Gap

In recent years, data-driven generative models have
gained considerable popularity. Despite that, simulators
based on physics-based rendering engines have maintained
their significance. This is largely attributed to their ability
to effortlessly produce pixel-accurate labels, thus reducing
the burden of manual annotation. Furthermore, these simu-
lators offer a unique advantage in generating data with con-
trolled priors, enabling the generation of diverse datasets
tailored to specific scenarios and applications. Proposed
simulators in the literature include GTA5 [40], SYNTHIA
[43] and endless runner for continual learning [21].

Whereas some works show promising results for the use
of synthetic data in detection tasks [47, 36, 54], models
trained with synthetic data are well-known to face difficul-
ties in generalizing to real data, due to the statistical gap be-
tween synthetic images and real images [49, 48, 55]. Apart
from improving the graphics rendering pipeline itself, this
Sim2Real gap is typically reduced by seeking out domain
adaptation (DA) or domain generalization (DG) techniques.

DA approaches focus on adapting the statistics of the
synthetic data to that of the target domain, for instance by
adversarially tuning the parameters of the generative mod-
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els based on the statistics of the real data for better gen-
eralization [50, 4]. Others [28] make use of style transfer
methods to adapt the training data. We refer to [62, 53] for
comprehensive surveys.

In contrast, DG approaches seek to improve the robust-
ness of DNNs to arbitrary unseen domains, see Wang et. al
[52] for a detailed review. Approaches for learning domain-
agnostic feature representations can leverage meta-learning
[6, 19], adversarial training [33], instance normalization
[39], selective whitening [13], style transfer [59].

Other works bias their models to focus on image features
that are more realistic and transferable to improve general-
ization in a given application domain. For instance, features
related to the image geometry can be more generalizable in
the case of car detection [44]. Since geometry and seman-
tics are naturally connected, [10, 25] propose to mitigate the
limitations of synthetic data by leveraging the geometric in-
formation in a multi-task learning framework. In our work,
we follow the spirit of these works, but note that most ap-
plication contexts of synthetic data in the literature focus on
objects with well defined shapes (e.g cars, buildings etc.). In
contrast, we emphasize that cracks, like most defects, have
highly irregular shapes. We design an extendable physics-
based crack simulator and subsequently leverage specific
crack sensitive quasi-invariant models to learn more gen-
eralizable representations to reduce the Sim2Real gap.

3. Cracktal: A Fractal-based Simulator for

Cracked Concrete Surfaces

Cracktal is a physics-based simulator that generates im-
ages of cracked concrete surfaces along with their semantic
ground truth, depth and surface normal maps. The over-
all rendering workflow consists of two main steps: scene
and crack generation. A set of texture maps are used to set
the scene based on physics based rendering rules in Blender
Engine. A random crack is then generated using our fractal
generator model, detailed below, and added to the scene’s
material. The full scene is then rendered using Blender Cy-
cles PBR engine and corresponding ground truth maps are
generated. Our simulator code is written using Blender’s
Python API with further details in the Appendix. Figure 1
illustrates examples of the synthetic images generated with
a 2048⇥ 2048 resolution.

3.1. Physics-based Scene Generation

In the scene generation process, non relevant back-
grounds (e.g sky, out of focus buildings etc.) are excluded,
assuming an up-close camera. The base components of
physics based rendering (PBR) workflows: albedo, normal,
roughness, and height maps are applied to a plane mesh
grid to generate a realistic looking concrete surface, defin-
ing its color, surface and subsurface scattering, and geomet-

rical displacement respectively. The required PBR metallic-
ity map is included but remains uniformly zero, as concrete
is a dielectric. An optional ambient occlusion map can be
included to introduce surface markings, e.g. graffiti. The
textures used in this work were created from real concrete
images from the CODEBRIM training dataset [37] and de-
composed manually by the Substance B2M software.

The environment is illuminated utilizing a simulated nat-
ural sunlight source. The black body radiator possesses two
key attributes: luminous intensity (LI ) and color temper-
ature (LT ). Luminous intensity determines the amount of
energy that the light source emits into the scene, whereas
color temperature defines the chromaticity of the illumi-
nant. In the datasets of our later study, a color temperature
of LT = 5800 Kelvin and intensity LI = 3.3 were chosen.
The rotation of the light source is parameterized by its Eu-
ler ↵, � � angles as in common conventions. ↵ and � are
fixed angles with values ⇡

3 and 0. By varying the � angle,
we simulate the change of the hour of day during which the
image is captured. The � angle is randomly sampled from:

� ⇠ U (
�⇡

6
,
⇡

6
) (1)

3.2. Fractal-based Crack Generation

Cracks are highly irregular, but like many other patterns
found in nature can be represented as fractals. In order
to generate a crack pattern, we draw inspiration from a
decades old model presented by [32] as a baseline. The
authors suggest the use of a stochastic version of the Koch
”snowflake“ fractal in the generation of pavement distress
features, e.g cracks on a road surface. A conventional Koch
”snowflake“ fractal can be generated through the iterative
splitting of each straight line into three equal length seg-
ments. The middle segment is then replaced by two seg-
ments of equal length to form an equilateral triangle. These
steps are repeated for each straight line to create a regular
fractal until a desired subdivision depth is reached.

By modifying the displacement parameters at each step,
it is feasible to generate non-uniform fractals that resemble
cracks. Rather than dividing each line into identical seg-
ments to form an equilateral triangle, the position of the
third point, which is determined by both the magnitude r

and angle ✓, is altered in each step. In our simulation, the
angle is sampled from a Gaussian normal distribution with
a mean of µ = 0 and a standard deviation of � = 30 de-
grees. The probability density of displacement magnitude r
is given by P (r) = 2r

p2 where p is a hyper-parameter. For
intuition, Figure 2 illustrates these steps for a ”snowflake“
and the stochastic version for crack generation.

Finally, before adding the crack to the rendered scene,
the generated crack is randomly translated and rotated, and
a Gaussian blur is applied in order to introduce width to the
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Figure 1. Cracktal examples with texture variety and presence of other perturbations/ anomalies like moss and graffiti. Images were
generated at 2048⇥ 2048 resolution and are heavily down-sampled for view in pdf at loss of quality.

i = 0

i = 2

i = 4

. .

.
.

Figure 2. Example Koch fractal (left) and stochastic version for
cracks (right). While the magnitude r and the angle ✓ of the dis-
placement are typically fixed, they are randomized for each dis-
placement iteration (i) when generating the irregular crack shape.

crack.

3.3. Annotation of Real World Data

In conjunction with simulated data, we require real world
images to validate systems trained with synthetic images.
Ideally, the chosen real world image should offer additional
challenges that make generalization less straightforward.
For these reasons, we semantically annotated images pro-
vided in the CODEBRIM dataset [37] on a pixel basis.

We have chosen this dataset as its development has
been motivated by the need for a concrete visual inspection
dataset that contains other overlapping defects and features
various levels of deterioration, defect severity and surface
appearance. Previous works [61, 20, 45, 5, 63], focused on
data where cracks are the only visible defect, and they are
usually centered in the image, making them unrealistically
easy to segment. Most of them also show pavement cracks,
which may differ in appearance from concrete cracks. In
many CODEBRIM images, other defects like exposed rein-
forcement bars, spallation, corrosion and calcium leaching
are present. In particular the latter share visual similarities
with cracks, which makes the prediction more challenging.

We selected image patches containing visible cracks and

annotated them using GIMP. In this way, Multiple annota-
tors semantically annotated images of 1500 ⇥ 844 resolu-
tion, each containing at least one crack. We consolidated
consistent annotations into a set of 420 examples for our
real-world test set.

4. CAP-Net: A Hybrid Neural Approach for

Crack Segmentation

To fully leverage our simulator and bridge the Sim2Real
gap, we introduce CAP-Net, a hybrid neural model based
on Consistency enforced training between Adaptive in-
stance normalization and Pointwise mutual information. It
is composed of two parallel network branches, each one
based on a U-Net architecture [42]. During training, we in-
put the RGB image stylized by the AdaIN module. The sec-
ond network is equipped with a PMI module to extract rep-
resentations that are projected into a quasi-invariant feature
space that helps with the domain transfer. Both networks
are connected with a consistency loss to enforce common
representations across the different domains. We train our
pipeline end to end with the help of the synthetic images
and their ground truths generated by Cracktal, as depicted
in Figure 3.

4.1. Pointwise Mutual Information

Cracks can be viewed as anomalies in a textured sur-
face. Pointwise mutual information (PMI), computed in a
local neighborhood, is a measure of deviation of the gray-
level co-occurrence statistics in the neighborhood relative
to marginal statistics of gray-levels globally. Thus, the PMI
measure flags boundaries between dominating texture pat-
terns in the image. The resulting output is an indicator
of texture anomalies and directly relates to hypothesized
cracks and other boundary structures.

Drawing inspiration from prior work [24], natural ob-
jects produce probability density functions that are well
clustered. These clusters can be discovered in an unsu-
pervised manner, and fitted by kernel density estimation
(KDE). The obtained density functions can then further be
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Figure 3. Schematic of the Cracktal to CAP-Net training pipeline. Based on simulated images and their automatic annotation (yellow
shading), consistency enforced training (green) is performed between two networks extended with adaptive instance normalization (AdaIN,
blue) and pointwise mutual information (PMI, purple) respectively. For final inference, the AdaIN style-transfer module is dropped.

leveraged to distinguish between common pixel pairs (be-
longing to the background texture) from less common pairs
(belonging to anomalies in the texture or edges). To com-
pute the PMI scores between two pixels, we first need to
estimate the joint distribution and marginal distributions for
image pixels. For the marginal distribution P(A) , we sam-
ple pixels randomly from the image to perform the KDE. To
estimate the joint distribution P(xi , xj ), we sample pairs of
pixels at various distances and perform KDE.

For a pixel pair (xi, xj) the PMI score is computed as:

PMI (xi , xj ) = log
P (xi, xj)⌧

P (xi) · P (xj)
(2)

The parameter ⌧ boosts the scores of common pairs and
addresses the bias of PMI towards low-frequency events (i.e
when the marginal distributions are small). When ⌧ = 1,
PMI (xi , xj ) specifically compares the likelihood of observ-
ing the pixel xi near xj to the overall probability of observ-
ing xi and xj in the image. The final affinity score for each
pixel is computed using the PMI score with the neighboring
pixels. We define the set of neighbouring pixels of xi as Ni.
The PMI scores between a pixel and its neighbors are expo-
nentiated and summed to estimate an affinity score for each
pixel in the original image, indicating if this pixel belongs
to the dominant background texture or is an anomaly:

A�nity(xi) =
X

xj2Ni

e
PMI(xi,xj) (3)

The scores are then passed to a neural network for crack
prediction. Note that the exponential is important to obtain
more stable affinity scores, which helps with learning.

4.2. Style Transfer

In addition to the use PMI as an inductive bias, we fur-
ther reduce the Sim2Real gap from the data-driven angle by

performing style transfer operations based on the adaptive
instance normalization (AdaIn) [22], which aligns the mean
and variance of the content features with those of the style
features. The content features are obtained by encoding an
image generated by Cracktal simulator using a VGG net-
work pretrained on ImageNet [18]. Similarly, the style fea-
tures are encoded from a texture image. The AdaIN layer is
used to perform style transfer in the feature space and align-
ing the features of the content and style images. A decoder
is learned to invert the AdaIN output to the image spaces.

We sample texture from the describable textures dataset
[15] to perform the style transfer on Cracktal images. This
way, we can augment the synthetic training data and in-
crease the texture variety while at the same time keeping
the semantic content of the original image and more specifi-
cally the crack intact. We note that style transfer is only per-
formed during training with probability of 0.5 and is com-
pletely dropped during testing.

4.3. Consistency Loss

Finally, to get the best of both worlds, we add a consis-
tency loss between the network trained with RGB images
and the network trained with PMI based affinity scores. We
postulate that ensuring consistency of the latent space repre-
sentations across projected subspaces of the outputs of two
networks will lead to robust features that will enable better
transfer to real data. For training image Xi, The consistency
loss is imposed as follows:

LCL(Xi) = (f1(encrgb(Xi))� f2(encpmi(Xi)))
2 (4)

where encrgb and encpmi are the encoding functions for
the RGB and PMI networks respectively. The obtained la-
tent encodings are then passed to projection heads (f1 and
f2) before contrasting them.
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5. Experiments

Our empirical investigation follows four key questions:
(Q1) Are Cracktal assumptions plausible? To corrobo-
rate the plausibility of our modelling assumptions and the
utility of synthetic data for crack detection, we contrast the
performance of a U-Net trained with real world data with a
U-Net trained with our synthetic data.
(Q2) Do simulated auxiliary tasks improve generaliza-

tion? In the spirit of prior works [10, 25], we further con-
sider how the addition of auxiliary tasks can improve gen-
eralization performance in the context of crack segmenta-
tion. More specifically, crack patterns have local geometric
variations, e.g. surface normal distribution variation, and
depth variations relative to the geometry and depth in the
surrounding context. Similarly, PMI maps address estima-
tion of an auxiliary task of appearance anomaly extraction.
(Q3) Does our approach of CAP-Net reduce the

Sim2Real gap? We empirically corroborate that our pro-
posed method outperforms existing baselines, even when
the latter are trained on real-data, effectively demonstrating
how our design choices along with a domain specific simu-
lation can lead to more robust crack segmentation models.
(Q4) Are all design choices for CAP-Net meaningful?

We ablate each component of our hybrid CAP-Net to
showcase that each proposed element has meaningful
impact towards the overall CAP-Net performance.

5.1. Baselines and Additional Evaluation Datasets

In addition to SegCODEBRIM, we evaluate our mod-
els on a collection of the following public datasets:
CRACK500 [61], GAPs384 [20], CFD [45], AEL [5],
Cracktree200 [63]. We merge these into 950 images of
cracks captured under various conditions. We refer to the
experiments using these datasets collectively as the multi-
source set. For consistency, we downsample all images
to 256 ⇥ 256. As intuitive baselines, we consider the
following models: A U-Net trained with synthetic data
(U-Net), A U-Net trained with collection of multi-source
data (U-Net(MultiSet)), A U-Net trained with real and syn-
thetic data (U-Net(Sim+Real)). In addition, we compare
to the attention based U-Net variant (Attn-U-Net) [38] and
to TransU-Net [9]. For analysis of the multi-task train-
ing in Q2, we further construct Multi-U-Net architectures,
based on a single joint encoder and one separate decoder per
modality, in the spirit of prior segmentation works [10, 25].

5.2. Evaluation Metrics

Evaluating binary semantic segmentation maps with
common overlap based scores such as Dice or Intersection
over Union (IOU) comes with limitations. For cracks,
connectivity is important but slight over- or under- segmen-
tation of crack pixels can be tolerated, especially knowing

that the ground truth maps are usually annotated by humans
using different annotation tools with varied settings. For
these reasons, we take inspiration from the medical imaging
literature and adapt various metrics [34, 27].

Hausdorff based Metrics [23]: For two point sets X and
Y, the one-sided Hausdorff Distance from X to Y is:

hd(X ,Y ) = max
x2X

min
y2Y

dist(x, y) (5)

where dist is a distance measuring function between pixels
x and y. The bidirectional Hausdorff Distance is then:

HDF (X ,Y ) = max(hd(X,Y ), hd(Y,X)) (6)

We use both the euclidean distance and radial basis func-
tion (RBF) as a distance measure between pixels. RBF, also
known as the squared exponential kernel, is defined as:

RBF (x , y) = exp(�d(x, y)2

2l2
) (7)

where d is the euclidean distance between x and y. A main
advantage of using RBF as a distance measure is that it
decreases gradually the further the prediction is from the
ground truth
clDice: The authors of [46] introduce a similarity measure
centerlineDice (clDice), calculated by comparing the inter-
section of the prediction and ground truth masks and their
morphological skeleta. See Appendix for further details.
F1✓: We also consider a F1 scores with tolerance measure.
In the experiments in the main body, we set ✓ = 10.

5.3. Results and Discussion

(Q1) The modelling assumptions in Cracktal are plau-

sible: The top half of table 1 shows the performance of
models when evaluated on SegCODEBRIM. Despite train-
ing with real-world data and annotations of the multi-source
dataset, U-Net (MultiSet) achieves an F1 score of 25.6%,
which is worse than the performance of U-Net trained with
synthetic Cracktal data. A similar trend can be observed
on all metrics except F1✓=10, where U-Net (MultiSet) out-
performs the baseline U-Net only marginally. We hypothe-
size that the overall worse performance achieved by U-Net
(MultiSet) can be explained by the fact that the used train-
ing dataset comes from a variety of sources that tend to fea-
ture inconsistent annotation styles. More generally, U-Net
(MultiSet) achieves a higher number of false positives and
detects other anomalies present on concrete surfaces com-
pared to U-Net, as evidenced by clDice and Hausdorff dis-
tance scores. These results underscore the significance of
accurate labeling, which is guaranteed in simulation. Thus,
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Model F1(") F1✓=10(") clDice(") HDFEuc(#) HDFRBF (#)
Se

gC
O

D
EB

R
IM U-Net [42] 29.6± 3.1 35.8± 1.8 38.5± 0.9 40.2± 13.2 53.6± 7.1

U-Net (MultiSet) 25.6± 1.7 37.2± 0.9 28.5± 3.7 53.9± 10.7 66.5± 1.2
U-Net (Sim+Real) 33.4± 3.8 35.5± 4.4 51.3± 4.2 23.5 ± 3.6 42.7 ± 5.3
Attn-U-Net [38] 31.2± 1.1 37.5± 4.5 43.1± 6.2 34.7± 10.6 51.7± 5.5
TransU-Net [9] 28.4± 1.8 31.3± 2.3 43.6± 2.0 25.6± 1.1 46.8± 2.2
Multi-U-Net (D-SN) 31.9± 1.3 36.4± 0.9 45.3± 1.2 30.5± 7.1 46.4± 4.2
Multi-U-Net (PMI) 32.7± 0.8 37.1± 1.1 47.2± 1.7 25.7± 6.4 43.9± 3.3
CAP-Net 37.3 ± 1.5 40.4 ± 1.8 53.6 ± 1.5 23.3 ± 1.0 42.6 ± 1.8

M
ul

ti-
so

ur
ce

Se
t U-Net [42] 42.6± 0.2 44.5± 0.2 71.5± 0.5 13.7± 1.3 33.5± 1.0

U-Net (Sim+Real) 41.4± 3.7 48.5± 3.7 57.5± 6.9 45.1± 5.4 49.6± 4.1
Attn-U-Net [38] 41.2± 2.2 43.2± 2.6 69.4± 1.7 14.9± 1.0 35.3± 2.7
TransU-Net [9] 28.4± 1.8 31.3± 2.3 43.6± 2.0 22.0± 1.1 46.9± 2.2
Multi-U-Net (D-SN) 42.5± 2.9 44.9± 2.5 68.9± 3.8 13.5± 1.8 33.6± 1.2
Multi-U-Net (PMI) 41.0± 2.1 43.1± 1.5 66.9± 5.8 14.1± 1.4 32.7± 1.2
CAP-Net 44.9 ± 1.5 46.9 ± 1.8 72.30 ± 1.5 13.2 ± 1.0 31.5 ± 1.8
U-Net (MultiSet) ⇤ 68.4 ± 0.3 82.8 ± 0.6 88.4 ± 1.1 5.7 ± 1.4 13.9 ± 0.8

Table 1. Performance comparison of different models on SegCODEBRIM (top half) and multi-source set (bottom half). The best perform-
ing models on each dataset are highlighted in bold, where multiple values are highlighted if they lie within statistical deviations. CAP-Net
outperforms all baselines on the real-world SegCODEBRIM, despite only being trained on simulated Cracktal data. It even outperforms
the MultiSet trained on real multi-source data. Note that we also mark both CAP-Net and U-Net (MultiSet) for the multi-source dataset, as
the latter is trained on real-world in-domain data and provides an expectation of what could be achieved, which we mark with a ⇤. Apart
from this upper-bound, CAP-Net beats all other simulation based baseliness.

we find the plausibility of our modelling assumptions in the
Cracktal simulator to be well supported.
(Q2) Auxiliary simulated tasks improve the generaliza-

tion: We consider two auxiliary tasks: depth and surface
normals prediction and estimation of pointwise mutual in-
formation, denoted by the trained Multi-U-Net (D-SN) and
Multi-U-Net (PMI) in table 1 respectively. Both mod-
els outperform the baseline U-Net significantly, improving
clDice by 7+ and the Euclidean Hausdorff distance mea-
sure by 10+ on SegCODEBRIM dataset. Similar trends
can be observed for the other metrics. Clearly, the depth
and surface normal maps predicted by Multi-U-Net (D-SN)
provide valuable information about the 3D spatial structure
and layout of the scene, thus improving generalization on
real data. Similarly, estimating geometry information can
be seen as an inductive bias; Multi-U-Net (PMI) learns rep-
resentation that focus on the anomalies in the images.

However, both of these models are less robust than our
CAP-Net, highlighted also by the fact that the Multi-U-Nets
do not significantly outperform the baseline U-Net when
evaluated on the multi-source data (bottom half of Table 1).

(Q3) CAP-Net’s hybrid modelling effectively reduces

the Sim2Real gap: Revisiting Table 1, CAP-Net clearly
outperforms all approaches on SegCODEBRIM (top half
of table). For instance, we observe an improvement of
7% in F1 and 11 in Hausdorff distance with RBF kernel
compared to U-Net. Similarly, our model performs better

than all the baselines on multi-source set (bottom half of
table), except U-Net(Multiset), which has been trained with
in-distribution training data. Overall, training on the real
multi-source data is only beneficial when deploying in a
closely related context, whereas the modelling of CAP-Net
in conjunction with the Cracktal simulator provides a
robust solution for widely applicable crack segmentation
by adapting from purely synthetic data.

(Q4) All CAP-Net design choices contribute to perfor-

mance improvements: The ablations in Table 2 shows the
performance of different sub-modules of our system on Seg-
CODEBRIM and multi-source set.

First, the style transfer provided by AdaIN improves the
generalization to real world data compared to a simple U-
Net on SegCODEBRIM (U-Net(AdaIN) vs CAP-Net w/o
AdaIn), but leads to statistically insignificant performance
change on multi-source data. Second, the addition of a sec-
ond encoder branch (bottom half of figure 3) that receives
affinity scores based on PMI as input further increases the
performance on most metrics, even when the branches are
not contrasted (CAP-Net w/o CL). For instance, we obtain
a 1.5% improvement in F1 and 3 on the RBF Hausdorff dis-
tance on SegCODEBRIM. Third, the subsequent addition
of the consistency loss leads to consolidated segmentation
maps between both encoders and improves performance on
various metrics (CAP-Net w/o CL vs. “full” CAP-Net). We
obtain a 5% improvement in F1 and decrease of 6 in Haus-
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Figure 4. Qualitative examples on SegCODEBRIM from left to right: input image, ground-truth, U-Net, CAP-Net (ours). Images are
compressed for view in pdf. Further examples can be found in the appendix.

Model F1(") F1✓=10(") clDice(") HDFEuc(#) HDFRBF (#)

Se
gC

O
D

EB
R

IM U-Net 29.5± 3.1 35.7± 1.8 38.5± 0.9 40.2± 13.2 53.5± 7.0
U-Net (PMI) 28.4± 1.6 30.7± 2.5 44.8± 1.9 31.2± 2.1 53.3± 2.7
U-Net (AdaIn) 31.4± 4.2 33.8± 4.3 48.4± 5.1 26.4± 5.2 48.5± 6.6
CAP-Net w/o CL 32.6± 2.8 35.4± 1.3 48.7± 1.8 23.8± 11.5 46.0± 1.2
CAP-Net w/o AdaIn 31.9± 4.1 40.1± 1.9 40.0± 1.7 41.0± 14.7 52.2± 0.8
CAP-Net 37.3 ± 1.5 40.4 ± 1.8 53.6 ± 1.5 21.7 ± 1.0 40.4 ± 1.8

M
ul

ti-
so

ur
ce

Se
t U-Net 42.6± 0.2 44.5± 0.2 71.4± 0.5 13.7± 1.3 33.5± 1.0

U-Net (PMI) 40.6± 0.9 42.4± 1.1 68.4± 0.5 18.3± 0.5 37.8± 1.1
U-Net (AdaIn) 40.6± 1.6 42.0± 1.5 70.7± 1.2 14.1± 1.4 36.1± 2.7
CAP-Net w/o CL 42.0± 8.1 43.9± 8.6 69.5± 7.7 14.4± 3.9 34.6± 9.1
CAP-Net w/o AdaIn 45.2 ± 2.4 47.1 ± 1.6 72.6 ± 0.7 13.1 ± 0.6 30.5 ± 2.3
CAP-Net 44.9 ± 1.5 46.9 ± 1.8 72.3 ± 1.5 13.2 ± 1.0 31.5 ± 1.8

Table 2. Ablation study on SegCODEBRIM (top half) and multi-source set (bottom half). The best performing models on each dataset are
highlighted in bold, where multiple values are highlighted if they lie within statistical deviations. Here, U-Net (PMI) and U-Net (AdaIn)
refer to only the bottom and top parts of figure 3 respectively, whereas w/o CL and AdaIn denote the omission of the contrastive term
and style transfer module. The “full” CAP-Net demonstrates that each designed component is crucial for SegCODEBRIM, whereas some
components like AdaIn may be optional to perform well on the multi-source data.

dorff distance respectively on SegCODEBRIM.
The results of Table 2 empirically corroborate the ef-

ficacy of our design choices. The incorporation of PMI-
based modeling approaches and purely data-driven U-Net
style learning, augmented by consistency loss improves the
appearance invariance of our model and thus leads to better
generalization to out of distribution data, even when only
trained on synthetic data.

6. Conclusion

In this paper, we introduced Cracktal, a flexible simula-
tor for generating synthetic cracked concrete surface data
with ground truth labels. Additionally, we proposed a hy-
brid design that combines data-driven models with single-

image statistical estimation models, to fully leverage syn-
thetic data. Our empirical validation demonstrates that this
approach reduces the Sim2Real gap. Our work emphasizes
the importance of fusing expert-based inductive biases with
learning from simulated data and provide new domain to
explore domain generalization and adaptation methods.
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