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Abstract

To reduce computation in deep neural network inference,
a promising approach is to design a network with multiple
internal classifiers (ICs) and adaptively select an execution
path based on the complexity of a given input. However,
quantizing an input-adaptive network, a must-do task for
network deployment on edge devices, is a non-trivial task
due to jointly allocating its computation budget along with
network layers and IC locations. In this paper, we pro-
pose Unified Sample-wise Dynamic Network (USDN) with
a mixed-precision and early-exit framework that obtains
both the optimal location of ICs and layer-wise bit config-
urations under a given computation budget. The proposed
USDN comprises multiple groups of layers, with each group
representing a varying degree of complexity for input sam-
ples. Experimental results demonstrate that our approach
reduces computational cost of the previous work by 12.78%
while achieving higher accuracy on ImageNet dataset.

1. Introduction

Quantization is a widely-used technique to accelerate
deep neural network (DNN) inference. Conventional quan-
tization methods [5, 8, 26] allocate the same number of
bits to all layers in the network. In recent years, mixed-
precision quantization methods [2, 9, 18, 19] have further
reduced the computational cost of DNN inference by as-
signing optimal bit-widths to each convolutional layer, bal-
ancing accuracy and computational cost trade-offs. How-
ever, both uniform quantization and mixed-precision meth-
ods are typically trained and applied uniformly across an
entire dataset. This can lead to computational redundancy
due to variations in the difficulty of individual samples. For
instance, an easy-to-classify sample might require less com-
putational effort for accurate prediction than a difficult-to-
classify one, meaning potential computational savings re-
main unexploited during inference.

Dynamic networks, as opposed to static ones, can adapt
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Figure 1. Comparison between the proposed method (USDN) and
various state-of-the-art (SOTAs) on ImageNet.

their structures or parameters and select an execution path
according to image-wise complexity during inference [15,
16, 19]. To dynamically choose a sample-wise execution
path, many input-adaptive networks construct a supernet
stacking multiple subnets, for example, a unified model sup-
porting various bit-width configurations. During training,
within such a supernet, multiple subnets share a single set
of parameters, and a separate network, such as the recur-
rent neural network route [15] and policy network [16], is
trained to choose an execution path for a given sample. Dur-
ing inference, the control unit determines a specific execu-
tion path to the input, and the selected subnet is executed
on hardware. Unlike static networks, dynamic networks of-
fer favorable properties, such as efficiency, representation
power, adaptiveness, compatibility, generality, and interop-
erability [6].

The advantages of quantization and dynamic networks
suggest a message that designing a unified mixed-precision
network with multiple internal classifiers (ICs) may be a
promising solution for accuracy and computational effi-
ciency. Unfortunately, such an integrated network may suf-
fer from accuracy degradation for various reasons. First, an
IC location and bit-widths are sensitive to spatial-scale im-
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age resolution and the depth of a prediction network, which
requires carefully designing an IC structure and searching
for a proper IC location to balance accuracy degradation
and computational cost. Second, jointly finding IC loca-
tions and layer-wise bit-widths may consume considerable
training time due to large design space and result in a sub-
optimal solution for a weight-sharing supernet. Third, it is
challenging to obtain a unified fully-quantized network, as
crucial parts of the network, such as the first and last layers
[19], as well as the residual connection [15], that signif-
icantly influence performance, are preserved to full preci-
sion.

To address these problems, we propose a unified sample-
wise dynamic network (USDN), a fully-quantized input-
adaptive mixed-precision network, with the following main
contributions.

• Supernet construction and a new IC design: We con-
struct a supernet by stacking architectural parameters
for both IC locations and layer-wise bit-widths. Un-
like existing EEs, we propose a scale-aware IC design
to handle accuracy degradation for a large input effec-
tively. In addition, different from conventional weight-
sharing supernets, our USDN framework utilizes dedi-
cated model parameters for different bit-widths during
training.

• Architectural Search and Training: USDN introduces
a compound set of architectural parameters, which
consist of IC locations and layer-wise bit-widths, and
cannot be explored by the conventional differential ob-
jective function [24, 25]. To address this problem, we
propose a new objective function that integrates an in-
ference cost for ‘successful’ exit rates and a failure cost
for ‘failed’ exit attempts. We adopt a reinforcement
learning (RL) solver to explore the architectural design
space by minimizing the objective function.

• Refinement with IC-wise Knowledge Distillation (KD):
After the architectural search, IC locations and bit-
width configurations are fixed. We refine the model
by (1) training a full-precision model with the fixed IC
locations and (2) applying IC-wise KD to refine the
target mixed-precision student network from the full-
precision teacher one.

• Experimental Results: To validate our USDN, we con-
duct a comprehensive analysis with various datasets.
To the best of our knowledge, USDN is the first fully
quantized input-adaptive mixed-precision network that
achieves SOTA performance on the ImageNet dataset.

2. Background and Motivation

2.1. Static Quantized Networks

Weight/Activation Quantization: To compress and ac-
celerate DNN inference, many studies proposed methods
to quantize the weights and activations to low precision
[5, 8, 26, 27]. In this paper, we utilized the widely-used
method DoReFa-Net [27] to quantize the full-precision
weights w with a bit-width of k. Once the bit-width is fixed,
the weights are fine-tuned via quantization-aware-training
(QAT). To quantize activations, the parameterized clipping
activation (PACT) scheme [5] is employed to optimize the
quantization scales. When both weights and activations
are quantized to low precision, the metric of bit operations
(BitOPs) is widely used to measure the computation cost of
a quantized layer/network:

BOPs = FLOPs ∗ kw ∗ ka (1)

Where FLOPs represent the number of floating-point op-
erations, and kw and ka are bit-widths of weights and acti-
vations, respectively.

Mixed-Precision Quantization and Neural Architec-
ture Search: Unlike uniform quantization, mixed preci-
sion techniques search for layer-wise bit-width configura-
tions. [1, 13] preserve the accuracy of a quantized network
by allocating different bit-widths to each layer, taking into
consideration the layer’s quantization sensitivity and com-
putational cost. Considering bit-width configurations as a
search space, [24,25] construct a supernet that encompasses
all possible bit-width configurations, such as {1,2,4,8} for
a layer. This often involves exploring a vast design space(=
4L,) where L represents the number of layers. Many pre-
vious studies [3, 17] train the supernet using RL, a method-
ology also applicable to USDN. USDN introduces a novel
objective function that combines an inference cost for suc-
cessful exit rates with a failure cost for failed exit attempt
rates during the architecture search.

2.2. Dynamic Neural Networks

Dynamic Quantized Networks: Compared to static
models, dynamic networks can adapt their structures or pa-
rameters according to different inputs during inference. [15]
expands the search space to include a set of bit-widths,
specifically {0,8,32}, where a bit-width “0” indicates a
layer/block skipped during inference. Meanwhile, [16, 19]
employ weight-sharing supernets, in which convolutions
with different bit-widths use a shared weight set, and ded-
icated batch-normalization layers are assigned to corre-
sponding bit-widths. Unfortunately, these methods require
substantial training time to find shared model parameters
among different architectural configurations. In addition, to
avoid accuracy degradation, certain layers, such as the first
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and last layers (F/L) [19] or residual connections, are kept
at full-precision [4, 15].

Early-exit (EE) Networks: Another class of dynamic
networks involves EE networks that stack some internal
classifiers (ICs) on intermediate feature maps [7,10,20]. For
a given input, the IC outputs an intermediate prediction with
its confidence score, and if this score surpasses a predefined
threshold, the execution comes to a halt. Quantized EEnet
is primarily explored for co-inference within distributed set-
tings, such as edge-cloud environments. While the quan-
tized early layers are offloaded to the edge, the rest are re-
tained in full-precision and reside in the cloud [14]. [12]
delves into the design spaces for exit location and thresh-
old value in hardware-aware deployment. [11] focuses on
the optimal split point between the edge device and the
cloud. Meanwhile, [21] uses DQN to determine the choice
between floating-point and quantized networks.

Anytime Inference: Anytime inference allows the net-
work to halt computation when a sufficiently confident pre-
diction is obtained at the IC [7, 10, 20]. Although anytime
inference can effectively reduce computation costs for easy
or moderately complex samples, obtaining an accurate pre-
diction at early ICs is generally challenging, especially for
a large inputs, such as 224x224 in ImageNet.

3. USDN Design Methodology
Overall Architecture: This section describes the unified

sample-wise dynamic network (USDN) architecture. As de-
picted in Fig. 2, the USDN comprises a mixed-precision
Q-baseline model and ICs. The baseline model ( 1 ) com-
prises multiple convolutional layers/blocks with different
bit-widths, followed by a fully connected (FC) layer and
a softmax layer for the base prediction ( 2 ). For each group
of layers with the same feature map scale ( 3 ), USDN at-
taches a scale-aware IC ( 4 ). As a result, each input follows
a distinct execution path based on its complexity. For ex-
ample, an easy-to-classify sample is processed by the few
first layers followed by an IC, while a hard-to-classify sam-
ple propagates to the base prediction layer. The sample can
be classified at the IC if the confidence score at the IC pre-
diction is larger than a exit threshold. Like instance-wise
dynamic networks, USDN can adapt its structures or pa-
rameters to different inputs, leading to notable advantages
in accuracy, computational efficiency, and adaptiveness [6].

Despite the above potential advantages, designing a uni-
fied sample-wise dynamic network may suffer from accu-
racy degradation and computation overhead when stacking
ICs into the baseline network. To address the above prob-
lem, we introduce two simple yet effective techniques: (1)
Scale-aware layer group construction and (2) Scale-aware
IC design.

Scale-aware Layer Group Construction: We construct
USDN by splitting the Q-baseline network along the depth,
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Figure 2. The diagram of the proposed method

which results in a few disjoint layer groups with a single
IC. The precise IC locations within each layer group, that
is, highlighted boxes at the Q-baseline network in Fig. 2,
are determined by the architectural search process (See Sec-
tion 4 for details.) Intuitively, our IC group construction can
assess the sample difficulty in terms of computational cost.
For instance, an easy-to-classify image requires fewer lay-
ers with shallow feature maps to output a correct prediction,
whereas a hard-to-classify image must pass through many
layers with deep feature maps to produce such a result. It
is worth noting that stacking dense ICs can lead to gradient
conflicts among ICs [22], resulting in accuracy degrada-
tion and increased computational costs due to exit failures.
We empirically observe that using three classifiers would be
sufficient.

Scale-aware IC Design: To reduce computation over-
head, an IC typically includes a stride convolution or a pool-
ing layer [10,20], which may cause an unreliable prediction
with shallow feature maps. Therefore, we design each IC
so that its model size increases according to the size of the
input feature map. Given an input of 224 × 224, the size
of feature maps at the baseline prediction is 7×7. Accord-
ingly, at each IC, we add multiple stride-2 3×3 convolu-
tions until the feature map size decreases to 7×7. For ex-
ample, when designing an IC for 56×56 feature maps, we
add three convolutions. The resulting reduced feature map
is then pooled to a 7×7 size and is subsequently fed into
an FC layer. Notably, to avoid much computation overhead
of ICs, we quantized the FC layer to eight bits, whereas the
remaining components were quantized to four bits. In prac-
tice, we observe that our ICs only account for 2.69% of the
overall computation cost.
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Figure 3. Overview of the proposed USDN framework. (left): Bit-width search process. (right) : IC location search process.

4. Compound Architectural Search

4.1. USDN Supernet Construction

Fig. 3 presents an overview of the proposed supernet de-
sign. In the proposed method, we define two types of ar-
chitecture parameters: θ for multiple bit-width candidates
and γ for possible IC locations. To reduce memory con-
sumption, we adopted binary gates from [3], which allow
only a single candidate to be activated for inference. For
each forward pass, binary gates are sampled from the multi-
nomial distribution, with the probability derived from soft-
maxed θ and γ. Subsequently, each layer’s output can be
expressed as a weighted sum of the candidate operations
and binary gates. More precisely, we denote the supernet as
a DAG N = (V,O,Q), where O = (o0, ..., oK−1) refers to
each candidate bit-width operation, and Q = (q0, ..., qM−1)
denotes a candidate IC. Consequently, a binary gate g is
plugged between the candidate operations. When K num-
ber of candidate bit-widths exist, the i-th layer output vi ∈
V can be expressed as follows:

vi =

K−1∑
k=0

ok(vi−1) ∗ gk, (2)

s.t.gk ∈ {0, 1},
K−1∑
k=0

gk = 1, gk ∼ softmax(θi)

Similarly, the output feature of the IC is defined as the
weighted sum of the IC candidates and binary gates. The
architecture parameter γl represents possible IC locations
within layer group l. When M layers exist in l-th layer

Layer 
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Exit0

Layer 
Groups 1

Exit1

Layer 
Groups 2

Final FC
EEcost0 EEcost1

exit
else exitelse exit

Input
Datum

Redundant
Inference

Figure 4. Anytime inference and redundant computation caused
by exit failure.

group, the logit of l-th layer group wl ∈ V is expressed as
follows:

wl =

M−1∑
m=0

qlm(vm) ∗ glm, (3)

s.t.glm ∈ {0, 1},
M−1∑
m=0

glm = 1, glm ∼ softmax(γl
m)

4.2. USDN Supernet Training

The architecture parameters and weight parameters are
trained in an interleaved manner, which implies that each set
of parameters is updated in turn during the training process.
The weights are trained with conventional cross-entropy
loss Lce. If the number of layer groups is N , we formu-
late the total loss L as the weighted sum of the losses of
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each of the ICs and their relative coefficient as follows:

L =

N−1∑
i=0

λiL
i
ce (4)

Here, Li
ce denotes the cross-entropy loss of the i-th classi-

fier. λ is a relative coefficient that enhances the stability of
the training by adjusting the scale of the gradient of each
IC.

To train the supernet, we utilize the REINFORCE policy
gradient algorithm [23]. For each forward pass, the binary
gates g are sampled from a multinomial distribution with the
probability derived from softmaxed θ and γ. Then, a can-
didate network Ng is constructed using those binary gates
and the reward R is determined by performing an early-
exit evaluation on the sampled network. When the optimal
EEnet is defined as N (θo, γo), the objective function is de-
fined as:

θo, γo = argmax
θ,γ

Eg∼θ,γ [R(Ng(θ
∗, γ∗;Dv))] (5)

s.t.θ∗, γ∗ = argmin
θ,γ

L(Ng(θ, γ;Dt))

Here, Dv and Dt refer to the validation and training
datasets, respectively. The nested equation can be solved by
training the weight parameters using the equation defined in
Eq. (4)

The architecture parameters are updated to maximize the
expected reward. For simplicity, we express only θ in this
equation:

∇θJ(θ) = Eg∼θ[R(Ng(θ
∗;Dv))∇θ log(p(g))] (6)

≈ 1

P

P∑
i

[R(Ngi(θ
∗;Dv)]∇θ log(p(gi))

Here, p(gi) refers to the probability of sampling gi, and
P represents the length of the reward trajectory.

4.3. EE-aware Reward Function

Each sampled network has different IC locations and bit-
width configurations. The reward function aims to establish
a criterion for distinguishing the best configuration. In this
study, we formulate an EE-aware reward function that com-
promises both computational cost and accuracy, as shown
in the following equation:

R(Ng) = EEAcc(Ng) ∗ (
Cost(Ng))

B
))−tr, (7)

where EEAcc refers to the early-exit accuracy, and B
denotes the target BOPs. A trade-off ratio tr is introduced
to balance the cost and accuracy.

Layer Group 0 Layer Group 1 Layer Group 2
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FP FP FP
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FP FP FP

Final

FP FP FP

IC

QT QT QT
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QT QT QT

Final

QT QT QT

KD KD KD
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Figure 5. IC-wise knowledge distillation training. Here, y repre-
sents the true label of the input image.

To quantify the computational cost of each sampled net-
work, we design the early-exit cost using the inference cost
(Costinfer) and the failure cost (Costfail).

Cost(Ng) = Costinfer(Ng) + Costfail(Ng) (8)

As illustrated in Fig. 4, for images that successfully un-
dergo early exit, further execution stops. Their inference
cost consists of the accumulated cost along the inference
path of each layer group (ToClassifier), which includes
the cost of the classifier they use to exit. The total inference
cost of the validation set is calculated as follows:

Costinfer(Ng) =

N−1∑
i=0

ERi ∗ ToClassifier(i) (9)

Here, N refers to the number of classifiers in the network
and ERi denotes the exit rate of the i-th classifier.

If a sample fails to exit at an IC, it propagates to the
subsequent layer groups, incurring redundant computation
equivalent to the computational cost (EEcost) of that IC.
For instance, assume an image takes an early exit at layer
group j(> i). Since the execution path of layer group i is
a part of that of j, the only redundant computation comes
from the BOPs of the IC at layer group i. Similarly, if an
image exits at level j + 1, the redundant computation is the
sum of the BOPs consumed by the ICs at layer groups i and
j. As a result, the overall failure cost (FailCost) for the
validation set is defined as follows:

Costfail(Ng) =

N−2∑
j=0

(1−
j∑

i=0

ERi) ∗ EEcost(j) (10)

5. IC-wise Knowledge Distillation Training
Knowledge distillation is a method used to train a

compact model by utilizing information from a larger
model. Several studies have introduced knowledge dis-
tillation training for EEnet. Most of them employ self-
distillation, in which each IC functions as both a student
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and a teacher. However, we empirically found that self-
distillation is ineffective when training quantized EEnet. In-
stead, we leverage the higher precision EEnet as a teacher
network to train the quantized EEnet. The proposed training
method is illustrated in Fig. 5. Each IC of the full-precision
(FP) EEnet imparts knowledge to the corresponding IC lo-
cation in the quantized EEnet. As a result, the quantized
EEnet is trained using knowledge distillation loss, denoted
as LKD, which comprises the distillation loss Ldist and the
classification loss Lce. If there are N classifiers and mul-
tiple softmax outputs {zi,q}i=0,..,N−1 from the quantized
classifiers, then LKD is defined by the following equation:

LKD = Lclassification + Ldistillation (11)

= 2(1− α)(

N−1∑
i=0

λiL(z1/Ti,q , ŷ)

+αT 2
N−1∑
i=0

λiL(z1/Ti,q , z
1/T
i,f )

Here, zi,f refers to the logit of the i-th classifier of FP
EEnet, and α stands for the balancing parameter between
the CE loss and KD loss. The logits are temperature (T )-
scaled to create a margin between the logits of the quantized
EEnet and the high-precision EEnet.

6. Evaluation
6.1. Dataset

ImageNet consists of 1.2 million training images and
50,000 validation images. During search process, we ran-
domly sample 50,000 images from the training dataset and
utilize it as a validation dataset. The original validation
images are retained for use as the test dataset. Each im-
age is resized to 224×224, subjected to random cropping,
and flipped for data augmentation. CIFAR contains 50,000
training and 10,000 test images. Similarly, we randomly
sample 5,000 images from the training dataset and employ
them as a validation set during the search process. For both
datasets, we do not apply normalization to the images. In-
stead, the input data is converted to the uint8 data format,
as in [8, 9]. Due to the space limitations, we provide fur-
ther details about the training scheme in the supplementary
materials.

6.2. Searched Configuration and trade-off ratio

For a fair comparison, we explored configurations using
various trade-off ratios. When employing a larger trade-off
ratio, the weight of the cost function within the reward func-
tion increases. Consequently, a model with a fewer BOPs is
discovered during search process. As shown in Tab. 1, the
model searched with a high trade-off ratio (=0.3, USDN-
tr03) exhibits lower BOPs and accuracy compared to the
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Figure 6. Comparison between the proposed method and vari-
ous state-of-the-art (SOTAs) on ImageNet. Compared with the
mixed-precision method, USDN reduces the computational cost
by 12.78% without any accuracy degradation. Compared with the
input-adaptive quantization method, USDN shows 0.68% absolute
gains in accuracy without additional computational cost.

model searched with a lower trade-off ratio (=0.1, USDN-
tr01). The specifics of the searched configurations are pro-
vided in the supplementary materials.

6.3. Comparison with quantization methods

Fig. 6 shows the results of ResNet18 tested on the Im-
ageNet dataset. We compare our results with works of
various quantization methods [2, 5, 8, 9, 18, 19, 26]. To
demonstrate the feasibility of the USDN, we provide the
results for various target BOPs. The numerical results
are listed in Tab. 1. Compared with uniform quanti-
zation, USDN achieves higher accuracy than PACT [5],
LQNet [26], and SAT [8] (69.3% vs. 69.8%) with a
smaller BOPs (22.84G vs. 22.74G) consumption. Com-
pared with mixed-precision methods, USDN outperforms
FracBits [25] with higher accuracy (69.4% vs. 69.8%) with
lower BOPs (22.93G vs. 22.74G). In the case of Tang,
Chen,et al. [18], USDN shows (+0.3%) absolute gains in ac-
curacy when the target bit-width is 2.5MP. USDN achieves
higher accuracy (69.7% vs. 69.8%) when the BOPs target
is set to 3MP.

Compared with adaptive precision networks, USDN
shows superior accuracy (68.7% vs. 69.8%) with a smaller
computational cost. It is worth noting that when a lower exit
threshold is applied for evaluation, USDN (Ours-efficient)
can reduce the computational cost by (-14.63%) even with
higher accuracy (68.7% vs. 69.0%).

Compared with the input-adaptive quantization
method [19], USDN improves the accuracy by 1.2% and,
0.4% absolute values when the target BOPs are set to 2.5MP
and 3MP.

To demonstrate the feasibility of the proposed method

651



Table 1. Comparisons between our method and previous quantiza-
tion approaches on ImageNet using ResNet18. The term ’th’ refers
to the exit threshold. Except for ABN [19], the first and last layers
are quantized to 8-bit across all other methods. The calculation
of BOPs in [18] differs from our method; thus, we approximate
the value using the BOPs of uniform quantization. Similarly, for
ABN, as they reported their BOPs as a relative cost compared to
AdaBits [9], we estimate their BOPs using the cost of AdaBits.

Method W A
Top-1 BOPs↓

Acc.↑(%) (G)

PACT [5] 3 3 68.1 22.83
LQNet [26] 3 3 68.2 22.83

SAT [8] 3 3 69.3 22.83

FracBits-PACT [25] 3MP 3MP 69.1 22.70
FracBits-SAT [25] 3MP 3MP 69.4 22.93

Tang, Chen,et al. [18] 2.5MP 3MP 68.7 19.59*
Tang, Chen,et al. [18] 3MP 3MP 69.7 22.81*

AdaBits [9]† 3 3 68.5 22.83
Bit-Mixer [2]† 3 3 68.7 22.83

ABN [19] Runtime+MP 67.0 17.62*
ABN [19] Runtime+MP 68.6 19.93*

USDN-tr03(th=0.7) EE+2.5MP 68.2 17.46
USDN-tr02(th=0.7) EE+3MP 69.0 19.49
USDN-tr01(th=0.7) EE+3MP 69.8 22.74

Method W A
Top-1 BOPs↓

Acc.↑(%) (G)

PACT [5] 4 4 69.2 34.70
LQNet [26] 4 4 69.3 34.70

SAT [8] 4 4 70.3 34.70

FracBits-PACT [25] 4MP 4MP 69.7 34.73
FracBits-SAT [25] 4MP 4MP 70.6 34.70

Tang, Chen,et al. [18] 4MP 4MP 70.8 34.68*

AdaBits [9]† 4 4 69.2 34.70
Bit-Mixer [2]† 4 4 69.4 34.70

USDN-tr01(th=0.6) EE+4MP 69.9 29.84
USDN-tr01(th=0.9) EE+4MP 70.8 34.43

†There is no bit-width selection w.r.t. input

across various dataset, we conduct experiments on a small
network and dataset, specifically ResNet20 and CIFAR10.
In this case, we adopt the IC design from [10]. As demon-
strated in Tab. 2, USDN exhibits a significant cost reduc-
tion in terms of BOPs while preserving high accuracy when
compared to the fixed precision methods such as DoReFa
and PACT.

6.4. Comparison with quantized EEnets

We also conduct comparisons between the results of
USDN and previous early-exit networks [7, 10]. Firstly, in
Fig. 8, it is evident that USDN-tr03 (2.5MP) outperforms 4-

Table 2. Comparisons of our work and previous quantization ap-
proaches on CIFAR-10 with ResNet20. Note that all methods
quantized the first and last layer to 8-bit. ‘W’ and ‘A’ are the
weight/activation bit-width abbreviations. ‘USDN-Acc’ refers to
the model in which the trade-off ratio is set to 0, so it considers
accuracy only.

Method W A Top-1 BOPs
Acc.(%)↑ (G)↓

DoreFa [27] 4 4 90.5 0.670
PACT [5] 4 4 91.3 0.670

USDN-tr001(th=0.8) EE+4MP 91.23 0.514
USDN-Acc(th=0.9) EE+4MP 91.68 0.603

Exit0 Exit1 Exit2

Easy Difficult

Figure 7. Early-exited images from each exit point. As the level
increases, the target object becomes more complex and vague.

bit quantized MSDnet in terms of Top-1 Accuracy in Ima-
geNet dataset. Secondly, we present the comparison results
with [10] in Fig. 9. In this case, we applied our method
on MobileNetV1 baseline and evalalute its performance on
the CIFAR100 dataset. The results in Fig. 9 demonstrate
that the proposed USDN achieves higher accuracy (+1.1%)
compared to the uniformly quantized 4-bit SDN at the same
computation cost. Note that previous EEnets have more
ICs (≥5) than USDN(=3). The experimental results demon-
strate that the existing EEnet, despite having more ICs and
a higher bit-width, exhibits lower accuracy compared to the
proposed USDN. This implies that merely combining EEnet
and quantization cannot effectively exploit the accuracy-
cost trade-off.

6.5. Early-Exited images from each Exit Point

Fig. 7 shows early-exited images from each exit point.
As USDN conducts progressive inference, the image that
exits from the earliest exit point will be the most straight-
forward case. As the exit point moves towards the back, the
images gradually become more challenging. For instance,
the target objects become more intricate and less distinct.

7. Discussion
7.1. Effect of IC-wise KD Training

To verify the effectiveness of IC-wise KD training, we
train the USDN obtained through search process using
only the cross-entropy loss. Subsequently, we compare
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Figure 8. Comparison between uniformly quantized 4-bit MSD-
net [7] and the proposed USDN-tr03 EE+2.5MP (ResNet18) eval-
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Figure 9. Comparison between uniformly quantized 4-bit SDN
[10] and the proposed USDN-tr01 EE+3.5MP (MobileNetV1)
evaluated on CIFAR100 dataset.

this model with the KD-trained network with identical bit-
widths and IC locations. The results are summarized in
Fig. 10. The KD-trained USDN exhibits better accuracy-
cost trade-offs than the CE-trained network on ImageNet
dataset. More precisely, KD training improved the accuracy
at most 0.49%. We found that each classifier’s confidence
calibration gets better when KD is applied, which in turn
leads to better performance. Further analyses are presented
in the supplementary material.

7.2. Effect of Exit Threshold

In Fig. 6, we measure accuracy and BOPs by incremen-
tally raising the threshold from 0.5 to 0.8. Generally, as
the threshold rises, only more reliable predictions are ex-
ited early, leading to a reduction in the exit rate and an im-
provement in accuracy. Indeed, we observe an escalation in
BOPs and note a trend where accuracy tends to align with
the accuracy of the final fully connected layer.

7.3. Effect of Failure cost

To assess the effect of incorporating failure cost into the
objective function, we compared the failure cost portions of
the conventional SDN and USDN. The failure cost portion
was calculated by dividing the fail cost by the total cost and
multiplying it by 100. The corresponding results are illus-
trated in Fig. 11. For a fair comparison, we calculated the
BOPs for each model using various thresholds (0.6-0.9) and
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Figure 10. Comparison between using the proposed knowledge
distillation loss and cross-entropy loss. The experiment is con-
ducted on EE+4MP (ResNet18) on the ImageNet dataset.
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Figure 11. Comparison between uniformly quantized 4-bit SDN
[10] and the proposed USDN EE+3.5MP (MobileNetV1) evalu-
ated on CIFAR100 dataset.

compared cases with similar BOPs. As shown in the fig-
ure, USDN exhibits a lower failure cost portion compared
to quantized SDN across all BOPs ranges.

8. Conclusion

This work proposes a unified sample-wise dynamic net-
work with internal classifiers and mixed-precision quanti-
zation. The proposed framework jointly searches IC loca-
tions and layer-wise bit configurations to find a good trade-
off between computation reduction and accuracy degrada-
tion. Especially during the search process, USDN stacks
multiple parallel layer-wise model candidates with a gating
function, which avoids an accuracy drop caused by sharing
weights among different execution paths. Meanwhile, dur-
ing inference, with multiple ICs, the unified network saves
memory storage and reduces computation by adaptively se-
lecting an execution based on an instance’s difficulty. To
this end, USDN outperforms SOTA methods by achieving
similar or better accuracy at a low bit-width computation
cost on various datasets such as ImageNet and CIFAR.
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