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Abstract

This paper analyzes the design choices of face detection
architecture that improve efficiency of computation cost and
accuracy. Specifically, we re-examine the effectiveness of
the standard convolutional block as a lightweight backbone
architecture for face detection. Unlike the current tendency
of lightweight architecture design, which heavily utilizes
depthwise separable convolution layers, we show that heav-
ily channel-pruned standard convolution layers can achieve
better accuracy and inference speed when using a simi-
lar parameter size. This observation is supported by the
analyses concerning the characteristics of the target data
domain, faces. Based on our observation, we propose to
employ ResNet with a highly reduced channel, which sur-
prisingly allows high efficiency compared to other mobile-
friendly networks (e.g., MobileNetV1, V2, V3). From the
extensive experiments, we show that the proposed backbone
can replace that of the state-of-the-art face detector with
a faster inference speed. Also, we further propose a new
feature aggregation method to maximize the detection per-
formance. Our proposed detector EResFD obtained 80.4%
mAP on WIDER FACE Hard subset which only takes 37.7
ms for VGA image inference on CPU. Code is available at
https://github.com/clovaai/EResFD.

1. Introduction

Face detection research has demonstrated significant per-
formance improvement after the advent of recent deep neu-
ral network based general object detection approaches such
as one-stage detector (e.g., SSD [27], YOLO [34], Reti-
naNet [25], EfficientDet [41]) and two-stage detector (e.g.,
Faster R-CNN [35], FPN [24], Mask R-CNN [12], Cascade
R-CNN [3]). For applicability in a real-world scenario, real-
time face detection has attracted more attention, and recent
face detectors commonly adopt the one-stage approach that
is simpler and more efficient than the two-stage approach.

Recent studies for real-time face detection methods fre-

Figure 1. Latency-accuracy Pareto curve. We investigate the
latency trend of depthwise separable convolution-based back-
bones (MobileNets) and standard convolution-based backbones
(ResNets) according to adjusting width multiplier on RetinaFace
[7] framework. ResNet shows much lower latency compared with
MobileNets family even though its mAP is higher than others. One
step forward to the observation, we propose a modified ResNet
backbone for face detection task, abbreviated as EResNet, which
reports far more accurate and faster performance than the others.

quently use the lightweight model consisting of depth-wise
separable convolution, which is used in MobileNet [16] and
ShuffleNet [59]. Specifically, recent lightweight face detec-
tors, such as RetinaFace [7], SCRFD [9], and CRFace [44],
employ MobileNetV1 architecture [17] as the backbone
network and reduce the number of channels in depthwise
separable convolution layers by adjusting the width multi-
plier. Following the paradigm of residual block [13], Blaze-
Face [1] proposed BlazeBlock that consists of depthwise
separable convolution layers with skip connection, achiev-
ing a stronger performance. In practice, adopting the depth-
wise separable convolution is a reasonable choice to save
the number of floating point operations (FLOPs), which is
one of the important measurements for the real-time appli-
cation. Summing up the following common practice, most
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real-time face detectors utilize the depthwise separable con-
volution layers in their model by default [7, 9, 46].

In this paper, we rethink the common belief for the
depthwise separable convolution layer and found out that
the standard convolution with reducing the number of chan-
nels can achieve a better trade-off between latency and
detection performance than depthwise separable convolu-
tion. Here, we use ResNet18 [13] as our baseline back-
bone network for the standard convolution and compare
with the depthwise separable convolution-based backbone
networks (MobileNetV1 [16], MobileNetV2 [36], and Mo-
bileNetV3 [15]). Figure 1 shows the latency and aver-
age of mean average precision (mAP) scores on WIDER
FACE [47] Easy, Medium, and Hard subsets. ResNet18 de-
mands much higher latency than MobileNet when the width
multiplier is not applied (i.e., 1x). However, ResNet18 be-
comes much faster than MobileNet with higher mAP when
reducing the number of channels using the width multiplier.
Note that ResNet18-0.5x denotes that width multiplier 0.5
is applied, and it is 2.1 times faster than MobileNetV1-1.0x
and 1.85 times faster than MobieNetV2-1.0x even though
its mAP is higher than others.

Based on the observation, we propose EResFD, which is
a ResNet-based real-time face detector. We firstly propose
a slimmed version of ResNet architecture, namely ERes-
Net, by redesigning the new stem layer, and changing the
block configuration. Those methods can effectively reduce
the inference latency and achieve higher detection accu-
racy compared with ResNet18. Secondly, we also propose
the new feature map enhancement modules; Separated Fea-
ture Pyramid Network (SepFPN) and Cascade Context Pre-
diction Module (CCPM). SepFPN aggregates information
from high-level and low-level feature maps separately, and
CCPM further effectively captures diverse receptive fields
by employing a cascade design. Equipped with these archi-
tectural designs, our EResFD achieved 3.1% higher mAP
on WiderFace Hard subset compared to the state-of-the-arts
lightweight face detectors such as FaceBoxes [56].

We summarize the main contributions as follows:

• We propose a ResNet-based extremely lightweight
backbone architecture, which is much faster than the
baselines on the CPU devices, achieving state-of-the-
art detection performance.

• We analyze the behavior of both standard convolu-
tion and depthwise separable convolution, and we
found that the standard convolution is much faster than
the depthwise separable convolution under extremely
lightweight parameter constraints.

• We propose a channel dimension preserving strategy to
reduce the latency, fitting the number of layers in each
layer group to recover the performance degeneration.

• We propose a latency-aware feature enhance mod-
ule, SepFPN, and CCPM. These enhance modules im-
prove the detection performance on all (large, medium,
small) face scales, with much faster speed compared to
previous enhance modules.

2. Related Works
Face Detectors Recent face detectors [1, 4, 7, 9, 14, 20,
22, 28–33, 37, 43, 48, 50, 51, 58, 60, 61] achieved impres-
sive performance enhancement. These face detectors inherit
the architectural improvement of the general object detec-
tors such as SSD [27] and RetinaNet [25] or two-stage de-
tectors such as Faster R-CNN [35]. The improvement in
face detection enabled to detect faces with various densities
and scales. To detect dense and small-scale faces, current
state-of-the-art group of detectors [7, 9, 20–22, 29, 43, 61]
mostly employ large-scaled classification networks with
custom-designed upsampling blocks. Besides the ResNet
families [13], prototypical choice, various attempts includ-
ing those from architecture search [50] have been applied.
PyramidBox series [22, 43] and DSFD [21] suggested own
upsampling blocks to improve the expressiveness of the fea-
tures for dealing with finer faces. RetinaFace [7], currently
the dominant one, infers five-point keypoint landmarks of
the faces: eyes, nose, mouth, in addition to the detection
box, similar to MTCNN [52]. However, the large memory
size requirements of these face detectors critically hinder
their applicability on edge devices. Here, we target on re-
ducing the weight parameters of the backbone network to
increase the usability of the face detectors.

Lightweight Face Detectors To run the above-mentioned
face detectors on mobile or CPU devices, some of the
detectors provide their lighter version, mostly substitut-
ing their backbones to lighter classification networks uti-
lizing depthwise convolution [17]. After advent of the pi-
oneering works from MobileNetV1 [17] and V2 [36] uti-
lizing depthwise separable convolution and inverted bot-
tleneck block, more refinements [11, 15, 39, 40, 45] on
the architectures have brought the performance enhance-
ments. These architectures show the competitive Ima-
geNet [6] classification accuracy to larger classification
models and also for the transferred tasks like object de-
tection [27, 35] and segmentation [5]. Following the im-
provement of the lightweight backbone networks, Reti-
naFace [7], SCRFD [9], and YuNet [46] use channel-
width pruned version of MobileNet [17]. BlazeFace [1]
and MCUNetV2 [23] proposed new variants of MobileNet
targeting on mobile GPU and CPU environment, and
EXTD [48] recursively uses the inverted bottleneck block
of the MobileNet for further slimming the network size.
Besides the overall tendency of using depthwise separable
convolution-based backbones, KPNet [37] proposes its own
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Figure 2. Entire architecture of EResFD. The proposed architecture consists of EResNet with 31 weighted backbone layers, Separated
Feature Pyramid Network (SepFPN), and Cascade Context Prediction Module (CCPM). ResBlock denotes the basic residual block, which
was proposed in [13]. The first ResBlock of each stage has stride of 2, and every ResBlock has the same number of output channels as 16
in the case of EResFD-1x. For the classification and regression head, a single 1x1 convolution layer is used.

backbone network consisting of standard convolutional net-
work, but its size is still large for edge devices, about 1
million parameters, and focuses on sparse and large scaled
faces. In this paper, we rediscover the efficiency of stan-
dard convolution layers, which can cover faces with vari-
ous scales and densities, under extremely lightweight model
size and minimal inference time.

3. EResFD
As seen in Figure 1, ResNet with standard convolution

achieves both faster inference time and higher detection
performance compared to the widely used backbone, Mo-
bileNets [15, 17, 36] which heavily uses depthwise separa-
ble convolution layers. From this observation, we revisit the
ResNet architecture. Figure 2 illustrates the proposed face
detection architecture, named as efficient-ResNet (ERes-
Net) based Face Detector, EResFD. It consists of two main
parts; modified ResNet backbone architecture and newly

proposed feature enhancement modules. We modify sev-
eral parts of ResNet to reduce the latency while preserv-
ing the detection performance based on empirical analysis
on the network, and we also propose both the new feature
pyramid module and context prediction module, which are
called Separated Feature Pyramid Network (SepFPN) and
Cascade Context Prediction Module (CCPM), respectively.
Both modules improve the detection performance, and also
show comparable or even faster latency compared to previ-
ous state-of-the-art CPU detectors [18, 57].

3.1. Rethinking ResNet Architecture

3.1.1 Convolutional Layer Analysis

Depthwise separable convolution is introduced to reduce
the multiplication and accumulation cost of the convolu-
tion, which occupy most of the computation time during
the inference. Table 1 shows the comparison of computa-
tional cost between the standard and depthwise separable
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(a) standard convolution vs depthwise separable convolution (b) residual block (ResNet) vs inverted bottleneck block (MobileNetV2)

Figure 3. Illustration of latency comparison with varying channel size: (a) standard and depthwise separable convolution, (b) residual block
(ResNet) and inverted bottleneck block (MobileNetV2).

Table 1. Comparison of computational cost between standard and
depthwise separable convolution. We calculate the FLOPs count
for three kinds of setting, and each value indicates the multiply-
add count for single layer.

Type Standard Depthwise Separable

Operation 3x3 Conv Depthwise Conv Pointwise Conv
FLOPs

(H,W=16, C=16) 1.18M 0.07M 0.13M

FLOPs
(H,W=16, C=32) 4.71M 0.15M 0.52M

FLOPs
(H,W=16, C=64) 18.87M 0.29M 2.10M

convolution for each stage. Depthwise separable convolu-
tion has much smaller FLOPs, and hence it can significantly
reduce the computational cost. However, previous work [2]
claimed that FLOPs is not always matched with actual la-
tency. Latency can be bounded by memory access and hard-
ware accelerator, i.e., CPU or GPU, so the target hardware
characteristic should be considered for the network design.

To check the relationship between FLOPs and latency,
we investigate the behavior of both standard convolution
and depthwise separable convolution on CPU. We measured
the latency of both convolutional layers on CPU, and Fig-
ure 3a shows the comparison result. Considering faster in-
ference with small-sized input image (e.g., less than 320x),
we tested with input sizes 8×8, 16×16, and 32×32. As
input size increases, the latency of standard convolution
is steeply increasing, but depthwise separable convolution
shows a small amount of latency growth. However, standard
convolution achieves smaller latency than depthwise sepa-
rable convolution on the extremely lightweight condition.
For all the input sizes, standard convolution is faster than

depthwise separable convolution when its channel dimen-
sion is equal to or smaller than 16 as shown in Figure 3a.
Since ResNet and MobileNets each consist of standard con-
volution and depthwise separable convolution, respectively,
we can conclude that ResNet has a chance to become faster
than MobilNets when we extremely reduce the channel size.

Furthermore, we also analyze the block-level behav-
ior of each convolutional layer. We use residual block
and inverted residual block, which consist of standard and
depthwise separable convolution, respectively. The resid-
ual block consists of two standard 3×3 convolution. Mo-
bileNetV2 has an inverted residual block, which includes
one depthwise convolution and two pointwise convolution.
The inverted residual block commonly expands the number
of channels for the depthwise convolution, which is called
the expansion ratio. In MobileNetV2, the expansion ratio
is set to 6 for most inverted residual blocks [36], which is
reported to preserve the classification ability of the block
compared to standard convolution counterpart [10]. Here,
we use the equivalent expansion ratio for the latency com-
parison. Figure 3b shows the block-level latency, and we
found that residual block is much faster than the inverted
residual block in most cases. The residual block has 9.43M
FLOPs and the inverted residual block has 7.18M FLOPs
when the input size is 16×16 and the number of channels
is 32. Even though residual block has more multiply-add
operations, its latency is faster than inverted residual block.

The latency trend of each layer and block shows that
standard convolution has a chance to surpass the depthwise
separable convolution in terms of the latency. This trend is
also the same on network-level analysis as we mentioned
in Section 1. Therefore, we propose an efficient backbone
originating from the ResNet.
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Table 2. Latency breakdown of ResNet18-0.25x model. Stem de-
notes 7x7 convolution layer followed by maxpool layer, which re-
duces spatial size by 4 times. For Stage 1 ∼ 4, strides of output
feature map are set to 4 ∼ 32.

Component Latency (ms) Ratio (%)
Stem 24.1 44

Stage 1 10.5 19
Stage 2 7.5 13
Stage 3 6.6 12
Stage 4 6.5 12
Total 55.2 100

Table 3. Latency of stem layers on ResNet18-0.25x model. Ratio
denotes the portion of stem latency compared to the overall net-
work latency.

Stem ResNet EResNet
Stem FLOPs 180.6 M 11.5 M

Stem Latency (Ratio) 24.1ms (44%) 4.5ms (13%)

3.1.2 Stem Layer Modification

We further thoroughly analyzed the ResNet architecture and
observed that the stem layer occupies a large amount of
entire latency. Table 2 shows the latency breakdown of
ResNet18 with width multiplier 0.25, and it shows that al-
most half of the total latency is originated from stem lay-
ers. The backbone network is highly lightened by apply-
ing the small width multiplier, so the proportion of the stem
layer becomes larger. Moreover, ResNet stem layer consists
of 7×7 convolution with stride of 2, so it requires a large
amount of computation compared to others. The number
of computations (FLOPs) is proportional to the square of
kernel size (K2) and reciprocal-square of stride (1/S2). If
kernel size is reduced to 5, its FLOPs becomes about 50%
of 7×7 convolution, and FLOPs further decrease to about
13% when its stride of 4 is applied simultaneously.

To reduce the latency of stem layers, we first change
stride to 4 for the convolutional layer, which is already
adopted in the previous work [57].We also reduce the kernel
size from 7 to 5, but it can hurt the detection performance
because it is directly related to the receptive field. To allevi-
ate this problem, we introduce two additional convolutional
layers right after 5×5 convolution. Owing to those convo-
lutional layers, the receptive field size becomes larger than
the original stem layer, but its computation complexity is
still much lower than the original. Table 3 shows compari-
son results on the stem layer. By adopting a smaller kernel
size and bigger stride, EResNet stem layer has much smaller
FLOPs, and also achieves much shorter latency compared to
the original ResNet stem layer.

Table 4. Latency breakdown of ResNet18 models where channels
are doubled or preserved for stage 2,3,4. Width multiplier is set
to be 0.25 for ResNet-preserved model to keep number of output
channels as 16 for all the stages.

Model ResNet ResNet-Preserved

Stage 2
Latency (ms) 7.5 4.2
FLOPs (M) 157.3 45.5

Stage 3
Latency (ms) 6.6 1.6
FLOPs (M) 157.3 11.4

Stage 4
Latency (ms) 6.5 1.1
FLOPs (M) 157.3 2.8

3.1.3 Architecture Reconfiguration for Face

In modern backbone architecture, The number of channels
is continuously increasing from the bottom to the top layer
[13,38,39]. In ResNet, for example, the channel dimension
is doubled when its spatial dimension is decreased (stride
of 2). This designing trend is based on that high-level fea-
tures are highly related to the specific classes [49]. When
the number of object classes increases, high-level feature
dimension has to be enlarged accordingly. However, there
is only one object class in the face detection task, so we sup-
pose that the channel dimension may be reduced compared
with the object detection task.

To accelerate face detection speed, EResNet backbone
is designed by reducing the number of channels. From the
assumption, we propose the channel dimension preserving
strategy, which means that we do not double the channel
dimension for every stage. Table 4 shows the number of
FLOPs and latency when our channel-preserving strategy
is applied, and it shows that our method significantly re-
duced the latency and FLOPs of each stage. We note that
the number of FLOPs is also proportional to input and out-
put channel dimension, and hence the amount of the reduc-
tion is huge. The latency reduction amount is not as large
as FLOPs reduction, but it is still remarkable. Based on
the intuition (Figure 3a) that standard convolution is faster
than depthwise separable convolution under the channel di-
mension less than 16, we set the channel dimension of our
EResNet-1x architecture to 16.

The network capacity also decreases due to the channel
dimension reduction, so we adjust the stage configuration
to compensate for the performance degeneration. Figure 2
shows the detailed stage configurations. We insert one more
block for stages 2∼4 to improve small face detection per-
formance and add two extra stages (stages 5 and 6) for the
large face. The number of residual blocks increases from 8
to 14, so additional residual blocks can increase the infer-
ence time. However, the channel-preserving strategy signif-
icantly reduces FLOPs, and the computational cost of each
block is also much smaller than the original residual block.
For this reason, EResNet architecture is still much faster
than the vanilla ResNet architecture as shown in Figure 1.
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Figure 4. Architecture of SepFPN. P1∼P6 denotes the intermedi-
ate features from low to high-level layers. The high-level features
and low-level features are aggregated separately.

3.2. Feature Enhance Modules

3.2.1 SepFPN

To improve the detection performance for small objects,
feature pyramid network (FPN) [24] is widely adopted [7,
43, 57]. FPN propagates the context of high-level features
from deep layers into low-level features from shallow layers
(top-down), enriching the low-level features to better detect
the small objects. However, previous work [43] claimed that
aggregating high-level features onto low-level features can
hurt detection performance for small faces. This is because
the large receptive field of the high-level features might con-
vey irrelevant global contexts to the low-level features, ob-
scuring their local contexts and thereby impeding their de-
tection ability of small local faces.

To resolve this, we propose a new FPN module, sepa-
rated feature pyramid network (SepFPN, Figure 4). From
the above-mentioned observation [43], we assume that a
significant disparity of receptive field among the aggrega-
tion features can lead to performance degradation. To ad-
dress this, we separately organize the aggregation features
in a hierarchical manner. Specifically, we ensure that high-
level features are aggregated solely with other high-level
features, while low-level features are exclusively combined
with other low-level ones. Each of these two separated top-
bottom paths shares similar contexts with similar sizes of
receptive field within its aggregation group, consistently en-
hancing the detection ability across all the scales of faces.

For the aggregation details, we follow BiFPN [42] to
aggregate features in a learnable manner with a simple
element-wise weighted summation, where the latency over-
head is negligible. We also introduce a lateral connection to
avoid dilution of each original feature, as in BiFPN. Mean-
while, although BiFPN and several heavyweight object de-
tectors [26,42] proposed to append an additional bottom-up
aggregation path (i.e., from low to high-level features), we
do not employ this scheme due to its large latency overhead.

Figure 5. Architecture of CCPM in case of EResFD-1x. We only
visualize CCPM for the feature map C1 in Figure 2 for simplicity.

3.2.2 CCPM

To further supplement the feature information, we also pro-
pose cascade context prediction module (CCPM, Figure 5)
with a latency-aware module design. While the context
prediction module [22, 30, 55] was originally proposed to
enlarge the receptive field, our cascade design of CCPM
aims for the same objective but promotes faster latency.
Specifically, our cascade structure can effectively enrich the
large size of receptive field by reusing the previously con-
volved features, while ensuring faster speed than the pre-
vious heavyweight enhance modules using a large number
of convolution layers [30], densely-connected convolution
layers [22] and convolution layers with large asymmetric
kernel [55]. Owing to these advantages, CCPM helps to
construct a highly efficient face detector that achieves high
detection performance with low latency.

4. Experiment
In this section, we evaluate our proposed EResFD by

analyzing the effectiveness of each component of EResFD
and by comparing with the state-of-the-art (SOTA) face de-
tectors. For quantitatively measuring the accuracy of de-
tection, we used WIDER FACE [47] dataset. For training
on WIDER FACE, color distortion, zoom-in and out aug-
mentation, max-out background label, and multi-task loss
are used, following S3FD [58]. For evaluation, we em-
ployed flip and multi-scale testing [58], where all these pre-
dictions are merged by Box voting [8] with intersection-
over-union (IoU) threshold at 0.3. In the case of using Reti-
naFace framework [7]1 , we used single-scale testing where
the original image size is maintained. For measuring la-
tency, we used Intel Xeon CPU (E5-2660v3@2.60 GHz)
with VGA input resolution (480×640).

1We obtained source code from https : / / github . com /
biubug6/Pytorch_Retinaface

993



(a) latency vs accuracy (b) parameter vs accuracy

Figure 6. Performance comparison of various backbone networks
in terms of CPU latency and number of parameters. We applied
width multipliers 1x, 1.5x, 2x, 3x, 4x, 6x, 8x for EResNet. For the
other backbones, we applied width multipliers 0.25x, 0.5x, 0.75x.

Table 5. Performance comparison of various FPN modules on
WIDER FACE.

Model Latency (ms)
mAP (%)

Easy Medium Hard Overall
EResNet 20.9 85.09 82.78 61.20 76.36

+ FPN [24] 24.0 85.30 84.25 75.45 81.67
+ LFPN [43] 23.8 85.24 84.21 76.58 82.01
+ PANet [26] 35.5 87.96 86.82 77.95 84.24
+ BiFPN [42] 35.6 87.16 85.95 77.56 83.56

+ SepFPN (Ours) 27.0 87.68 86.30 77.68 83.89

4.1. Component Study

Backbone Network. Figure 6 shows the comparison re-
sult with widely used lightweight backbone; ResNet18,
MobileNetV1, V2, and V3. The experimental results show
that EResNet achieves superior inference latency given the
similar mAP condition and also has higher mAP given the
similar latency condition, as shown in Figure 6a. Our pro-
posed stem layer and channel dimension preserving strat-
egy are shown to be very helpful for latency reduction,
while maintaining the powerful face detection performance.
In addition, EResNet also outperforms other comparison
methods in terms of the number of parameters. In Figure 6b,
EResNet shows the highest mAP with a much smaller num-
ber of parameters. To further prove the general effective-
ness of EResNet backbone, we additionally compared it
with various backbone architectures on RetinaFace frame-
work in Figure 1. For all the backbones, we only employed
3 detection heads from P2 ∼ P4 in Figure 2, following [7].
The results further corroborate that our EResNet architec-
ture has the best latency-accuracy trade-off among the vari-
ous backbones. From those experiments, we found that the
proposed methods effectively reduce both latency and pa-
rameters without causing mAP degeneration.

SepFPN. We measured the detection performance and la-
tency of several other FPN modules on the EResNet back-
bone, in Table 5. Compared to the lightweight FPN mod-

Table 6. Ablation study of SepFPN with various separation po-
sition. In case of separation position is 5 (Figure 4), high level
features are only aggregated from P6 to P5 and the rest low-level
features are aggregated from P5 to P1.

Separation Position Latency (ms)
mAP (%)

Easy Medium Hard Overall
P3 26.9 85.95 84.39 75.31 81.88
P4 26.7 87.16 85.70 77.12 83.33
P5 27.0 87.68 86.30 77.68 83.89

Table 7. Performance comparison of various feature enhance mod-
ules before detection head on WIDER FACE. For fair compar-
isons, we fix baseline backbone network as EResNet-1x equipped
with LFPN [43].

Model Latency (ms)
mAP (%)

Easy Medium Hard Overall
Baseline 23.8 85.24 84.21 76.58 82.01

+ SSH [30] 35.5 87.49 86.34 79.28 84.37
+ CPM [43] 42.4 87.47 86.74 80.00 84.74
+ FEM [20] 41.5 86.90 86.15 79.22 84.09
+ DCM [22] 48.1 87.48 86.51 79.85 84.61

+ CCPM (ours) 33.8 87.25 86.38 79.90 84.51

ules such as FPN and LFPN, our SepFPN achieves much
more detection accuracy gain with a small increase of la-
tency. Meanwhile, compared to the heavyweight FPN mod-
ules (i.e., PANet, BiFPN) with bottom-up aggregation path,
our SepFPN achieves comparable or even higher detection
performance, while exhibiting 24% shortened latency. This
experiment shows that the bottom-up path would not be an
essential block for efficient face detection. We further em-
pirically studied on the separation position of SepFPN, and
Table 6 shows the result. The latency is not significantly
affected by the separation position, but the accuracy is very
sensitive according to the separation position. We observed
that P5 achieves the best mAP for all different kinds of face
sizes, and hence we applied P5 for all other experiments.

CCPM. Table 7 shows a performance comparison result
of various feature enhance modules. The feature enhance
module makes large performance gain, but several previous
works [20,22,43] show similar detection performance. Our
CCPM module mainly focuses on latency reduction, and
experimental result shows that CCPM achieves the fastest
latency, satisfying the purpose. In addition, CCPM also
achieves higher overall mAP than SSH, which is the fastest
among all the previous methods mentioned in the Table.

4.2. Comparison with SOTA Detectors

We compare our proposed method with the SOTA real-
time CPU detectors on WIDER FACE validation dataset.
Table 8 (upper part) shows the comparison result. EResNet-
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Table 8. Comparison with previous works on WIDER FACE validation set. All models are evaluated with multi-scale testing, following
[7, 58]. For measuring FLOPs and Latency, VGA resolution (480×640) is used. For MTCNN, we used input sizes designated by [53].

Method Backbone Feature Enhance Module # Params # FLOPs Latency
mAP (%)

Easy Medium Hard Overall
MTCNN [53] P-,R-,O-Net [53] - 0.12M 14M 4.0ms 85.10 82.00 60.70 75.93

FaceBoxes [57] FaceBoxes [57] FPN + DCH 0.66M 156M 35.7ms 88.50 86.20 77.30 84.00
RetinaFace [7] MobileNetV1-0.25x [17] FPN + SSH 0.42M 754M 58.5ms 88.67 87.09 80.99 85.58

EResFD EResNet-1x - 0.07M 228M 20.9ms 85.09 82.78 61.20 76.36
EResFD EResNet-1x SepFPN 0.08M 250M 27.0ms 87.68 86.30 77.68 83.89
EResFD EResNet-1x SepFPN + CCPM 0.09M 298M 37.7ms 89.02 87.96 80.41 85.80

Figure 7. Performance comparison of EResFD with other SOTA
CPU target detectors [7, 18, 53, 54, 57] and GPU target detec-
tors [20,30,43,58]. For RetinaFace [7], MobileNetV1-0.25x back-
bone was used.

1x indicates EResNet backbone architecture shown in Fig-
ure 2, with width multiplier 1. In the case of RetinaFace [7]
backbone, width multiplier 0.25 is applied. MTCNN shows
the smallest FLOPs and Latency, but it has large mAP
degradation for medium and hard case. EResFD has the
smallest number of parameters and also achieves the high-
est overall mAP. The latency of EResFD is similar to that
of FaceBoxes [56], but its detection performance is much
higher. Moreover, the proposed method achieves similar or
slightly higher mAP compared with RetinaFace [7], but its
latency is about 64% of that of RetinaFace.

Table 8 (bottom part) also shows the ablation study for
the proposed modules; SepFPN and CCPM. SepFPN im-
proves the overall mAP by about 7.5%, but its latency only
increases by 6 ms. Moreover, we also achieve 1.9% overall
mAP improvement when CCPM is further applied. We ob-
served that proposed modules can make a large performance
improvement even when jointly applied.

In addition, we also compare the latency and detection
performance with other CPU and GPU target face detectors
in Figure 7. As we already mentioned above, our method
achieves the highest mAP among all the CPU target face
detectors. In addition, we found that it also shows com-
parable detection performance compared with GPU target
detectors. EResFD shows similar detection accuracy with
S3FD and SSH, but it is about 19x faster.

Furthermore, we compare the proposed method with

(a) Detection (b) Landmark detection

Figure 8. Performance of face detection on WIDER FACE and
landmark detection on AFLW [19] dataset. Based on RetinaFace
framework where face bounding boxes with facial landmarks can
be jointly detected, we only replaced the backbone network from
MobileNetV1 to EResNet, while FPN and SSH are replaced by
our proposed SepFPN and CCPM, respectively for EResFD.

RetinaFace, one standard lightweight face detector in this
field. Since RetinaFace detects face and facial landmarks at
the same time, we covered landmark detection as well. We
measured the face detection performance on WIDER FACE
and landmark detection performance on AFLW. Figure 8
shows comparison on face and landmark detection. Our
EResFD achieves higher mAP for face detection and lower
NME for landmark detection, while reducing latency.

5. Conclusion

This paper rediscovers the efficiency of standard
convolution-based architecture for lightweight face detec-
tion. The extensive experimental results showed that
the standard convolutional block achieves superior perfor-
mance compared to depthwise separable convolution, con-
trary to the common trend in this field. Based on the obser-
vation, we propose an efficient architecture EResNet, which
includes a modified stem layer and channel dimension pre-
serving strategy. Also, we propose SepFPN and CCPM for
the feature enhancement, which boosts the detection perfor-
mance without sacrificing latency and parameter size. Sum-
ming up the observations and architecture suggestions for
face detection, we establish a new state-of-the-art real-time
CPU face detector, EResFD, achieving the SOTA face de-
tection performance among the lightweight detectors.
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