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Abstract

Room layout estimation predicts layouts from a single

panorama. It requires datasets with large-scale and di-

verse room shapes to well train the models. However, there

are significant imbalances in real-world datasets includ-

ing the dimensions of layout complexity, camera locations,

and variation in scene appearance. These issues consid-

erably influence the model training performance. In this

work, we propose imBalance-Aware Room Layout Estima-

tion (iBARLE) framework to address these issues. iBARLE

consists of: (1) Appearance Variation Generation (AVG)

module, which promotes visual appearance domain gener-

alization, (2) Complex Structure Mix-up (CSMix) module,

which enhances generalizability w.r.t. room structure, and

(3) a gradient-based layout objective function, which al-

lows more effective accounting for occlusions in complex

layouts. All modules are jointly trained and help each other

to achieve the best performance. Experiments and ablation

studies based on ZInD [6] dataset illustrate that iBARLE

has state-of-the-art performance compared with other lay-

out estimation baselines.

1. Introduction

With the recent advancements in computer vision re-

lated applications (e.g., AR/VR, virtual touring, and navi-

gation), room layout estimation is receiving a lot of atten-

tion from researchers. Specifically, panorama-based layout

estimation has been a major area of focus due to the in-

creased 360◦ field of view [53]. A great deal of progress

was made on monocular layout estimation based on a single

panorama [41, 42, 52]. Some directly use the equirectangu-

lar panorama [33] while others combine the equirectangular

panorama with its perspective top-down view [45]. A re-

cent trend of papers formulate the problem as a 1-dimension

sequence that represents depth on the horizon line of the

panorama and calculates the room height by the consis-

tency between the horizon-depth of ceiling and floor bound-
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Figure 1. Imbalanced and diverse sample distributions such as

various room corner numbers, appearances, Manhattan styles, and

capture locations which downgrade estimation performances.

aries [44]. Some methods directly predict the room height

to make better geometry awareness of the room layout in

the vertical direction [19].

However, these techniques are less effective for complex

room shapes (e.g., self-occlusion and non-Manhattan) [45].

As a result, the majority of these approaches conform to

the Manhattan World or Atlanta World assumption, as well

as their corresponding post-processing strategies, resulting

in promising performances for simple rooms, while failing

to achieve the same level of performance for complex lay-

outs. For instance, ZInD [6] is a very large-scale indoor

dataset. The performance of most single-panorama layout

estimation solutions degrades in complex room shape sce-

narios. On top of that, there are implicit data imbalance

challenges present in real-world datasets such as different

camera poses, illumination changes, and texture variations

(see Figure 1). As shown in Figure 4, simple rooms with

only four corners take the majority of the dataset while

complex rooms with nine corners make up only 2% of the

dataset. Consequently, models trained on such datasets will

have a tendency to get biased towards the majority.

In this work, we address the data imbalance and appear-

ance variation issues associated with room layout estima-

tion. We specifically design an Appearance Variation Gen-

eralization (AVG) module to overcome appearance varia-

tions that are present in real-world datasets (e.g., pose, tex-
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ture, illumination), a Complex Structure Mix-up (CSMix)

module to handle the long tail imbalanced distribution of

structural complexity of the training and test data, and a

layout gradient-based cost function to better deal with oc-

clusions in complex indoor spaces. The contributions of

our work are listed below:

• To the best of our knowledge, our work is the first to

tackle the data imbalance issue in layout estimation

systematically and based on different sources of bias

in the indoor dataset.
• Our framework, iBARLE, introduces architectural and

training novelties through our proposed Appearance

Variation Generalization (AVG) module, Complex

Structure Mix-up (CSMix) module, and our layout

gradient-based cost function.
• We show iBARLE consistently achieves the state-

of-the-art performance for both simple/conventional

and complex real-world indoor layout estimation tasks

through experiments and ablation studies.

2. Related Work

Indoor Panoramic Layout Estimation. Most panorama-

based indoor layout estimation efforts use simple indoor

room shapes with Manhattan World [5] assumptions and

Atlanta World [37] assumptions and corresponding pose-

processing operations. Specifically, convolutional neural

networks (CNNs) take panorama images as input to extract

visual features which will be used to estimate layout. With

LayoutNet, layout estimation of a cuboid room with Man-

hattan constraints is reconstructed based on images aligned

with vanishing points and detected layout elements such as

corners and boundaries, and the model designed for cuboid

rooms is further extended to predicting Manhattan layouts

in general [55]. In contrast, Dula-Net projects the panorama

images into two different views, equirectangular and per-

spective, to predict the floor and ceiling probability maps

and two-dimensional floor plans [52].

A new dataset containing panoramas of Manhattan-

world room layouts with different numbers of corners is

introduced as Realtor360 to learn more complex room lay-

outs [52]. Moreover, HorizonNet outperforms other strate-

gies by representing a 2D room layout as three 1-D vec-

tors at each image column, and the 1-D sequence vectors

encode the positions of floor-wall and ceiling-wall, and

the existence of wall-wall boundaries [41]. Although the

two improved frameworks LayoutNet v2 and Dula-Net v2

achieve better performance on cuboid datasets, HorizonNet

has been demonstrated to be more effective on the new Mat-

terportLayout dataset for general Manhattan layout estima-

tion tasks [56]. AtlantaNet breaks through the Manhattan

World limitations and projects the original gravity-aligned

panorama images on two horizontal planes to reconstruct

the Atlanta World 3D bounding surfaces of the rooms [33].

HoHoNet is the first work exploring compact latent hori-

zontal features learning for efficient and accurate layout re-

construction and depth estimation equipped with Efficient

Height Compression (EHC) and multi-head self-attention

(MSA) modules [42]. PSMNet is a pioneering end-to-

end joint layout-pose deep architecture for large and com-

plex room layout estimation from a pair of panoramas [45].

LED2-Net goes beyond conventional 3D layout estimation

by predicting depth on the horizon line of the panorama,

and a differentiating depth rendering procedure is proposed

to maximize the 3D geometric information without need-

ing to provide the ground-truth depth [44]. LGT-Net further

extends the LED2-Net with an SWG-Transformer module,

which consists of shifted window blocks and global blocks,

to predict both horizon depth and room height with a pla-

nar geometry aware loss to supervise the estimation of the

planeness of walls and turning of corners [19].

Imbalanced Data Training. Due to the widespread ap-

plication of artificial intelligence systems in our daily lives,

the issue of data imbalance has gained increasing attention

in recent years [23, 30, 50]. Research about imbalance AI

seeks to ensure that AI systems make decisions and predic-

tions without discriminating against certain groups of data

when making crucial and life-changing decisions. The al-

gorithms that target bias generally fall into three categories:

(1) Pre-processing methods attempt to remove the underly-

ing discrimination from the data [1, 7]. (2) In-processing

techniques seek to modify the learning and training strate-

gies, either by incorporating changes into the objective

function or imposing a constraint, to eliminate discrimi-

nation during model training [1, 4]. (3) Post-processing is

performed after training stage if the algorithm treats the AI

model as a black box without modifying the training data or

learning strategies. Specifically, a hold-out set that was not

directly involved in the training process is used during the

post-processing phase to reassign the initial labels assigned

by the black-box model [1, 4].

Domain Generalization. As part of the quest to de-

velop models that can generalize to unknown distribu-

tions, Domain Generalization (DG), which refers to out-of-

distribution generalization, has attracted increasing atten-

tion in recent years [46]. A majority of existing domain gen-

eralization methods can be classified into three types: (1)

Data manipulation focuses on manipulating the inputs in or-

der to assist in the learning of general representations. Data

augmentation [15, 39] and data generalization [27, 34, 35]

are two types of popular techniques in this regard. Addition-

ally, mix-up on the original image-level [47, 48] or feature-

level [21,22,51,54] is a popular and effective technique. (2)

Representation learning [3] consists of two representative

techniques: a). Learning domain-invariant representations
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Figure 2. Framework of iBARLE. AVG enhances the generalization capability by enhancing invariance to appearance changes. CSMix

improves the prediction of complex room shapes by generating more diverse layouts that improve the balance of the overall distributions.

via kernel functions [2, 13], adversarial learning [11, 12],

feature alignment [20, 26, 31], etc.; b). Feature disentan-

glement is the process of distancing features into domain-

shared and/or domain-specific elements to enhance gener-

alization [8, 24, 32]. (3) Learning strategies that promote

generalization employ general strategies such as ensemble

learning [9, 29, 49], meta-learning [10, 36, 40], gradient op-

erations [17, 38], and self-supervised learning [18, 25, 28].

To the best of our knowledge, we are the first to apply the

domain generalization techniques to address the appearance

variation issues associated with room layout estimation.

3. Framework Overview

The iBARLE framework, illustrated in Figure 2, has four

core modules: visual feature extractor G(·), transformer-

based sequential layout estimation module F (·), Appear-

ance Variation Generalization module (AVG), and Complex

Structure Mix-up module (CSMix). The room layout is esti-

mated by predicting the horizon depths and heights of mul-

tiple points sampled from the floor boundary of the polygon

of the panorama image [19, 44]. During the training phase,

the AVG and CSMix modules are used to compensate for

the imbalance in the data; during the test phase, only the

feature extraction and the sequential layout estimation mod-

ule are called to predict the room layout.

4. Proposed Algorithm

In this section, we first go over the overall framework

to predict the room layout based on a single panorama in-

put. We then introduce the two modules, Appearance Vari-

ation Generalization (AVG) and Complex Structure Mix-up

(CSMix). Finally, the gradient-based Corners and Occlu-

sions objective is presented. It improves the efficiency of

the model in detecting visible wall-wall corners and occlu-

sion boundaries in complex spatial arrangements.

4.1. Framework

Reconstructing the 3D indoor layout by predicting the

horizon depth and room height is an effective strategy that

is widely adopted by recent methods [19, 44]. Specifi-

cally, N points P = {pi}
N
i=1 with equal longitude inter-

val are sampled from the floor-boundary of the polygon of

the panorama image, where the longitudes of the sampled

points are {θi = 2π( i
N − 0.5)}Ni=1. Then, the coordinate of

the point pi and the corresponding horizon-depth di can be

obtained as:

pi = (xi, yi, zi),

di =
√

x2
i + y2i .

(1)

The sampled points P = {pi}
N
i=1 can be converted into

horizon-depth sequence {di}
N
i=1. In addition, the height h

of each room is adopted to further supervise the model pre-

diction on the vertical direction.

As illustrated in Figure 2, the visual feature sequence

extracted by the feature extractor G(·) is passed to a se-

quential neural networks F (·) to predict the horizon-depth

d̂ = {d̂i}
N
i=1 and room height sequence ĥ = {ĥi}

N
i=1,

respectively, through two separate branches in the output

layer. A limitation of prior work is the assumption that the

room height is always the same in the indoor space. Dif-

ferently, we predict ĥi for each sampled point pi ∈ P with

ground-truth height denoted as hi ∈ h, where h = {hi}
N
i=1,

which fits the design of our proposed structure variation

generalization module (introduced in Section 4.3). Our

sequential neural networks is a SWG-Transformer mod-

ule following [19]. The predicted horizon-depth and room

height are supervised by ground-truth formulated as:

Ld =
1

N

N
∑

i=1

|di − d̂i|,

Lh =
1

N

N
∑

i=1

|hi − ĥi|,

(2)

where d̂i and di are the predicted and ground-truth horizon-

depth at point pi, respectively, and ĥi and hi are the room

height prediction and ground-truth, respectively.
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Figure 3. Corners and occlusions awareness constraint.

4.2. Appearance Variation Generalization (AVG)

Capturing panoramas in different situations (e.g., illumi-

nations, wall/carpet colors, cameras, and textures) would

significantly change the visual appearances of the panorama

images. Inspired by domain generalization problems and

techniques, we propose AVG to disentangle appearance

variations of panoramas during the training. This encour-

ages the model to focus only on the important indoor struc-

tural information for the downstream task and ignore the

rest. Subsequently, the model provides a better generaliza-

tion capacity to novel appearances.

Specifically, the visual features Z extracted from G(·)
are input to an appearance encoder Ev(·) which projects

the visual features into a Normal distribution u ∼ N (0, I),
then a decoder Dv(·) project the latent embeddings u into

the original visual features space as Ẑ by minimizing a reg-

ularized norm-based loss:

Lvar = ∥µ(Z)− µ(Ẑ)∥2 + ∥σ(Z)− σ(Ẑ)∥2. (3)

To further enhance the generalizability of the model to

novel appearance, we randomly sample latent embeddings

u∗ ∼ N (0, I) and project them into the visual features

space as Z∗, which is a novel appearance variation never

observed in the training data. Then, inspired by style mixup

[54] and feature stylization [28], the style information of

the randomly sampled feature Z∗ is transferred to the real

content sample Z via AdaIN [16] strategy as:

Z̃ = σ(Z∗)
(Z− µ(Z)

σ(Z)

)

+ µ(Z∗), (4)

where the synthetic sample Z̃ is then input to the following

sequential module to predict the horizon depth and room

height and optimize the model as Eq. (2) since they share the

same content and spatial structure information and layout.

4.3. Complex Structure Mix­up (CSMix)

Another main issue that exists in prior works is overfit-

ting to simple room shapes (e.g., Manhattan world or At-

lanta world assumption), and cannot handle minority and

complex room shapes. Thus, in order to enhance the train-

ing data space complexity, some novel and complex sam-

ples are synthesized via cross-room, column-based mix-

up strategy. Specifically, for two randomly paired samples

4 5 6 7
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Figure 4. Statistics of ZInD dataset split by different attributes.

{Zi,Zj}, we randomly exchange columns across these two

samples, which will result in two new samples with more

complex structures. It is noteworthy that the synthesized

samples contain more complex layout structures and also

mixed appearance variations due to the cross-room mix-up.

However, to avoid the random mix-up producing unreason-

able noisy samples harming the optimization, a sequence of

consecutive columns with width 1 <= w <= N is ran-

domly selected from the two samples and mix-up, where

N is the width, i.e., the number of columns, of the whole

visual feature maps:

Z̄i = Zi[: ci]⊕ Zj [cj : cj + w]⊕ Zi[ci + w :],

Z̄j = Zj [: cj ]⊕ Zj [ci : ci + w]⊕ Zj [cj + w :],
(5)

where ⊕(·, ·) is concatenation operation, and 1 <= ci <=
N − w and 1 <= cj <= N − w are randomly sampled

points or columns start indices for Zi and Zj , respectively.

Similarly, the synthesized samples Z̄i/j are also input to the

following layout estimation to improve the generalizability

of the whole framework. It is noteworthy that since the mix-

up synthesis is applied across rooms, so the room heights of

the synthesized samples are also mixed up, e.g., h̄i = hi[:
ci] ⊕ hj [cj : cj + w] ⊕ hi[ci + w :]. Then the model is

optimized through learning objectives as Eq. (2).

4.4. Corners and Occlusions Awareness Constraint

As shown in Figure 3, each wall is a plane but the

positions on the same wall could have different hori-

zon depths. Thus, to supervise the planar of the walls,

the normals at different positions of the same wall are

constrained consistently [19]. Since the wall and floors

are preassumed perpendicular to the floor and the nor-

mals. Thus we first convert the ground-truth and pre-

dicted horizon depth at each position back into the

3D point pi = (di sin(θi), h
f , di cos(θi)) and p̂i =

(d̂i sin(θi), h
f , d̂i cos(θi)), where hf is the height from the

camera center to the floor and θi is the angle of the logitude.

It it noteworthy that since the expected normal vectors are

parallel to the floor, thus the height of both pi and predicted

p̂i are set as hf , which will not influence the computation

of normal vectors. Then ground-truth and predicted normal

917



Table 1. Performance based on number of layout corners. iBARLE did best in most metrics across the different room shape complexities

that are represented by different corner numbers.

Corner HorizonNet [41] LED2-Net [44] LGT-Net [19] iBARLE (Ours)

Number 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

4 86.07 84.16 0.19 0.94 86.24 84.42 0.19 0.93 87.21 85.37 0.17 0.94 88.22 86.38 0.18 0.94

5 83.76 80.66 0.28 0.92 84.49 82.27 0.25 0.92 85.76 83.44 0.22 0.93 87.83 85.74 0.20 0.93

6 83.73 81.78 0.22 0.93 83.29 81.32 0.22 0.93 83.50 81.66 0.21 0.93 85.50 83.57 0.19 0.94

7 76.02 73.54 0.30 0.90 77.45 73.86 0.29 0.89 79.68 77.22 0.28 0.91 79.62 76.92 0.25 0.92

8 80.38 78.18 0.22 0.93 79.97 77.72 0.22 0.93 80.13 77.98 0.23 0.92 80.69 78.55 0.20 0.94

9 81.92 79.59 0.25 0.92 81.65 79.17 0.25 0.91 80.39 78.17 0.26 0.92 81.14 78.75 0.23 0.93

10+ 75.42 72.61 0.30 0.91 74.75 71.91 0.29 0.91 75.21 72.26 0.29 0.90 76.16 73.39 0.25 0.92

Average 81.04 78.65 0.25 0.92 81.12 78.67 0.24 0.92 81.70 79.44 0.24 0.92 82.74 80.47 0.21 0.93

Table 2. Results comparison on ZInD dataset split by type of layout. Results on each group with specific type of layout are reported

separately, and the group-wise average results are also compared.

Room HorizonNet [41] LED2-Net [44] LGT-Net [19] iBARLE (Ours)

Type 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

Cuboid 86.47 84.54 0.19 0.94 86.63 84.78 0.19 0.94 87.54 85.69 0.17 0.94 88.62 86.76 0.18 0.94

Manhattan-l 83.50 81.61 0.21 0.93 83.03 81.15 0.22 0.93 83.29 81.43 0.21 0.93 85.13 83.21 0.19 0.94

Manhattan-g 78.08 76.00 0.25 0.92 77.66 75.45 0.24 0.92 78.19 75.90 0.25 0.92 78.90 76.89 0.21 0.93

non-Manhattan 79.99 76.97 0.28 0.91 80.18 77.23 0.27 0.91 80.83 78.33 0.25 0.92 82.08 79.36 0.23 0.93

Average 82.01 79.78 0.23 0.93 81.87 79.66 0.23 0.92 82.46 80.34 0.22 0.93 83.68 81.55 0.20 0.94

vectors at the same position are computed as:

ni = Mr

( pi+1 − pi

∥pi+1 − pi∥

)⊤

,

n̂i = Mr

( p̂i+1 − p̂i

∥p̂i+1 − p̂i∥

)⊤

,

(6)

where Mr is the rotation matrix of pi

2
, and ni and hatni

are the ground-truth and predicted normal vectors at the

same position, respectively. The learning objective is de-

fined as maximizing inner product between the predicted

and ground-truth normals as:

Ln =
1

N

N
∑

i=1

| − ni · n̂i|. (7)

Moreover, the normals change near the corners, thus the

gradient of the normal angles are obtained to supervise the

turning of corners [19]. However, for complex indoor space

beyond simple cuboid or Manhattan world, occlusions ap-

pear and the normals near the boundaries remain consistent

but the depth change sharply. In order to capture the chang-

ing of visible corners and invisible boundaries near occlu-

sions, the gradient constraints to both the normal vectors

and depth prediction are applied. Specifically, the gradient

of the normals and depth are calculated as:

gn
i = arccos(ni · ni+1), gdi = di+1 − di,

ĝn
i = arccos(n̂i · n̂i+1), ĝdi = d̂i+1 − d̂i,

(8)

where ni/n̂i and di/d̂i are the ground truth and predicted

normal/depth, respectively. Then, the gradient-based nor-

mal and depth prediction constraint is defined as:

Lg =
1

N

N
∑

i=1

(|gn
i − ĝn

i |+ |gdi − ĝdi |). (9)

To this end, the aggregated learning objective of layout

estimation with the panorama images as input is obtained

via integrating the aforementioned losses as L(Z) = Ld +
Lh+Ln+Lg , where Z denotes the visual features extracted

by G(·) with panorama images as input.

4.5. Overall Training Objective

Combining the horizon depth prediction, room height

prediction, normals prediction, and gradient-based predic-

tion constraint loss for all real train samples and synthesized

data, produced by appearance variation domain generaliza-

tion and cross-room structure mix-up, the overall learning

objective of our proposed model is shown below:

min
G,F

L(Z) + αL(Z̃) + βL(Z̄),

min
Ev,Dv

Lvar,
(10)

where α and β are hyper-parameters to balance the contri-

bution of the real data, and the synthesized samples via AVG

and CSMix, respectively. Moreover, the networks Ev(·)
and Dv(·) in AVG are trained separately and fixed during

the training of other networks.
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Table 3. Estimation performance based on different panorama capture locations. Our iBARLE achieves the highest performances for all

primary/secondary categories and the overall performance.

Camera HorizonNet [41] LED2-Net [44] LGT-Net [19] iBARLE (Ours)

Pose 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

Primary 85.58 83.71 0.21 0.94 85.93 84.00 0.20 0.93 86.23 84.41 0.19 0.94 87.72 85.85 0.19 0.94

Secondary 81.16 78.81 0.23 0.93 80.70 78.46 0.23 0.92 81.57 79.33 0.22 0.93 82.63 80.44 0.20 0.93

Average 83.37 81.26 0.22 0.93 83.32 81.23 0.22 0.93 83.90 81.87 0.21 0.93 85.18 83.15 0.19 0.94

Table 4. Overall experimental results comparison on ZInD dataset

Corner Number 2DIoU(%) ↑ 3DIoU(%) ↑ RMSE ↓ δ1 ↑

HorizonNet [41] 83.25 81.13 0.2219 0.9303

LED2-Net [44] 83.18 81.08 0.2172 0.9273

LGT-Net [19] 83.81 81.77 0.2074 0.9309

iBARLE (Ours) 85.04 83.00 0.1949 0.9375

Table 5. Overall experimental results comparison on ZInD-simple

Corner Number 2DIoU(%) ↑ 3DIoU(%) ↑ RMSE ↓ δ1 ↑

HorizonNet [41] 90.44 88.59 0.123 0.957

LED2-Net [44] 90.36 88.49 0.124 0.955

LGT-Net [ViT] [19] 88.93 86.19 0.146 0.950

LGT-Net [19] 91.77 89.95 0.111 0.960

iBARLE (Ours) 92.22 90.42 0.107 0.962

5. Experiment

5.1. Experimental settings

Datasets: Our experiments are based on two variants:

(1) Zillow Indoor Dataset (ZInD) [6] is the largest in-

door dataset consisting of 67,448 panorama images with

room layout annotations including various and complex in-

door spaces from general Manhattan, non-Manhattan, and

non-flat ceilings layouts. We follow the official train-

ing/validation/test splits and adopt the “raw” layout anno-

tations as ground truth. (2) ZInD-Simple [6] is a subset of

ZInD dataset with only simple indoor cuboid layouts with-

out any contiguous occluded corners exist. We evaluate

our proposed model on ZInD-simple to compare it with the

prior state-of-the-art method.

Data Splits: To evaluate iBARLE on different imbalanced

subsets, we split the whole test layouts into several groups

with different standards as mentioned earlier. The statis-

tics of the splits based on corner numbers, room types, and

camera poses are shown in Figure 4. We evaluate the per-

formance of our iBARLE model for each group.

Evaluation Metrics: We use four widely used metrics for

evaluation: (1) 2D IoU: Intersection over the Union of 2D

room layouts. (2) 3D IoU: Intersection over Union of 3D

room layouts. (3) RMSE: root mean squared error of the

depth prediction with the camera height as 1.6 meters. (4)

δ1: percentage of pixels where the ratio between the pre-

dicted depth and ground-truth depth is within a threshold of

1.25 [19, 56]. For 2DIoU, 3DIoU, and δ1 metrics, higher

is better which is denoted by ↑. On the contrary, RMSE

metric is a negatively-oriented score, thus lower is better

denoted by ↓. In addition to the overall performance based

on these evaluation metrics on the test data, we also report

the average results across different sub-groups split by spe-

cific standards to evaluate how balanced our model on the

data space across simple to complex indoor spaces.

Comparison with Baselines: We compare our lay-

out estimation results with those of state-of-the-art base-

lines, namely, HorizonNet (CVPR’19) [41], LED2-Net

(CVPR’21) [44], and LGT-Net (CVPR’22) [19].

5.2. Implementation Details

In our experiments, the feature extractor uses the ar-

chitecture proposed in HorizonNet [41] based on ResNet-

50 [14]. The architecture takes a panorama with the di-

mension of 512 × 1024 × 3 (height, width, channel) as

input and gets 2D feature maps of 4 different scales by

ResNet-50. Then, it compresses the height and up samples

width N of each feature map to get 1D feature sequences

with the same dimension R
N×

D

4 and connects them, finally

outputs a feature sequence R
N×D, where D = 1024 and

N = 256 in our implementation. For the sequential depth

prediction module, we use the SWG-Transformer proposed

in [19] which is based on Transformer [43]. The whole

framework is implemented with PyTorch and optimized

by Adam optimizer with a learning rate set as 1e−4. For

hyper-parameters, we empirically fix α = 0.1, β = 0.01.

The hyper-parameters of the layout estimation objectives in

L(Z) follow the same setting as [19] for a fair comparison.

5.3. Results Comparison

Layout Estimation across Imbalanced Data. The results

on groups with a different number of corners and differ-

ent room shapes are shown in Tables 1 and 2, respectively.

We notice the performance degradation from simple shape

rooms to complex spaces, which demonstrates the motiva-

tion of exploring the imbalance issues of layout estimation

across arbitrary structures. From the results, we observe

that our proposed method outperforms state-of-the-art base-

lines in most cases with various metrics. More specifically,

for the group-wise average 2D IoU and 3D IoU calculated

across different numbers of corners, our model outperforms

the second-best baseline by 1.04% and 1.03%, respectively.

From the results in Table 2, our iBARLE model improves
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Figure 5. Ablation study of the module contributions to the iBARLE framework, where each module is separately added to the basic model.

The 4 plots correspond to the 4 evaluation metrics. We can observe that each module is effective at improving the prediction performance.

And in most of the cases, the complete model achieves the highest performance.
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Figure 6. Case study: Layout estimation on samples where occlusions occur and some spaces are invisible to the panorama camera. It leads

to more complex, unique, and imbalanced layout shapes. “Visible” denotes the layout of visible regions. “layout-raw” is the real-world

room layout which includes the occlusion spaces. Our iBARLE model performs better for imbalanced/minority cases.

the 2D IoU on Manhattan-l and non-Manhattan groups both

over 1.5% compared to LGT-Net.

Moreover, we split the ZInD dataset into subsets based

on the location where the camera taking the panoramas. The

results are shown in Table 3. Based on the definition of the

camera pose of ZInD, panoramas that are taken with “Pri-

mary” pose capture more content and are easier to capture

the whole view of the room. On the contrary, images taken

with the “Secondary” pose usually contain less information

and are harder to estimate the layout since occlusions are

more possible to occur and the camera could be too close/far

from some walls. From the results, we observe our model

outperforms all compared baselines on different groups and

beats the second-best baseline more than 1.0% for average

2D IoU and 3D IoU across the types of camera pose.

Overall Layout Estimation. To compare the overall layout

estimation performance with prior layout estimation base-

lines, we report the overall results on ZInD dataset in Ta-

ble 4. From the results, we observe that our proposed frame-

work achieves a new state-of-the-art layout estimation per-

formance for all metrics. iBARLE improves the overall

2D IoU by 1.23% over LGT-Net. Furthermore, most prior

layout estimation solutions are designed for simple room

shapes, e.g., cuboids. Thus, we apply our proposed model

to ZInD-simple dataset, which is a subset of ZInD consist-

ing of only simple cuboid layouts without any occluded cor-

ners exist. From the results in Table 5, we observe that our

model can beat the state-of-the-art baselines on simple lay-
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Figure 7. Case study: Layout estimation results beyond Manhanttan world. Our iBARLE approach predicts non-Manhanttan regions (green

circle) in higher accuracy than other benchmarks. It demonstrates the robustness of iBARLE for handling minority cases.

out subsets. Although the performance improvement on the

simpler layout shape ZInD-simple subset is less significant

than on the more complex and diverse ZInD dataset, the

results in Table 5 demonstrate the effectiveness of the de-

signed modules in iBARLE.

6. Discussion

Ablation Study. We further conduct an ablation study

to evaluate the contribution of each module in iBARLE.

Specifically, we compare the performance changes, in-

creases of 2D IoU/3D IoU/δ1 and decreases of RMSE, when

each of these modules is stacked to the basic model. The

results changes of the four metrics are illustrated in Fig-

ure 5. From the results, we observe that all three modules

are able to effectively enhance the estimation performance

on almost all subgroups. It demonstrates the contribution

and effectiveness of the designed three modules for layout

estimation, especially for the imbalanced scenario. More-

over, our complete iBARLE model with all modules aggre-

gated can achieve the highest performance which denotes

the smoothness of the whole model structure.

Qualitative Analysis. To intuitively check the effective-

ness of our iBARLE model, we visualize some results on

the ZInD dataset in Figures 6 and 7. The boundaries of the

room layout are displayed on the panorama and the floor

plan. The blue lines are the ground truth, the green lines are

predictions, and the red cross is the position of the camera.

In addition, the predicted horizon depth, normal, and gra-

dient of the normal are visualized as heat maps under the

panorama image, and the ground truth is shown on top of

the image. Moreover, 3D visualization of the selected sam-

ples is reconstructed based on the predicted layout, and the

red dash lines highlight the errors made by the compared

baselines. From the results in Figure 6, we observe that our

model can manage the layout estimation of complex rooms

beyond the Manhattan world assumption. Moreover, we

also observe the difference between the “raw layout” and

the layout “visible” to the camera. Our model can predict

accurately with occlusion corners. Besides, results shown

in Figure 7 are with challenging camera poses, e.g., close to

the wall or corner. From the results, we can observe the pro-

posed model is robust to predict layout with complex space

panoramas taken on arbitrary positions in the room.

Non-Manhattan Results. From Table 2, our layout es-

timation performance on the “Non-Manhattan” group is

not as significant as other groups. Our hypothesis is that

the “Non-Manhattan” group contains samples that have far

more complex and diverse structures. In addition, the num-

ber and positions of the selected columns in the CSMix

module are hyper-parameters influencing the complexity of

the synthesized samples. These issues require more in-

depth investigation on generalizability and robustness.

7. Conclusion

We propose a new technique, iBARLE, to address prob-

lems associated with data imbalance and appearance vari-

ation for single-image room layout estimation. The key

components are the Appearance Variation Generalization

(AVG) and Complex Structure Mix-up (CSMix) modules,

which help generalize over a wide range of complex and di-

verse room shapes as well as scene appearance variations.

We also use a gradient-based layout estimation constraint

to account for occlusions in complex layouts. Experimen-

tal results show that iBARLE improves room layout esti-

mation across different kinds of imbalanced distributions of

majority and minority groups in the dataset. iBARLE also

improves overall layout estimation performance.
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