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Abstract

Massive Open Online Courses (MOOCs) enable easy
access to many educational materials, particularly lecture
slides, on the web. Searching through them based on user
queries becomes an essential problem due to the availability
of such vast information. To address this, we present Lec-
ture Slide Deck Search Engine – a model that supports nat-
ural language queries and hand-drawn sketches and per-
forms searches on a large collection of slide images on com-
puter science topics. This search engine is trained using a
novel semantic label-aware transformer model that extracts
the semantic labels in the slide images and seamlessly en-
codes them with the visual cues from the slide images and
textual cues from the natural language query. Further, to
study the problem in a challenging setting, we introduce
a novel dataset, namely the Lecture Slide Deck (LecSD)
Dataset containing 54K slide images from the Data Struc-
ture, Computer Networks, and Optimization courses and
provide associated manual annotation for the query in the
form of natural language or hand-drawn sketch. The pro-
posed Lecture Slide Deck Search Engine outperforms the
competitive baselines and achieves nearly 4% superior Re-
call@1 on an absolute scale compared to the state-of-the-
art approach. We firmly believe that this work will open up
promising directions for improving the accessibility and us-
ability of educational resources, enabling students and edu-
cators to find and utilize lecture materials more effectively.

1. Introduction

Online education has become increasingly popular in
recent years, partly due to its convenience and flexibil-
ity. As a result, there is now a greater demand for effec-
tive presentation materials to support this mode of learn-
ing. While plenty of lecture slide presentations on vari-
ous topics are available online, searching for a relevant and
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Figure 1. We present Lecture Slide Deck Search Engine – a se-
mantic labels-aware transformer model that enables users to query
and retrieve relevant lecture slides from a large collection using
natural language summaries or hand-drawn sketches as queries.
(Best viewed in color).

compelling slide deck for a given query can be tedious and
time-consuming for educators and students. Further, in
the retrieval task, using text input may not be the most suit-
able option in some scenarios such as, i) when the user can-
not recall the correct keyword for searching, however, they
have a picture in mind, ii) students with limited language
proficiency struggle to express the search intent using text,
and may prefer to draw the concept. Towards accelerating
research on this important topic, we present Lecture Slide
Deck Search Engine – a model that supports both natural
language queries as well as hand-drawn sketches and per-
forms a search on a very-large-scale collection of slide im-
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Features Size Avail.
Datasets Slide Segments Figures Sketches Slide Text Transcript Summary # Slides

VLEngagment [3] ✓
LectureBank [22] ✓(M) ✓(A) 51,939 ✓
ALV [11] ✓(A) ✓(A) 1,498 ✓
LectureVideoDB [10] ✓(M) ✓(M) 5,000 ✓
GoogleI/O [4] ✓(A) ✓(A) ✓
LaRochelle [30] ✓(A) ✓(A) ✓(A) 2,350
MLP Dataset [21] ✓(M) ✓(M) ✓(A) ✓(A) 9,031 ✓
LecSD Dataset (ours) ✓(M) ✓(M) ✓(M/A) ✓(A) ✓(M/A) 54,000 ✓

Table 1. Proposed LecSD Dataset as a comparison to the existing related datasets. The A and M represent that the features are extracted
automatically and manually, respectively. Our dataset is larger with respect to the number of slide images and it has unique features of
hand-drawn figure sketches and slide summaries as queries.

ages. This search engine’s functionalities are illustrated in
Figure 1.

In recent years, there has been a growing interest among
researchers in developing retrieval systems for educational
lecture videos and presentation slide images [13–15, 18, 24,
25]. The success of these retrieval systems can enable mod-
ern AI to design novel slides by combining search results
and reusing figures and graphs from existing slide images,
thereby minimizing manual effort. However, existing re-
trieval systems [14, 21] were developed to retrieve slides
from video files and have the following limitations: (i) they
rely on the transcript in the video to retrieve slides, which
are not always contextually aligned with the slide image,
also not always available, e.g. in lecture slide image col-
lection. (ii) These retrieval systems are restricted to text
queries and do not support hand-drawn sketches of dia-
grams as queries. (iii) Text queries often contain logical
regions (semantic labels) like titles, bullet points, and fig-
ures, and figure types like line graphs, bar charts, Venn, and
tree diagrams. The existing architectures are not explicitly
designed to handle and learn these semantic regions and fig-
ure types. We propose Lecture Slide Deck Search Engine to
overcome these limitations.

To study the problem of lecture slide image retrieval in
a rigorous setting and evaluate the efficacy of our proposed
model, we present a novel large-scale dataset, Lecture Slide
Deck (LecSD). In Table 1, we compare our proposed dataset
viz. LecSD with the existing related datasets. Our dataset
is the largest with respect to the number of slides and has
unique features such as the availability of figure sketches
and a slide summary as queries. We selected lecture slides
from Data Structure course to increase the dataset’s com-
plexity, especially due to their similarity, which creates
challenging negatives for retrieval. The similarity among
slide figures further amplifies the difficulty of the sketch-
based retrieval task. Further, to assess our model’s adapt-
ability, we also included slides from Computer Networks
and Optimization courses as well.

The proposed Lecture Slide Deck Search Engine is a
unique architecture that handles text and sketches and com-
bines both queries and demonstrates impressive perfor-
mance on the lecture retrieval task and clearly outperforms
related baselines. Compared to existing slide retrieval ap-
proaches [14, 21], our approach utilizes the semantic labels
of slide images in the transformer model where the text
and slide images are combined using a vision and language
transformer (ViLT) [20] and the queries are encoded with
PIE-Net [29].
Contributions: We make the following contributions: (i)
We present the LecSD – a very large-scale dataset of lec-
ture slide images harvested from the web. The dataset
contains 54K slide images covering topics of Data Struc-
tures, Computer Networks, and Optimization and manually
written natural language summaries and hand-drawn sketch
queries corresponding to figures to search lecture slide im-
ages. (ii) We propose a model that leverages the seman-
tic label of slides and encodes them into a novel semantic
label-aware transformer model. The representation learned
using this model is used to score against the representa-
tions for natural language summary or hand-drawn sketch
query to learn the relevance of slides for a given query. (iii)
We perform extensive experiments and ablation to verify
the efficacy of our model. Our proposed approach signifi-
cantly outperforms competitive approaches and thereby es-
tablishes a new state-of-the-art for the task.

2. Related Work
Examining images of classroom slides has been an ac-

tive area of research. Early works such as Deshpande et
al. [6] showcased a real-time interactive virtual classroom
multimedia distance learning system; Zhu et al. [31] pre-
sented a virtualized classroom project that emphasized au-
tomatic data collection, analysis, multimodal synchroniza-
tion, compression, cross-media indexing, and archiving.
Recent works like Haurilet et al. [15, 25] focused on layout
segmentation for classroom slide images. Building on this,
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Summary: system of equations explained 
using enumeration, and line graph

Figure bounding box Drawn sketch imageSlide deck

Slide summary writing Figure bounding box annotation Draw sketch image

Figure 2. We present the LecSD towards developing a benchmark for retrieving educational contents, to be specific lecture slides from
computer science topics. Here, we show our proposed annotation pipeline. First, annotators were asked to write a summary of the slides
from the collection of slide image decks. Then, annotate the bounding boxes for the figures, and finally, draw a sketch image corresponding
to the annotated figures. (Best viewed in color).

Jobin et al. [18] expanded the approach by implementing
a narration system for classroom slides using the identified
layout regions. In this section, we briefly present a literature
survey on datasets and cross-modal retrieval in the space of
lecture slides and outline the distinctions of our proposed
dataset and approach.

2.1. Lecture Slide Retrieval Datasets

Several lecture slide datasets for the retrieval task have
been introduced in the literature [3, 4, 10, 11, 21, 22, 30].
Some of the popular datasets are listed here: (a) The Lec-
tureBank [22] comprises 1, 352 online lecture PDF files ex-
tracted from 60 Computer Science courses covering the fol-
lowing five sub-domains: Machine Learning, Natural Lan-
guage Processing, Deep Learning, Artificial Intelligence,
and Information Retrieval. Additionally, the dataset in-
cludes more than 1K concepts automatically extracted to
form an in-domain vocabulary, along with annotations for
prerequisite relation pairs that involve 208 concepts. (b)
The VLEngagement dataset [3] includes content-based fea-
tures, e.g., stop-word frequencies and video-specific fea-
tures, e.g., silence and video duration, extracted from pub-
licly accessible 4K scientific video lectures. The tasks re-
lated to this dataset are to predict context-agnostic engage-
ment in video lectures and rank video lectures based on
their engagement levels. (c) The ALV dataset [11] con-
tains lecture videos that were generated using automatically
created transcripts from academic online videos. (d) The
LectureVideoDB [10] comprises 5K frames. These frames
contain annotated text characters, with a focus on detect-
ing and recognizing text within lecture videos. The videos
cover a range of 24 distinct courses in science, management,
and engineering. (e) The GoogleI/O dataset [4] contains
209 presentation videos from the Google I/O conferences
held between 2010 and 2012. The authors provide tex-
tual information from the spoken content and the slides in
this dataset. (f) The LaRochelle dataset [30] comprises 47

French lecture recordings, totaling 65 hours of video, con-
ducted in the author’s lab. Each lecture, on average, features
50 slides. The researchers investigate cross-modal retrieval,
employing a bag-of-words approach for both textual con-
tent and visual tokens. (g) The MLP Dataset [21] includes
slides and spoken language, encompassing over 180 hours
of video and more than 9000 slides, featuring contributions
from 10 lecturers across diverse subjects such as computer
science, dentistry, and biology.

Most of these datasets retrieve slides or videos based on
the corresponding transcript. However, in real-world sce-
narios, the query may differ from the transcripts. We as-
sess our proposed dataset – LecSD in comparison with these
datasets in Table 1.

2.2. Cross-modal Image Retrieval

The baseline model for retrieving slide images given
text and sketch query has been derived from the existing
cross-modal image retrieval methods [5, 21, 28, 29]. Of
these models, CLIP [28] stands out as a popular bench-
mark for aligning images with text. CLIP undergoes train-
ing to excel in a diverse range of tasks, and this acquired
task learning can be effectively harnessed through natural
language prompting, enabling seamless zero-shot transfer
to numerous existing datasets. Further, two successful ap-
proaches in this area are: (a) PCME [5]: which character-
izes each modality by modeling probabilistic distributions
in a shared embedding space, employing Hedged Instance
Embeddings [26]. This approach captures the uncertainty
associated with mapping an image to a latent embedding
space by dispersing density across plausible locations. The
embeddings are treated as random variables, and the model
is trained based on the variational information bottleneck
principle [1]. (b) PVSE [29]: which captures one-to-many
alignment for cross-modal retrieval. It learns diverse repre-
sentations for the data samples by fusing global context with
locally-guided features through multi-headed self-attention
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Figures Auto sketch Hand-drawn sketch

Summary: the line graph showing 
curve of popular big O functions
Paraphrases by ChatGPT:
1. The plotted line graph displays the 
curves of well-known big O functions.
2. A line chart illustrates the curves 
corresponding to widely recognized 
big O functions.

Summary: sample matrices of various 
dimensions
Paraphrases by ChatGPT:
1. Matrices of different sizes for 
illustrative purposes.
2. Exemplary matrices with varying 
dimensions.

Figure 3. Sample figures in LecSD dataset. The first column shows cropped figure regions from the slide image. The second column of
sketches is generated using photo-sketching [23]. The third column shows the manually drawn sketches. The last column shows the slide
images and its manual summary and its two paraphrased sentences generated using chatGPT [2].

and residual learning.
In contrast to existing literature, our proposed model uti-

lizes semantic labels within the slide image in the trans-
former architecture to facilitate cross-modal retrieval.

3. Lecture Slide Deck Dataset
We present a very large-scale, one-of-a-kind lecture slide

dataset, namely the LecSD. This dataset’s image and as-
sociated annotations can be downloaded from our project
website. The slide images of the LecSD are harvested
from the web1 for a popular computer science and engi-
neering course, namely Data Structures. We used the fol-
lowing popular sub-topics to search slide decks: a) Arrays
and Structures, b) Stacks and Queues, c) Lists, d) Trees,
e) Graphs, f) Sorting, g) Hashing, h) Heap Structures, i)
Search Structures, j) Algorithms, k) Stacks and Queues, l)
Queues, and m) Binary trees. By cleaning the collected
slide image by removing duplicate slides and slides with no
meaning, we obtained 1700 slide decks with around 50K
slide images. We split the data into train, validation, and
test sets of 30K, 10K, and 10K slide images, respectively.
In addition, we collected and manually annotated 4000 slide
images from the topic Computer networks and Optimization
to demonstrate the generalizability of the proposed model.

3.1. Annotations

We obtain annotations for our dataset to enable retrieval
of slide images and their components, such as figures, ta-
bles, and equations, using multimodal queries, including
natural language text and drawing. We restrict our man-
ual annotation to only the evaluation (test) and validation
set since manual annotations of queries for building a large
system are time-consuming, cumbersome, and not scalable.

1https://slideplayer.com/

We automatically annotate the training data using the state-
of-the-art slide segmentation, figure classification, and OCR
modules.

3.1.1 Manual annotation

We generate organic queries for slide image retrieval with
the help of five annotators. To obtain manual annotations
for the test and validation set of our dataset, we provide slide
images to the annotators and ask them to write a brief sen-
tence about a given slide image. This brief sentence serves
as a summary query for our dataset. Further, if figures are
present in the slide, annotators were asked to draw the cor-
responding sketch of the figure on a paper. This paper is
scanned, and the cropped sketch region is used as a sketch
query for the slide. Figure 2 shows the annotation pipeline
for a single slide image. We provide a modified version
of the VGG image annotation tool [9] to annotators for an-
notating the slide image summary and figure regions. In
order to overcome the annotation bias [27], we used chat-
GPT [2] to generate paraphrased sentences of written sum-
maries. Sample drawn sketches and written summary are
shown in Figure 3.

3.1.2 Automatic annotation

The primary goal of automatic summary annotation is to
train the language model to retrieve slide images given an
organic query. We conducted a study on organic queries to
retrieve slide images and concluded as follows: i) we no-
ticed that the keyword specific to a slide most frequently
occurs in the title of the slide image. ii) the keywords
can also occur in enumeration or paragraphs for the slides
with the slide image having no titles or the title of common
words such as overview, conclusion, methods, and prob-
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lem. iii) the summary can also contain the list of logical
regions such as enumeration, paragraphs, tables, equations,
and various figure classes such as line graphs, bar charts,
photographs, etc. iv) the logical region name need not be
consistent in the summaries. As an example, the enumera-
tion can be mentioned as bullet points. Hence, we designed
the automatic slide summary as a predefined sentence struc-
ture, as T explained using C, where T is the OCR text ob-
tained from slide titles, enumeration, or paragraph regions.
C lists logical regions such as enumeration, paragraphs,
tables, equations, and figures. We randomly replace the
logical region names with its synonyms. The slide layout
segmentation model [18] is used to identify the regions. To
identify the type of figures present in slide images, we use
a trained model with DocFigure [17], having 28 types of
figure classes.

The sketches of figures in the slide image are auto-
matically created using photo-sketching [23]. The photo-
sketching model is designed to generate contour drawings
and boundary-like drawings that capture the outline of the
visual scene. Hence, the model is well-suited for creating
sketches of document figures. Figure 3 shows the sample
sketches created by the Photo-sketching model. First, we
identify the figure regions using the layout segmentation
model and create sketches using the Photo-sketching model.

We manually extract text, draw the layout, and identify
figure types from 100 slide images to evaluate the quality
of automatic extraction of text, layout, and figure class. To
extract the text in slide images, we use Google Lens OCR
with a word error rate of 4.63%. The layout segmentation
of slide images is performed using CSSNet [18] trained on
SPaSe [25] and WiSe [15] dataset and obtaining the MIoU
of 56.4%. Finally, the figure classes are identified by train-
ing the Multi-feature head model [19] using DocFig [17]
dataset and obtained an accuracy of 97.85%. After anno-
tation, the train, validation, and test have 5607, 1557, and
1487 slide images with figures, respectively.

4. The Proposed Retrieval System
We aim to retrieve the most appropriate slide image from

the dataset given a query. Let K = {(aj , bj)}Nj=1 be the
dataset consisting of a description of slide aj and the slide
image bj . The description aj = (t, s) combines text de-
scription t and the sketch description s. Hence, the sys-
tem supports both natural language and hand-drawn sketch
queries. The goal is to learn an embedding space that can
quantify the similarity between the slide image and descrip-
tion. As a result, given a description (text or sketch, or
both) aj , one could retrieve its similar slide images from
{b1, b2, . . . , bN}.

We propose a novel slide image retrieval system, as
shown in Figure 4. We first describe the layout, figure type,
and text extraction from lecture slide images in Section 4.1).

The lecture slide encoder that encodes the layouts, figures,
and texts along with the slide image is described in Sec-
tion 4.2. The query text and query sketch encoder are ex-
plained in Section 4.3, and finally, train the model with Mul-
tiple Instance Learning (MIL) [8] framework (Section 4.4),
and provide the inference details.

4.1. Semantic Labelling of Lecture Slides

The query to retrieve a slide image need not contain all
the text on the slide image. The query contains the key-
words and logical regions of the slide image, such as title,
enumeration, table, figures, and its various types. For ex-
ample, “system of equations explained using enumeration
and a line graph.” In order to handle these queries, we pro-
pose a novel slide image retrieval system, as shown in Fig-
ure 4. Our approach utilizes a pre-trained slide image seg-
mentation module [18] and a multi-feature head model [19]
trained on DocFig [17] dataset to obtain the logical regions
tl and the type of the figure present on the slide image tg ,
respectively. In addition to these modules, we also use an
Optical Character Recognizer (OCR) to extract the text to
the slide image.

4.2. Lecture Slide Image Data Encoder

In the dataset indexing, we collect the logical regions tl,
figure type tg , and OCRed text to information along with
the slide image b and a focus area bf from each slide image.
The focus area of a slide image is the most plausible logical
region where the keyword is occurring. Most of the query
keywords from our study are from the following logical re-
gions: title, enumeration, paragraphs, and captions. In our
proposed architecture, we choose the title area as a focus
area. We choose the enumeration region if the title region is
absent on the slide. We obtained these logical regions from
the output of CSSNet [18].

Further, encoded feature vector zx for a given slide im-
age b is obtained using Vision and Language Transformer
(ViLT) [20] as follows:

zx = ViLT ([tl; tg; to] , [b; bf ]) . (1)

4.3. Query Feature Extraction

In our experiment, the query can be either a slide sum-
mary, sketch image, or a combination of both. The words
in the text query t are encoded using pre-trained BERT
model [7] and used as local features Ψ(t) ∈ RL×300 where
L is a number of words in t. Then, we feed the local feature
to a bi-GRU with H hidden units and take the final hid-
den states as global features ϕ(t) ∈ RH . The query sketch
image s is encoded using ResNet-152 [16]. The feature
map before the final average pooling layer as local features
Ψ(s) ∈ R7×7×2048. Further, we apply average pooling and
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Figure 4. The proposed Lecture Slide Deck Search Engine architecture. The LecSD dataset is indexed by encoding features such as layout
regions, figure classes, OCR text, slide image, and focus area using a ViL transformer. The query text and the sketch are independently
encoded using PIE-Net [29]. The architecture predicts the final retrieval result based on the similarity score stn and ssn. (Best viewed in
color)

feed the output to one fully connected layer to obtain global
features ϕ(s) ∈ RH .

The PIE-Net proposed in [29] encodes the local and
global features for text and sketch queries.

zt = textPIE-Net(Ψ(t), ϕ(t)), (2)

zs = sketchPIE-Net(Ψ(s), ϕ(s)). (3)

4.4. Optimization and Inference

We optimize our model to minimize the following loss
function:

L = Lmil + λ1Lmmd + λ2Ldiv. (4)

Where λ1 and λ2 are the scalar weights. Lmil is the multi
instance learning (MIL) loss [8] with the learning constraint
for retrieval task. The loss function Lmil only considers the
minimum distance pair in the loss computation. Hence, the
distribution induced by features may diverge quickly. Max-
imum Mean Discrepancy ( MMD) [12] based loss Lmmd

is introduced to regularize the discrepancy between the two
distributions. The Ldiv is the diversity loss to ensure that
the PIE-Net produces diverse representations of an instance.
We follow these loss calculations described in [29].

In the training slide images of LecSD dataset, all the
slide images do not contain figures. Hence, we first
train the ViLT and the textPIE-Net models. Finally, the
sketchPIE-Net models learn during the fine-tuning of the
whole network with slide images having both summary and
sketch queries.

In the inference stage, we assume that the dataset con-
tains N lecture slide images. Further, the ViLT encoded

vectors for ith slide are represented as zxi . Now, given a
query instance of slide summary, and sketch image, we cal-
culate an embedding vector zt and zs, respectively. Then,
the similarity between the query and i = 1st to N th lecture
slides are computed as follows:

stn = [sim(zt, zx1 ), · · · , sim(zt, zxN )], (5)

ssn = [sim(zs, zx1 ), · · · , sim(zs, zxN )], (6)

sn =
1

2
(stn + ssn). (7)

Here, stn, s
s
n, and sn are the similarity score of query text,

sketch, and the combined respectively with the dataset of N
instances. We then rank the database images with respect to
these similarities.

5. Experiments
We train the proposed framework using train data ob-

tained using automatic annotations and then assess its per-
formance on manually annotated test data. Our dataset com-
prises two queries for each slide image: in the training set,
there are both a generated summary and a paraphrased ver-
sion of it, while in the testing and validation sets, we have
the manually annotated summary and a paraphrase gener-
ated using ChatGPT [2]. During both training and testing
phases, we randomly select a sentence from a query asso-
ciated with a slide image. Please note that text queries are
derived from either manually annotated (50% of the time)
or paraphrased summaries.
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Methods Data structure Computer networks Optimization

@1 @5 @10 Median @1 @5 @10 Median @1 @5 @10 Median

Random 0.01 0.05 0.1 5000 0.05 0.25 0.5 1000 0.05 0.25 0.5 1000
PCME [5] 8.76 24.42 40.30 39 6.65 18.64 27.56 56 6.21 14.32 22.21 173
CLIP [28] 9.61 27.47 42.50 31 - - - - - - - -
PVSE [29] 21.13 43.07 51.7 9 8.87 22.01 30.33 41 7.51 17.55 24.18 132
PolyViLT [21] 22.24 44.31 53.05 8 12.45 28.3 37.54 33 9.34 23.34 31.39 84
Ours 26.45 48.53 56.82 6 16.54 34.2 42.74 19 12.53 28.65 35.44 60

Table 2. The summary-based slide image retrieval performance of various slide image retrieval models that were trained on slide images
from the data structure topics. We show evaluation results on slides related to the topics of Data structure, computer networks, and
optimization.

Features Summary to Slide

@1 @5 @10 Median

to, b 22.35 44.31 53.05 8
to, [b; bf ] 23.28 45.83 53.98 8
[tl; tg; to], b 25.74 47.47 55.38 7
[tl; tg], [b; bf ] 24.89 46.45 54.00 7
[tl; tg; to], [b; bf ] 26.45 48.53 56.82 6

Table 3. Comparison study on the contribution of various features
such as OCR text to, layout segmentation tl, graphics type tg , slide
image b, and the focus area bf on the retrieval task.

5.1. Implementation Details

We employ the Adam optimizer with a learning rate set
at 2−4 and a weight decay of 10−2. In the case of ViLT,
we resize the shorter edge of input images to 384 and con-
strain the longer edge to be under 640 while maintaining
the aspect ratio. The Patch projection of ViLT-B/32 results
in 12× 20 = 240 patches for an image with a resolution of
384× 640. We interpolate V pos of ViLT-B/32 to match the
size of each image and pad the patches for batch training.
The hyper-parameters λ1 and λ2 fall within the range of
[0.01, 0.001]. We utilize the bert-base-uncased tokenizer
and initiate the learning of textual embedding-related pa-
rameters tclass, T , and T pos from scratch. The model under-
goes training for 225K steps on four 64-bit NVIDIA GPUs,
with a batch size set at 8.

5.2. Lecture Slide Image Retrieval using Natural
Language Summary-based Query

To identify the contribution of various features, i.e., OCR
text (to), layout region (tl), graphics type (tg), slide image
(b), and the focus area (bf ) for the task, we conduct the abla-
tion study and the result is shown in Table 3. First, we used
the to and b features in training and obtained 22.35% recall
at one. Then, we added the bf feature that improved recall at

one by 0.93%. Next, we combine [tl; tg] with to and b which
further improves recall at one compared to the base model
by 3.39%. This indicates that the layout features [tl; tg] is
an efficient feature for slide retrieval. Further, we removed
the to, which resulted in the recall reduction of 0.85%. Fi-
nally, we used all the features and obtained a 26.45% R@1.

We compare the proposed model on a summary-based
slide image retrieval task, and the results are reported in
Table 2. The proposed model outperforms the existing
cross-model retrieval approaches. The PolyVilt [21], and
PVSE [29] models perform reasonably in retrieving the nat-
ural images given a caption. However, these models are un-
able to learn logical regions from slide images. Hence, the
performance was reduced, indicating that layout segmenta-
tion and document figure classification modules are essen-
tial for slide image retrieval tasks.

We further assessed the generalization ability of the pro-
posed model. We conducted this evaluation by testing the
model in a “zero-shot setting”, i.e. using the model that
is trained on slide images associated with the data struc-
ture topic to evaluate on two different sets of slide images
related to computer networks and optimization. We ob-
tain recall@1 of 16.54 and 12.53 in retrieving slide images
from the computer network and optimization courses, re-
spectively. Although there is a performance drop under this
setting, our model continues to demonstrate superior perfor-
mance when compared to other baselines (Refer Table 2).

Figure 5 shows the qualitative result of the proposed
approach. The system retrieves the slide image having
pseudo-code and block diagram in the first and second rows.
We also show retrieval results when a hand-drawn sketch of
a diagram is used as a query in the last row. The ground
truth for this query is highlighted in the green border.

5.3. Refining Lecture Slide Image Retrieval using
Hand-drawn Sketch Query

In testing, we infer the result based on text summary sim-
ilarity stn, sketch similarity ssn, and the combined similar-
ity sn; the result is shown in Table 4. Here, we noticed

6022



Query: Checking the search Method expressed in enumeration and paragraph

Query:  Pseudocode for printing Vertical Numbers

Query: Implementing stack  described with a block diagram

Figure 5. Qualitative result of proposed Lecture Slide Deck Search Engine. The text query and its result are shown in the top three rows.
The last row shows the re-ranked result given the sketch query. The slide in the green bounding box indicates the correct image for the
query. More qualitative analysis is provided in the supplementary material. (Best viewed in color).

Query type Slide retrieval

@1 @5 @10 Median

Sketch 23.63 51.55 62.72 5.00
Summary 37.05 61.32 65.67 4.00
Combined 41.50 64.00 68.50 2.00

Table 4. Slide image retrieval result when only sketches, only text
summary, and their combination are used as queries for retrieving
the slide images from data structure topics.

that the combined similarity between a sketch and the sum-
mary improved the retrieval result to 41.5. The fourth row
in Figure 5 shows the sketch query and the successfully
re-ranked result, which matches the sketch query. How-
ever, the sketch-based retrieval fails for the figure having
a smaller size compared to the slide image size.

6. Conclusion

In this paper, we introduced the LecSD - a comprehen-
sive collection of lecture slide decks intended to serve as

a benchmark for the development of educational AI sys-
tems. The dataset is unique and has rich annotations, and
it is specifically created to tackle two challenging research
tasks that are relevant to education: i) retrieval of lecture
slide images based on brief descriptions that include log-
ical regions and figure classes, and ii) retrieval of lecture
slide images using hand-drawn sketches of the figures as
queries. Our benchmarking efforts revealed that existing
retrieval models fall short of accurately identifying logical
regions and figure classes. On the contrary, we proposed
an effective new retrieval model called Lecture Slide Deck
Search Engine, which is semantic labels-aware and includes
sketch-based retrieval functionality. Nonetheless, the Lec-
ture Slide Deck Search Engine does have a few drawbacks.
First, it relies on an off-the-shelf layout segmentation mod-
ule which is far from being perfect. Second, when dealing
with sketch queries, it encounters difficulties in retrieving
small diagrams. Lastly, the model has limited success in
searching slides from unseen subjects. We leave addressing
these as the future scope of this paper.
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