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Abstract

Kalman filter-based tracking-by-detection (KFTBD)
trackers are effective methods for solving multi-person
tracking tasks. However, in crowd circumstances, noisy de-
tection results (bounding boxes with low-confidence scores)
can cause ID switch and tracking failure of trackers since
these trackers utilize the detector’s output directly. In this
paper, to solve the problem, we suggest a novel tracker
called ConfTrack based on a KFTBD tracker. Compared
with conventional KFTBD trackers, ConfTrack consists of
novel algorithms, including low-confidence object penaliza-
tion and cascading algorithms for effectively dealing with
noisy detector outputs. ConfTrack is tested on diverse do-
mains of datasets such as the MOT17, MOT20, DanceTrack,
and HiEve datasets. ConfTrack has proved its robustness
in crowd circumstances by achieving the highest score at
HOTA and IDF1 metrics in the MOT20 dataset.

1. Introduction

Multi-person tracking (MPT) aims to detect and track
multiple persons by allocating identification values and es-
timating the position of each person. Therefore, MPT has
been utilized in various applications, such as autonomous
driving or surveillance systems. Among diverse MPT meth-
ods, the tracking-by-detection (TBD) method is a predomi-
nant method in recent years since the TBD method makes it
easy to make tracking systems by only designing a tracker
with a well-made detector [34].

Among TBD methods, for a real-time operating tracker
system, the Kalman filter-based TBD (KFTBD) method has
been introduced [19]. The process of KFTBD-based track-
ers consists of matching a predicted track box with a detec-
tion box, updating the matched track box using the matched
detection box, and keeping the unmatched track box with-
out updating [1, 4, 7, 12, 24, 39, 44].

Over decades, KFTBD-based tracking systems’ perfor-

mance has improved since deep-learning backbone models,
utilized as detectors, have shown tremendous performance
improvement [7, 44]. However, in crowded places, the de-
tection outputs contain lots of noise when detected objects
are exposed to an occlusion, intersection, or motion blur.
The noise affects the generation of a detection box with a
low-confidence score.

Low-confidence detection boxes can cause the Kalman
filter to make incorrect predictions, destabilize the state
of the matched track, and eventually lead to track fail-
ure. We checked the correlation between the intersec-
tion over union (IoU) and the confidence score, applying
YOLOX [16] to three benchmark validation sets [10,26,32].
As shown in Fig. 1, the matched detection boxes show lower
IoU values in the case of detection boxes with lower con-
fidence scores. In other words, detection boxes of lower
confidence scores affect the tracker’s tracking performance
since the boxes obtain low IoU values.

To avoid the issues of low-confidence detection boxes,
lots of KFTBD-based trackers set a threshold and use only

Figure 1. Correlation graph between IoU and confidence score of
matched detection boxes. The bold line is the average value of IoU
that occurs when the YOLOX detection result is matched with GT.
The band represents the distribution of that IoU.
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detection boxes whose confidence is higher than the thresh-
old [4, 12, 39]. Therefore, since the strategy discards the
remaining lower confidence detection boxes than the thresh-
old for generating tracks, several studies tried to utilize
low-confidence detection boxes in the ID matching pro-
cess [1, 7, 24, 40, 44]. However, low-confidence detection
boxes are still not considered in the overall tracking process
including track initialization.

In this paper, we suggest a novel KFTBD-based tracker
named ConfTrack. According to Fig. 1, we confirmed that
the predicted track box from the Kalman filter is closer
to the ground truth than the low-confidence detection box
from the detector. Inspired by this, we assumed the pre-
dicted track box is more reliable than the noisy detection
box. Therefore, to mitigate the noise effect, the proposed
method is designed to penalize detection boxes with low-
confidence in the Kalman prediction, update, and matching
stages. Furthermore, compared with the existing KFTBD-
based methods that discard low-confidence detection boxes
in track initialization, ConfTrack initializes tentative tracks
from low-confidence detection boxes and treats them par-
titively with confirmed tracks in a novel cascade matching
strategy.

To demonstrate the reliability of the proposed method,
diverse domains of datasets are utilized for verification,
including the MOT17, MOT20, DanceTrack, and HiEve
dataset [10, 22, 26, 32]. For objective evaluation, we adopt
the test metrics including Higher Order Tracking Accu-
racy (HOTA), Multiple Object Tracking Accuracy (MOTA),
and Identification F1 score (IDF1) [3, 23, 29]. ConfTrack
has achieved the highest HOTA and IDF1 on the MOT20
dataset.

The main contributions of our work can be summarized
as follows.

• A novel KFTBD-based tracker is suggested, called
ConfTrack. Several novel penalization methods are in-
troduced for low-confidence objects for robust tracking
operations in crowd circumstances containing noisy
detection results.

• A novel cascading method of track matching is sug-
gested by initializing tracks, including low-confidence
detection results, and handling tentative tracks and
confirmed tracks differently. This method prevents the
ID switch of confirmed tracks in various tracking sce-
narios, such as long-term occlusion, truncation, and
motion blur.

• ConfTrack is evaluated with various datasets. Among
them, the best scores have been recorded at the HOTA
and IDF1 metrics on the MOT20 dataset.

2. Related Work
Approaches for multi-person tracking MPT algorithms
with neural network backbones can be divided into three
types according to their structure: TBD, joint detection and
tracking (JDT), and transformer-based.

TBD-based trackers generate object tracks by using the
outputs of attached pre-trained deep-learning-based detec-
tor backbones. Even though TBD trackers do not con-
sider utilizing detectors’ extracted feature information dur-
ing the tracking process, they are still extensively adopted
as a tracking system, such as an embedded system for real-
time operation.

JDT-based trackers are end-to-end neural network-based
methods that conduct feature extraction and track associa-
tion at once [2, 15, 38, 45, 46].

Transformer-based trackers can utilize global contextual
features that were difficult to obtain in JDT-based track-
ers by adopting a transformer-based encoder-decoder struc-
ture [6, 9, 25, 33, 42, 47].
Kalman filter based tracking-by-detection. KFTBD-
based trackers [4,12,39] have shown powerful tracking per-
formance by applying classical methods such as the Kalman
filter [19] and the Hungarian algorithm [20]. Due to the
emergence of superior deep-learning-based detectors [16],
KFTBD-based trackers have been the most considered as
an MPT system.

To expand the availability of detectors’ deep feature,
KFTBD-based trackers with deep feature extractors for
recovery of long-time occluded tracks have been intro-
duced [1, 24, 39]. In addition, KFTBD-based trackers
that calculate the motion of the camera to compensate for
the prediction errors of the Kalman filter have been re-
searched [1, 14, 30].
Handling detection noise. Several KFTBD-based track-
ers with noise-handling functions have been designed to re-
duce the ratio of measurement values in the Kalman update
process. In the case of GIAOTracker [11], It increases the
reflection ratio for detections with high confidence by mul-
tiplying confidence by the measurement space noise covari-
ance used to calculate the Kalman gain. However, since
the confidence score ranges from 0 to 1, it does not reduce
the rate of low-confidence detections. In MAATrack [30]
research, since the most recently matched detection box of
the lost track contains lots of noise, the variation of bound-
ing box height is set to 0 when the lost track predicts the
next state.

3. Proposed Method
As shown in Fig. 2, ConfTrack is based on BoT-

SORT [1] as a baseline model. Therefore, most of the oper-
ation process is similar to the KFTBD-based BoT-SORT.
However, for effective utilization of low-confidence de-
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Figure 2. Framework of ConfTrack. Proposed methods are marked in bold.

tection outputs, ConfTrack is designed with several novel
methods as follows.

3.1. Confidence Weighted Kalman-Update (CW)

In update stage of Kalman filter, an estimation of kth
frames x̂k is updated using prediction x̂−

k , target measure-
ment z̃k, projection matrix H and Kalman gain Kk as
in Eq. (1).

x̂k = x̂−
k +Kk(z̃k −Hx̂−

k ) (1)

For a detection box whose confidence score cz is lower
than threshold cthr, we set the target measurement by re-
placing the original detection box zk with a box closer to
the prediction box, weighted by the confidence of the de-
tection box as in Eq. (2).

z̃k =

{
zk, cz ≥ cthr

zk + (Hx̂−
k − zk) ∗ (1− cz), otherwise

(2)

It directly modifies a target measurement of the Kalman
filter. As the confidence score of a detection box is higher,
the target remains as the original detection box. In the op-
posite case, the target resembles the prediction box.

3.2. Noise Scale Adaptive Kalman Filter (NK)

To penalize a low-confidence detection box in a
matching stage, the noise scale adaptive Kalman fil-
ter (NSAK) [11] is utilized in ConfTrack additionally. How-
ever, since the original NSAK multiplies raw confidence cz
to a measurement space noise covariance R between 0 and
1, it cannot amplify the noise. Therefore, we modify the
original NSAK to multiply an amplifying factor α to make

the range of the value multiplied to R greater than one as
in Eq. (3).

R̃k = R ∗ (1− cz) ∗ α (3)

The proposed amplified measurement space noise co-
variance R̃k is more suitable for making the Kalman gain
value smaller than prior work [11] when a confidence score
of a detection box is low. The amplifying factor is a sen-
sitive number. If it is too large, the tracker can over-rely
on the predictions of the Kalman filter, making it unable
to track the nonlinear motion of a person. Therefore, cur-
rently, we maintain this value as a hyperparameter that can
vary depending on the dataset.

3.3. Constant Box Prediction on Lost Track (CP)

To prevent the effect of unstable box size variation, we
adjust the box size variation of the lost track to zero in-
spired [30]. When a confirmed track becomes a lost track,
the matched detection box used for a lost track contains
noise (low-confidence). Since the Kalman filter predicted
the wrong box at the noisy detection box, we assumed that
the mispredicted box’s width and height contributed more
to tracking failure than the mispredicted box’s position.

The state of the Kalman filter we use is defined as
[x, y, w, h, ẋ, ẏ, ẇ, ḣ], where x, y are the center point of the
bounding box and w, h are width and height of that box.
Therefore, we set ẇ, ḣ of a lost track to zero before the
Kalman prediction stage. It allows the Kalman filter to keep
the width and height of the predicted box.

3.4. Confidence Fused Cost Matrix (CF)

For robust tracking operation in the ID matching process,
the confidence-fused cost matrix (CF) is applied inspired
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BYTETrack [44]. The sequences for obtaining the confi-
dence fused cost matrix Cfused from original cost matrix
Corg are described as from Eq. (4) to Eq. (6).

Sorg = 1− Corg (4)

Sfused = Sorg ∗ Cz (5)

Cfused = 1− Sfused (6)

First, calculate the similarity matrix Sorg as in Eq. (4).
Second, multiply a confidence matrix Cz composed of the
confidence scores of the detection boxes as in Eq. (5). Fi-
nally, turn the confidence fused similarity matrix Sfused

back into confidence fused cost matrix Cfused as in Eq. (6).
Unlike previous studies [1, 7, 24, 44] that applied the above
fusing method only to the IoU-based cost matrix, we also
apply it to the ReID feature-based cost matrix.

3.5. Cascade Matching with Low-Confidence
Track (LM)

In a location where an FP box is detected in the current
frame, the FP box is able to be detected again in the vicin-
ity of that location in the next frame. Therefore, there is
a high possibility that the track initialized from the FP box
of the current frame will be immediately matched with the
FP box of the next frame and will become a wrong con-
firmed track. Due to the FP issue, previous studies have
not adopted the track initialization from the low-confidence
detection box [44]. However, we solve this problem with
a novel cascade matching (LM ), which separates match-
ing candidates so that the low-confidence track does not
match the low-confidence detection. The proposed match-
ing method is described in Algorithm 1.

ConfTrack selects only tracks and detections with high
confidence as candidates in the first matching. Therefore,
ConfTrack forms the track candidates by joining confirmed
tracks and high-confidence tentative tracks and comprising
the detection candidates only using high-confidence detec-
tions preferentially. In the second matching step, ConfTrack
matches tracks that were not matched in the first stage and
low-confidence detections like the BYTETrack matching
method [44]

However, in the case of LM, low-confidence tenta-
tive tracks and high-confidence detections that were not
matched in the first stage are selected as matching candi-
dates. Among the low-confidence tentative tracks, we con-
firmed that there are overlapping objects with unmatched
tracks in the second matching step. Therefore, ConfTrack
regards these tracks as duplicates and deletes them through
non-maximum suppression (NMS) by IoU threshold △d.
After that, ConfTrack matches the remaining tracks with
unmatched detection candidates from the first stage.

Algorithm 1: Proposed cascade matching
Input: confirmed tracks Tconfirm,

high confidence tentative tracks Thigh−tent,
low-confidence tentative tracks Tlow−tent,
high confidence detections Dhigh,
low-confidence detections Dlow,
first matching threshold △f ,
second matching threshold △s

duplicate track threshold △d,
low-confidence matching threshold △l,
track max age σ

Output: updated set of tracks Tu
1 Tconfirm ← Tconfirm ∪ Thigh−tent

2 Tu ← Tconfirm ∪ Tlow−tent

/* First matching */
3 C1st = Cost1st(Tconfirm, Dhigh)
4 Associate Tconfirm and Dhigh using C1st, △f

5 Tconf−remain ← remaining tracks from Tconfirm
6 Dhigh−remain ← remaining detections from Dhigh

/* Second matching (BYTE) */
7 C2nd = Cost2nd(Tconf−remain, Dlow)
8 Associate Tconf−remain and Dlow using C2nd, △s

9 Tconf−remain ← remaining tracks from
Tconf−remain

10 Dlow−remain ← remaining detections from Dlow

/* Low-confidence track matching */
11 Cdup = Costdup(Tlow−tent, Tconf−remain)
12 check duplicate tracks using Cdup, △d

13 Ttent−valid ← not duplicate tracks from Ttentative
14 Clow = Costlow(Ttent−valid, Dhigh−remain)
15 Associate Ttent−valid and Dhigh−remain using

Clow, △l

16 Ttent−remain ← remaining tracks from Ttent−valid

17 Dhigh−remain ← remaining detections from
Dhigh−remain

/* Unmatched track management */
18 Tu ← Tu \ Ttent−remain

19 for t in Tconf−remain do
20 if t.age ≥ σ then
21 Tu ← Tp \ t

/* initialize new tracks */
22 Dremain ← Dhigh−remain ∪ Dlow−remain

23 for d in Dremain do
24 t← track(d)
25 Tu ← Tu ∪ t

26 return Tu
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4. Experiments
4.1. Datasets

The MOT17 is the most popular dataset for evaluating
MPT algorithms with a stationary or moving camera [26].
While the MOT17 dataset had been collected in general and
various environments, the MOT20 dataset focuses on more
complicated data for crowded environments [10]. MOT17
and MOT20 datasets are provided as ’train’ and ’test’, so
we construct a validation set by dividing the ’train’ data
in half as [44] did. The DanceTrack dataset consists of
videos of a few people dancing in a static space and is
characterized by a lot of non-linear motion [32]. We also
use the HiEve dataset to consider more large-scale datasets
than MOT datasets and variations in resolution, the angle
at which people were photographed, and the actions people
took [13].

4.2. Metrics

Three major metrics are utilized to evaluate the proposed
method: HOTA, CLEAR, and Identity [3, 23, 29]. HOTA
consists of detection accuracy (DetA), association accu-
racy (AssA), and localization accuracy (LocA), and we use
this as a primary metric for its merit for considering both the
detection level and the trajectory level. CLEAR is the most
commonly used metric and consists of multi-object track-
ing accuracy (MOTA), multi-object prediction (MOTP), etc.
CLEAR focuses more on the detection level than the trajec-
tory level. Identity includes the IDF1 score and can evaluate
how well the tracker tracks without an ID switch. We obtain
the above metrics using the framework of TrackEval [18].

4.3. Implementation Details

Detector. ConfTrack adopts YOLOX [16] as a detector
with reference to previous studies [1, 7, 24, 40, 44]. In
addition, for experiments about ConfTrack’s compatibility
for various detectors, YOLOv7 [35] and Transformer-based
DINO [43] are used along with YOLOx, and all detectors
use weights learned on COCO dataset [21]. Furthermore,
the weights made by Zhang et al. [44] are used for the
MOT17, MOT20, and HiEve datasets, using the weights
made by Jinkun et al. [7] for the DanceTrack. Detection
boxes from every detector are filtered by NMS with a con-
fidence threshold of 0.1 and an IoU threshold of 0.7.
Feature extractor. We use the SBS-S50 model from Fas-
tReID as our feature extractor [17]. The weights made by
Nir et al. [1] are used for all used datasets. ConfTrack ex-
tracts feature only for the high-confidence detection boxes,
shortening the time compared with applying them to the en-
tire detection boxes.
Camera motion compensation. For camera motion com-
pensation (CMC), we adopt the OpenCV implementation of
the Video Stabilization module as previous studies did [1,5,

24]. For convenience, we utilize files created in advance
by [24] for MOT17, MOT20, and DanceTrack datasets.
Hyper parameters. For track management, track initial-
ization threshold ci is 0.1, high confidence tentative track
threshold cc is 0.7, and high confidence detection thresh-
old cd is 0.6. For a tentative track to be confirmed, it has
to match 3 frames in a row. A confirmed track is deleted
if it cannot match for 30 frames. For the threshold used in
CW, we set cthr to 0.7 for DanceTrack and 0.6 for other
datasets. For NK, amplifying factor α is set to 10.0 for
DanceTrack in Tab. 1 and MOT datasets where CMC is not
used in Tab. 2. For other cases, α is set to 100.0. CF is
applied only in the first matching stage. The threshold used
in the first matching △f is 0.8, and 0.6 for IoU distance and
0.25 for cosine distance are applied. In the second match-
ing, the matching threshold △s is 0.5. For LM, the threshold
△d used in duplicate track check is set to 0.7, and the match-
ing threshold △l is 0.3. We evaluated the generalization
performance of the proposed methods by using the above
values without adjusting according to the dataset. We im-
plement all the experiments using PyTorch and use a desk-
top with Intel Core i9-10900K @ 3.70GHz and NVIDIA
GeForce RTX 3090.
Post processing. We only apply a linear interpolation pro-
posed by [44] to the MOT17 and MOT20 test sets for fair
competition with the existing studies on the benchmark
as [1, 24, 44] did.

4.4. Experimental Results

Ablation study. We perform an ablation study on the
MOT17-val, MOT20-val, and DanceTrack-val datasets to
analyze the performance contribution of each novel compo-
nent of ConfTrack and combinations of that as in Tab. 1.

As shown in Tab. 1, CW and NK show a consistent
contribution. In particular, NK raises HOTA and IDF1
the most among all methods. It proves that reducing the
noise of the detection box in the updating process of the
Kalman filter makes a KFTBD tracker more stable and less
interrupted. CP alone increases all metrics in MOT17 but
slightly decreases MOTA in DanceTrack and HOTA and
IDF1 in MOT20. The reason is that CP is a method of
maintaining the Kalman filter prediction of the lost track, so
in MOT20 and DanceTrack, which have objects containing
more noise than MOT17, the prediction to be maintained is
easily affected by noise. However, if CP applies with CW
and NK that penalizes the low confidence detection box, CP
improves almost all metrics.

CF makes matching more difficult, reducing the ID
switching, which generally lowers MOTA slightly and
raises HOTA and IDF1. The effect was prominent in
the DanceTrack dataset with a small number of persons,
whereas it was negligible in MOT20 collected in a dense
environment. LM increases matching candidates, resulting
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Table 1. Ablation study on MOT17-val, MOT20-val, and DanceTrack-val datasets.

MOT17-val MOT20-val DanceTrack-val
CW NK CP CF LM HOTA IDF1 MOTA HOTA IDF1 MOTA HOTA IDF1 MOTA

68.99 81.26 77.79 64.07 81.85 82.27 56.04 56.48 89.65
✓ 70.00 82.81 78.25 64.61 82.73 82.60 56.51 57.03 89.76

✓ 70.03 83.37 78.08 65.40 83.55 82.73 57.30 57.61 89.75
✓ 69.43 81.83 77.89 63.97 81.58 82.42 56.54 56.73 89.58

✓ 69.08 81.70 77.68 64.07 81.87 82.24 56.67 57.21 89.81
✓ 69.15 81.67 77.86 64.42 81.94 83.32 56.10 56.27 89.66

✓ ✓ 70.23 84.34 78.54 64.76 82.74 82.10 56.52 56.25 89.60
✓ ✓ ✓ 70.39 84.63 78.45 64.83 82.92 82.18 57.53 57.63 89.59
✓ ✓ ✓ ✓ 70.57 84.65 78.41 64.79 82.87 82.17 57.58 57.72 89.77
✓ ✓ ✓ ✓ ✓ 70.68 84.70 78.95 65.24 83.20 83.15 57.17 57.05 89.70

Table 2. Experiment on the dependence between the proposed methods about modified Kalman filter and the CMC and ReID modules.

Method MOT17-val MOT20-val
CW NK CP HOTA ↑ IDF1 ↑ MOTA ↑ HOTA ↑ IDF1 ↑ MOTA ↑

ByteTrack

66.05 76.81 76.52 62.88 79.95 82.19
✓ 66.95 78.22 76.83 64.05 81.86 82.54

✓ 66.59 77.88 76.59 63.79 81.25 82.47
✓ 66.21 76.63 76.47 62.87 79.94 82.28

ByteTrack + CMC

68.05 79.79 77.67 63.05 80.22 82.17
✓ 68.70 81.19 78.02 64.11 82.32 82.56

✓ 68.96 81.65 78.28 65.00 83.04 82.67
✓ 68.02 79.88 77.65 63.08 80.35 82.29

ByteTrack + ReID

67.59 79.12 76.88 63.86 81.54 82.34
✓ 68.56 80.35 77.31 64.52 82.57 82.51

✓ 68.02 80.01 77.17 64.61 82.61 82.53
✓ 67.55 78.92 76.99 63.89 81.56 82.42

ByteTrack + CMC + ReID

68.99 81.26 77.79 64.07 81.85 82.27
✓ 70.00 82.81 78.25 64.61 82.73 82.56

✓ 70.03 83.37 78.08 65.40 83.55 82.73
✓ 69.08 81.70 77.68 63.97 81.58 82.42

in more matches. Therefore, contrary to CF, it improves the
performance of MOT20 but causes ID switching in Dance-
Track to decrease IDF1.

Tab. 1 shows that ConfTrack can track people well in
environments where noisy detection can occur often and in
various general situations.

Modified Kalman filter. The three novel methods (CW,
NK, CP) for the Kalman filter allow the tracker to fo-
cus more on the predicted box rather than the low confi-
dence detection box compared to the original Kalman fil-
ter. Therefore, we verify whether the proposed methods de-
pend on the CMC and ReID modules used by BoTSORT,
our baseline, to complement the linearity of the Kalman fil-
ter. As shown in Tab. 2, we test the dependence based on
ByteTrack by excluding CMC and ReID from the baseline.

We confirm that CW and NK are methods that increase
the performance of the tracker the most, regardless of CMC
and ReID modules. When NK is combined with CMC,
the performance increase is remarkable compared to other
methods. It is difficult to expect consistent performance im-
provement regardless of CMC and ReID modules when CP
is applied alone without the other two techniques.

Compatibilty to other detectors. The results of testing
whether the proposed ConfTrack is compatible with detec-
tions extracted from other detectors are shown in Tab. 3.
To use detection results with lots of noise, the weights of
all detectors used only the COCO dataset without using the
MOT17 train set. In Tab. 3, all metrics’ values are increased
with a large margin when ConfTrack is applied rather than
the baseline for all detectors.
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Table 3. Comparison between ConfTrack and baseline with 3 dif-
ferent detectors.

Method MOT17-val
HOTA IDF1 MOTA

YOLOx+Baseline 42.91 47.44 34.03
YOLOx+ConfTrack 45.17 52.89 36.90
YOLOv7+Baseline 42.76 47.92 34.06
YOLOv7+ConfTrack 45.85 53.50 37.08
Transformer [43]+Baseline 33.58 34.03 22.79
Transformer [43]+ConfTrack 36.98 40.05 26.51

We notice that the performance gain of metrics in the
current experiment is much greater than that of Tab. 1. This
shows that ConfTrack is more effective as the noise con-
tained in the detection increases.
Comparison with existing KFTBDs. We compare Con-
fTrack with other KFTBD trackers for the MOT17 and
HiEve datasets. For fairness, we all used the same detection
and left the parameter settings of the existing KFTBDs as
they were implemented. Among them, ConfTrack achieves
the highest score for all metrics except FPS. According
to Tab. 4, ConfTrack can track persons better than prior
works in a general situation where people exist. In the case
of FPS, we confirmed that it is competitive among trackers
that adopted the ReID function [1, 24, 39].

Additionally, we visually compare the track trajectories
to see how less sensitive ConfTrack is to the noise of the
detection box compared to other celebrated KFTBDs [7,24,
44]. A visualized trajectories can be seen in Fig. 3.

The examples of long-term occlusion are in the first and
second columns. People are initialized from the high con-
fidence detection box and pass through the densely popu-
lated area in the MOT17 validation set. In the case of the
existing KFTBDs, when the person passes through a dense
area, trackers are affected by a long-term occlusion with a
shrunken detection box containing much noise, and the tra-
jectories end with a much smaller box than the initial box.
Baseline continues tracking more than other KFTBD-based
trackers, but as in the second column, an ID switch occurs,
creating an incorrect trajectory. On the other hand, the pro-
posed ConfTrack is less affected by long-term occlusion, so
it was possible to create a trajectory close to GT.

The third column is an example of the trajectory of sev-
eral people in a crowded environment of the MOT20 valida-
tion set. All algorithms generate trajectories similar to GT,
except that [7] shows an interruption of the person on the
right side. However, we can see that the results from Con-
fTrack are the most stable, with the least amount of visual
jittering in the crowd scene.
Analysis of limitations. Since KFTBD-based trackers are
designed based on a linear model such as the Kalman filter,

there are still limitations on non-linear object tracking. Es-
pecially, It is quite challenging to track the person taking a
non-linear motion like the Fig. 4. The person on the Fig. 4a
moves to the left and then stops. At this time, occlusion
occurs, and tracking fails. Also, in the case of Fig. 4b, the
matching fails since the ratio and size of the box change

BYTE

OCSORT

Deep
OCSORT

Baseline

ConfTrack

GT

Figure 3. Comparative results between ConfTrack and other
KFTBD-based trackers. The top row corresponds to the start track
box of the persons selected as an example, and each column rep-
resents a trajectory created from the first box. The white box is
the first track box, and the sky blue box is the track box at the end
of tracking. The red, blue, yellow, and light green lines are the
trajectories of the top-right, top-left, bottom-left, and bottom-right
of the box, respectively.

(a) DancTrack0034 (b) DancTrack0081

Figure 4. Failure cases of ConfTrack in DanceTrack-val. The box
with a bold line is the GT, and the transparent box is the prediction
of the tracker.
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Table 4. Comparison between ConfTrack and other KFTBD methods using the same detection results.

Method with
ReID

MOT17-val HiEve-train
HOTA ↑ IDF1 ↑ MOTA ↑ FPS ↑ IDF1 ↑ MOTA ↑ MOTP ↑

SORT [4] 66.27 77.49 74.71 27.70 55.5 57.0 20.2
DeepSORT [39] ✓ 66.28 78.00 76.39 9.73 52.8 59.1 20.8
ByteTrack [44] 67.88 79.94 77.84 28.06 57.1 62.3 21.3
OC-SORT [7] 66.38 77.78 74.70 26.78 55.1 57.0 20.1
DeepOC-SORT [24] ✓ 68.26 81.15 75.20 11.17 57.9 57.1 20.1
BoTSORT [1] ✓ 69.19 82.01 78.47 12.43 59.6 62.6 20.9
ConfTrack(proposed) ✓ 70.68 84.70 78.95 12.37 62.4 63.9 21.5

Table 5. Comparison with published tracking methods on MOT20
test set of private detections.

Tracker online HOTA IDF1 MOTA
UTM [41] ✓ 62.5 76.9 78.2
SelfAT [37] ✓ 62.6 76.6 75.0
StrongSORT [12] 62.6 77.0 73.8
RTU-P2 [36] 62.8 76.8 76.5
MotionTrack [27] ✓ 62.8 76.5 78.0
BoT-SORT [1] ✓ 63.3 77.5 77.8
FineTrack [28] ✓ 63.6 79.0 77.9
DeepOC-SORT [24] ✓ 63.9 79.2 75.6
SUSHI [8] 64.3 79.8 74.3
ImprAsso [31] ✓ 64.6 78.8 78.6
ConfTrack(proposed) ✓ 64.8 80.2 77.2

while a person is crouching and jumping.

4.5. Results on Benchmark

We participated in MOT17 and MOT20 competitions us-
ing private detection with ConfTrack. In Tabs. 5 and 6,
the results of comparing the scores with existing published
state-of-the-art methods are described. For the MOT20 test
set, ConfTrack achieves the highest score in HOTA and
IDF1, even including offline algorithms. In particular, by
acquiring the highest IDF1, ConfTrack proves that it is ro-
bust to the noise of the detection box in a crowded environ-
ment and can stably track with less missing track than oth-
ers. The highest HOTA shows that ConfTrack can generate
a stable trajectory that does not easily break when occlusion
occurs frequently.

For the MOT17 test set, ConfTrack Although MOTA fell
below the baseline [1], ConfTrack ranks third for HOTA
and IDF1. If only online algorithms are considered, it is in
second place. This shows that ConfTrack performs well in
general situations such as alleys and road environments.

Table 6. Comparison with published tracking methods on MOT17
test set of private detections.

Tracker online HOTA IDF1 MOTA
UTM [41] ✓ 64.0 78.7 81.8
CBIOU [40] ✓ 64.1 79.7 81.1
FineTrack [28] ✓ 64.3 79.5 80.0
StrongSORT [12] 64.4 79.5 79.6
SelfAT [37] ✓ 64.4 79.8 80.0
DeepOC-SORT [24] ✓ 64.9 80.6 79.4
BoT-SORT [1] ✓ 65.0 80.2 80.5
MotionTrack [27] ✓ 65.1 80.1 81.1
ImprAsso [31] ✓ 66.4 82.1 82.2
SUSHI [8] 66.5 83.1 81.1
ConfTrack(proposed) ✓ 65.4 81.2 80.0

5. Conclusion

In this paper, we propose a novel KFTBD-based tracker
named ConfTrack. ConfTrack shows state-of-the-art track-
ing performance by using a detector’s low-confidence out-
puts. Since ConfTrack adopts a novel cascade matching
method to utilize the low-confidence outputs, it does not
cause tracking failure of confirmed tracks even when tracks
are initialized from low-confidence detection boxes.

According to in-depth analysis, the performance robust-
ness of ConfTrack is proven in the diverse domain of
datasets containing noise caused by a long-term occlusion
or crowd circumstance. Also, according to detector compat-
ibility and ablation studies, ConfTrack proves that it can be
considered in various tracking development environments.
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for multi object tracking in crowded scenes. arXiv preprint
arXiv:2003.09003, 2020. 1, 2, 5

[11] Yunhao Du, Junfeng Wan, Yanyun Zhao, Binyu Zhang, Zhi-
hang Tong, and Junhao Dong. GIAOTracker: A comprehen-
sive framework for MCMOT with global information and
optimizing strategies in VisDrone 2021. In ICCVW, pages
2809–2819, 2021. 2, 3

[12] Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei
Su, Tao Gong, and Hongying Meng. StrongSORT: Make
deepsort great again. IEEE Trans. Multimedia, 2023. 1, 2, 8

[13] Weiyao Lin et al. HiEve: A Large-Scale Benchmark for
Human-Centric Video Analysis in Complex Events. Int. J.
Comput. Vis., pages 1–25, 07 2023. 5

[14] Georgios D Evangelidis and Emmanouil Z Psarakis. Para-
metric image alignment using enhanced correlation coeffi-
cient maximization. IEEE Trans. Pattern Anal. Mach. Intell.,
30(10):1858–1865, 2008. 2

[15] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Detect to track and track to detect. In ICCV, pages 3038–
3046, 2017. 2

[16] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. YOLOX: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021. 1, 2, 5

[17] Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng
Cheng, and Tao Mei. FastReID: A pytorch toolbox
for general instance re-identification. arXiv preprint
arXiv:2006.02631, 2020. 5

[18] Arne Hoffhues Jonathon Luiten. Trackeval. https://
github.com/JonathonLuiten/TrackEval, 2020.
5

[19] R. E. Kalman. A New Approach to Linear Filtering and Pre-
diction Problems. Journal of Basic Engineering, 82(1):35–
45, 03 1960. 1, 2

[20] Harold W Kuhn. The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 2

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 5

[22] Weiyao Lin, Huabin Liu, Shizhan Liu, Yuxi Li, Rui Qian,
Tao Wang, Ning Xu, Hongkai Xiong, Guo-Jun Qi, and Nicu
Sebe. Human in events: A large-scale benchmark for human-
centric video analysis in complex events. arXiv preprint
arXiv:2005.04490, 2020. 2

[23] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
Torr, Andreas Geiger, Laura Leal-Taixé, and Bastian Leibe.
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Tracking objects as points. In ECCV, pages 474–490.
Springer, 2020. 2

[47] Xingyi Zhou, Tianwei Yin, Vladlen Koltun, and Philipp
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