
SC-MIL: Supervised Contrastive Multiple Instance Learning for Imbalanced
Classification in Pathology

Dinkar Juyal
PathAI Inc

Boston, USA
dinkar.juyal@pathai.com

Siddhant Shingi∗

University of Massachusetts
Amherst, USA

Syed Ashar Javed
PathAI Inc

Harshith Padigela
PathAI Inc

Chintan Shah
PathAI Inc

Anand Sampat
PathAI Inc

Archit Khosla
PathAI Inc

John Abel
PathAI Inc

Amaro Taylor-Weiner
PathAI Inc

Abstract

Multiple Instance learning (MIL) models have been ex-
tensively used in pathology to predict biomarkers and risk-
stratify patients from gigapixel-sized images. Machine
learning problems in medical imaging often deal with rare
diseases, making it important for these models to work in
a label-imbalanced setting. In pathology images, there is
another level of imbalance, where given a positively la-
beled Whole Slide Image (WSI), only a fraction of pixels
within it contribute to the positive label. This compounds
the severity of imbalance and makes imbalanced classifi-
cation in pathology challenging. Furthermore, these imbal-
ances can occur in out-of-distribution (OOD) datasets when
the models are deployed in the real-world. We leverage
the idea that decoupling feature and classifier learning can
lead to improved decision boundaries for label imbalanced
datasets. To this end, we investigate the integration of su-
pervised contrastive learning with multiple instance learn-
ing (SC-MIL). Specifically, we propose a joint-training MIL
framework in the presence of label imbalance that progres-
sively transitions from learning bag-level representations to
optimal classifier learning. We perform experiments with
different imbalance settings for two well-studied problems
in cancer pathology: subtyping of non-small cell lung can-
cer and subtyping of renal cell carcinoma. SC-MIL provides
large and consistent improvements over other techniques on
both in-distribution (ID) and OOD held-out sets across mul-
tiple imbalanced settings.

*Work done during internship at PathAI

1. Introduction

Pathology is the microscopic study of tissue and a key
component in medical diagnosis and drug development
[28]. The digitization of tissue slides, resulting in whole
slide images (WSIs), has made pathology data more ac-
cessible for quantitative analysis. However, the large size
(billions of pixels) and information density (hundreds of
thousands of cells and heterogeneous tissue organization)
of WSIs make manual analysis challenging [13, 25], high-
lighting the need for machine learning (ML) approaches
[1–3, 5, 9, 18, 21, 29]. ML techniques have been used for
predicting a patient’s clinical characteristics from a WSI.
These models predict a label or score for the entire WSI,
referred to as a slide-level prediction. Traditional ap-
proaches for handling large WSIs include the use of hand-
engineered representations or breaking the slide into thou-
sands of smaller patches [8]. Both of these approaches
require pixel or patch level annotations which are costly.
To overcome the need for patch level labels, multiple in-
stance learning (MIL) [22] has been applied to pathology
by treating patches from slides as instances that form a bag,
with a slide-level label associated with each bag. The MIL
framework thus provides an end-to-end learning approach
for problems in pathology.

Label distribution in real-world settings can vary con-
siderably depending on factors such as disease prevalence,
population characteristics and the hospital or laboratory of
origin. For example, a dataset of WSIs from a diagnos-
tic lab may have a different class distribution compared to a
dataset from a clinical trial enriched for certain disease char-
acteristics. In fact, label imbalance in pathology datasets
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Figure 1. Label imbalance in histopathology domain is present at
two levels - Dataset and Whole Slide Image (WSI). In datasets,
imbalance arises from different prevalence rates of diseases. For
a given WSI with positive label, only a small subset of patches
contribute to that positive label. This compounds the severity of
imbalance, making imbalanced classification in pathology chal-
lenging.

exists at both dataset and WSI level as shown in Figure 1.
MIL models should be robust to variations in label distribu-
tion to succeed in clinical applications and maintain physi-
cian trust. Different approaches have been proposed to deal
with label imbalance, ranging from data resampling (over-
sampling of minority classes or undersampling of majority
classes) [23,24], loss reweighting [26], selective enrichment
of minority classes in image or feature space [6], decoupling
representation learning from classification [34], and custom
loss functions [4].

Contrastive learning aims to learn representations that
maximize the agreement among positive instances, e.g., dif-
ferent augmentations of the same image, and minimize the
agreement with negative instances, e.g., other images in the
dataset [7]. In supervised contrastive learning (SCL) [16],
the contrastive loss formulation incorporates label informa-
tion by treating all instances within the same class as pos-
itive examples for a given image. SCL adopts a two-stage
learning technique where a feature extractor is learned in
the first stage using a contrastive loss, followed by learning
a classifier using the cross-entropy loss in the second stage.

This work proposes SC-MIL: a novel MIL technique to
tackle label imbalance in pathology, that integrates SCL
into the MIL framework. We take inspiration from prior
work [10, 14] which shows that a) contrastive loss learns
balanced feature spaces (i.e., feature spaces with similar
inter-class separation for all classes) compared to cross-
entropy, and b) this balance is positively related to perfor-
mance across imbalanced settings. Additionally, we use a
smooth transition from feature learning to classifier learning
in the course of training, which allows the model to learn a

Table 1. Training data-distribution of TCGA RCC sub-typing
across imbalance ratios

Classes Imbalance Ratio

1 5 10

KIRC 96 205 240
KIRP 96 41 24
KICH 96 41 24

Total 288 287 288

more discriminative latent space, aiding in imbalanced clas-
sification [31]. In the MIL setting, labels are only available
for a bag (i.e., a collection of patches) and not individual
patches. Applying SCL to patch features assumes assign-
ing a bag-label to individual patches. A prior work [19]
iteratively assigns pseudo-labels to patches from bag-level
labels. However, a single patch might not have any infor-
mation about the WSI label. For example, a malignant WSI
might have many patches which contain only normal tis-
sue. This motivates our bag-level formulation of SC-MIL
where contrastive loss is applied to the bag features. Feature
learning with bag-level contrastive loss tackles dataset im-
balance, while the multiple instance formulation addresses
imbalance within a WSI. The contributions of this work are
as follows:

1. We tackle the problem of label imbalance by proposing
a formulation that extends SCL to the MIL setting. We
investigate two training strategies for optimal feature
and classifier learning with SC-MIL.

2. We conduct an extensive study on the performance of
this technique across different degrees of label imbal-
ance on two open-source datasets: subtyping in non-
small cell lung cancer (NSCLC) and renal cell carci-
noma (RCC). We compare this to previous state-of-
the-art methods used for label imbalance and demon-
strate the effectiveness of using SC-MIL over these
methods.

3. We show substantial performance improvements with
SC-MIL on OOD data across multiple degrees of label
imbalance, making a strong case for its utility in real-
world deployment scenarios.

2. Supervised Contrastive Multiple Instance
Learning

2.1. Multiple Instance Learning

MIL is a weakly supervised learning approach that al-
lows learning and making predictions on a group of in-
stances. Unlike supervised learning, the MIL framework
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Figure 2. SC-MIL integrates supervised contrastive learning into the MIL framework. The model performs joint feature and classifier
learning on bag representations computed using an attention-based aggregation on patches. The training objective transitions progressively
from a contrastive to a classification loss.

Table 2. Training data-distribution of TCGA NSCLC sub-typing
across imbalance ratios

Classes Imbalance Ratio

1 5 10

LUAD 158 265 290
LUSC 158 53 29

Total 316 318 319

only requires labels for the group of instances, called a bag,
but not the individual instances. This is valuable in the con-
text of pathology, where a collection of patches from a WSI
can be treated as a bag and this allows learning of slide-level
predictors without the need for fine-grained patch-level an-
notations. For pooling of patches, a learnt attention based
aggregation scheme [11] has been shown to be effective and
is commonly used in end-to-end pathology models.

In the binary case, a bag is considered positive if it has
at least one positive instance and negative if there are none.
Given a set of instances X = {x0, x1, . . . xn}, the MIL
prediction p(X) is

p(X) = a(f(x0), f(x1), ....., f(xn)) (1)

where f is an encoder for instances, a is a permutation-
invariant aggregator, mapping from feature space to the

prediction space. Learnt aggregation functions like Atten-
tionMIL and its variants DSMIL [17], CLAM [20], Trans-
MIL [27], AdditiveMIL [12] have shown significant im-
provements over heuristic aggregators like Max or Mean in
various tasks [11]. We will focus on the AttentionMIL (also
referred to as ABMIL) formulation for our discussion.

The aggregator function a in AttentionMIL has two com-
ponents. An attention module m induces a soft-attention αi

over the instances and computes an attention weighted ag-
gregation of instance features to generate the bag embed-
ding b(X). A classifier h maps the bag feature to the bag
prediction.

p(X) = h(b(X)) (2)

b(X) = m(f(x0), f(x1), ....., f(xn)) =

i=n∑
i=0

αif(xi) (3)

αi = softmax(ϕm(xi)) (4)

where ϕm is a neural network with a non-linear activation.
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Table 3. Comparison of SC-MIL with other label imbalance techniques on TCGA-RCC test set for RCC subtyping (RS - Random Sampling,
CB - Class Balanced)

Dataset TCGA-RCC

Imbalance Ratio 1 5 10

Metric (%) F1 AUC F1 AUC F1 AUC

ABMIL-RS 87.17±2.03 96.13±0.96 83.40±2.52 95.6±0.99 78.23±2.82 93.26±1.39
ABMIL-CB 89.49±2.12 97.42±0.85 84.61±2.84 93.93±1.60 73.63±2.83 95.05±0.84

LDAM-DRW 89.35±1.92 97.65±0.66 83.50±2.45 94.96±1.23 80.66±2.93 93.08±1.54

SC-MIL-RS 88.67±2.21 98.13±0.67 86.30±2.03 96.83±0.66 87.42±2.07 96.40±0.94
SC-MIL-CB 90.13±2.17 97.98±0.65 85.53±2.55 96.69±0.82 81.34±2.66 96.35±1.11

Table 4. Comparison of SC-MIL with other label imbalance techniques on OOD-RCC test set for RCC subtyping (RS - Random Sampling,
CB - Class Balanced)

Dataset OOD-RCC

Imbalance Ratio 1 5 10

Metric (%) F1 AUC F1 AUC F1 AUC

ABMIL-RS 74.20±1.91 93.88±1.09 73.69±2.55 91.15±1.56 70.23±3.42 87.74±2.10
ABMIL-CB 77.33±2.55 92.79±1.48 72.31±2.33 89.49±1.65 71.38±2.88 91.82±1.47

LDAM-DRW 78.97±2.45 93.69±1.38 73.47±2.52 88.62±1.97 72.42±2.51 91.94±1.52

SC-MIL-RS 81.94±2.39 94.84±1.24 81.87±2.54 93.42±1.43 80.91±2.24 92.57±1.41
SC-MIL-CB 76.81±2.31 93.78±7.83 79.04±2.34 92.56±1.51 79.04±2.34 92.56±1.51

2.2. SC-MIL: Supervised Contrastive Multiple In-
stance Learning

SCL [16] proposes a way to leverage contrastive learn-
ing and incorporate supervision. It learns instance repre-
sentations by pulling instances from same class together
and those from different classes apart in the representation
space. In MIL, we can use SCL for learning either instance
or bag representations. Considering we only have labels
for bags and not individual instances, using SCL to learn
instance representations needs using bag labels as instance
labels, thus introducing label noise and breaking the MIL
assumption. Instead, we use SCL to learn bag representa-
tions.

Specifically, given a set of instances for a bag Xi =
{x0, x1, . . . xn}, we compute the bag representation b(Xi)
using the MIL formulation, where i denotes the index of a
bag in a given batch. We now use a non-linear multi-layer
perceptron g to generate the projection zi for the bag repre-
sentation. We then compute the SCL loss for MIL LSCL as
follows:

zi = g(b(Xi)) (5)

LSCL =
∑
i

− 1

|P+
i |

∑
zj∈P+

i

log
exp(zi · zj/τ)∑

zk∈Bi
exp(zi · zk/τ)

(6)
where P+

i denotes the positive bags sharing the same class
label as bag zi and Bi is the set of all bags in the batch
excluding bag zi.

Curriculum-based feature and classifier learning using
both contrastive and cross entropy losses has been shown
to be effective in long-tailed image classification [15]. We
apply the same approach to the MIL setting at a bag level.
For classifier learning, we use the cross-entropy loss. The
classifier branch projects the bag embedding b(X) to the
prediction p(X) as shown in Equation 2 and uses cross en-
tropy LCE to learn the classifier:

LSC−MIL = βtLSCL + (1− βt)LCE (7)

where the weight βt ∈ [0, 1] is decayed through the course
of training iterations t using a curriculum to gradually tran-
sition from feature to classifier learning.
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Table 5. Comparison of SC-MIL with other label imbalance techniques on TCGA-NSCLC test set for NSCLC subtyping (RS - Random
Sampling, CB - Class Balanced)

Dataset TCGA-NSCLC

Imbalance Ratio 1 5 10

Metric (%) F1 AUC F1 AUC F1 AUC

ABMIL-RS 82.07±2.5 91.36±1.76 81.62±2.62 89.84±2.03 77.35±3.18 89.68±2.14
ABMIL-CB 83.23±2.45 91.81±1.76 82.61±2.72 90.13±1.99 78.0±2.95 88.57±2.18

LDAM-DRW 85.8±2.28 91.9±1.78 80.91±2.91 89.89±2.13 81.56±2.79 89.14±2.15

SC-MIL-RS 87.65±2.21 94.81±1.34 86.66±2.34 92.45±1.78 84.05±2.65 91.64±1.81
SC-MIL-CB 84.85±2.52 93.14±1.65 87.02±2.29 92.21±1.87 80.37±3.02 90.96±1.93

Table 6. Comparison of SC-MIL with other label imbalance techniques on OOD-NSCLC test set for NSCLC subtyping (RS - Random
Sampling, CB - Class Balanced)

Dataset OOD-NSCLC

Imbalance Ratio 1 5 10

Metric (%) F1 AUC F1 AUC F1 AUC

ABMIL-RS 71.03±5.34 92.42±2.33 19.82±7.91 75.95±4.24 12.34±6.5 88.61±2.64
ABMIL-CB 36.3±7.97 92.54±1.93 15.58±7.04 77.25±4.41 8.14±5.57 76.71±4.01

LDAM-DRW 61.63±6.81 90.31±2.5 26.28±8.11 89.57±2.56 28.85±8.02 88.36±2.89

SC-MIL-RS 76.46±5.27 93.64±2.45 37.68±7.75 91.58±2.02 41.5±8.23 92.97±1.95
SC-MIL-CB 58.82±6.68 84.83±3.08 49.65±8.26 94.23±1.95 29.06±8.2 79.04±4.4

3. Experiments and Results

We first introduce the datasets used for experimentation.
We describe the mechanism of simulating different degrees
of imbalance in these datasets while ensuring that the to-
tal number of samples remains consistent. We then discuss
results on all datasets using SC-MIL and other baselines.
Finally, we present ablation studies to understand the trade-
offs made in terms of training supervised contrastive loss
with cross-entropy jointly vs sequentially, and the impact
of hyperparameters.

3.1. Datasets and Setup

We considered two datasets from The Cancer Genome
Atlas (TCGA) [32] - prediction of cancer subtypes in non-
small cell lung carcinoma (NSCLC) and renal cell carci-
noma (RCC). TCGA-NSCLC contains a total of 1002 WSIs
stained with H&E, 538 of which were collected from pa-
tients with the adenocarcinoma histologic subtype (LUAD)
and 464 from squamous cell carcinoma (LUSC). TCGA-
RCC contains 948 WSIs with three histologic subtypes: 158

WSIs with the label chromophobe RCC (KICH), 504 WSIs
belonging to clear cell RCC (KIRC), and 286 to papillary
RCC (KIRP).

We performed a label-stratified split of both datasets
while ensuring there is no leakage of case information
(i.e., combination of tissue source site and study par-
ticipant) across splits. The splitting ratio was 60:15:25
(train:val:test); other clinical or sample characteristics were
not used during splitting. To simulate varying degrees of la-
bel imbalance, we sampled WSIs from the available classes
to generate imbalance in the train set, while the heldout sets
were kept the same. In line with previous works [4, 31], we
used imbalance ratio ρ = maxi{ni}

mini{ni} which denotes the ratio
of number of examples of the majority class to the minor-
ity class. We experimented with imbalance ratios of 1, 5
and 10. We ensured that the number of training examples
remained consistent across different imbalance ratios to re-
move any confounding effect of the number of data points
and to enable comparison of model performance across im-
balance ratios. Since there were three classes in TCGA-
RCC, the two classes with least number of samples (KIRP
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Algorithm 1 SC-MIL Pseudocode, PyTorch-like

# f: patch level feature extractor
# m: attention module
# g: projector MLP
# h: classifier
# X: bag of patches
# Y: bag label

# load a bag X=[x_1, ..., x_n] with n patches
for X in loader:

# patch level embeddings, n-by-d
E = f(X)
# attention weights, n-by-1
attn_wts = m(E)
# bag level embedding, d-by-1
B = Sum(attn_wts*E)
# projected bag embedding
Z = norm(g(B))
# bag level predictions
P = h(B)

# t_i: the current iteration
# t: total number of iterations
beta_t = 1 - t_i/t
L_scl = scl_loss(Z, other Z_i in minibatch)
L_ce = cross_entropy_loss(P, Y)
Loss = beta_t*L_scl + (1-beta_t)*L_ce

Loss.backward()

Figure 3. Visual comparison of in-distribution (ID) and out-
of-distribution (OOD) WSIs from the cancer subtyping datasets.
The first and third rows show in-distribution TCGA WSIs from
NSCLC and RCC respectively. The second and fourth rows show
WSIs procured from a different lab site and scanner. We can see
the variations in tissue preparation and scanning which lead to sig-
nificant drops in performance.

and KICH) were treated as minority classes. The details of
the resulting dataset composition is shared in Table 1 and 2.

We also deployed all models on two OOD datasets col-

lected from different patient populations and having dif-
ferent sample characteristics for NSCLC and RCC. These
OOD datasets are acquired from other laboratories using
varying image acquisition and processing steps resulting
in visual differences from their TCGA counterparts. OOD
NSCLC has 162 LUAD and 45 LUSC WSIs, while OOD
RCC has 254 KIRC, 134 KIRP and 46 KICH WSIs. Exam-
ple images comparing ID and OOD datasets are shared in
Figure 3.

3.2. Implementation Details

We trained five models: a baseline AttentionMIL model
with random sampling (ABMIL-RS) and class balanced
sampling (ABMIL-CB), a version using label-distribution-
aware margin loss with deferred reweighting (LDAM-DRW
[4], previously shown to be successful for addressing label
imbalance in single instance classification), and our pro-
posed SC-MIL with random (SC-MIL-RS) and class bal-
anced sampling (SC-MIL-CB). Non-overlapping patches of
size 224×224 pixels were selected from tissue regions (us-
ing a separate model which masks background and artifacts)
at a resolution of 1 micron per pixel. We extracted 1.45 mil-
lion patches from TCGA-NSCLC and 768k patches from
TCGA-RCC. Bag sizes (number of patches in a bag) varied
from 24 to 1500 patches and batch sizes (number of bags
in a batch) varied from 8 to 32. Augmentations applied
included color-based augmentations (random grayscaling,
HSV transforms), gaussian blur and sharpening, horizon-
tal and vertical flips, center crops. Augmentation related
parameters were kept consistent across all techniques. An
ImageNet-pretrained ShuffleNet [33] was used to extract
features from input patches. All models were trained end-
to-end with the Adam optimizer and a learning rate of 1e-4.
SC-MIL models were trained with a temperature τ = 1,
and the training was performed jointly with cross entropy
with a linear curriculum as described in Section 2.2, with
βt = 1 at the start of training. For inference, patches were
exhaustively sampled from a WSI and the majority predic-
tion across bags was selected as the WSI-level prediction.
For RCC, macro-averaged F1 score and macro-average of
1-vs-rest AUROC was computed. Standard deviation for the
metrics was computed over 1000 bootstrapped runs on the
test set. Training and inference was performed on Quadro
RTX 8000 GPUs using PyTorch v1.11 and CUDA 10.2. The
training time for SC-MIL was comparable with other tech-
niques (10-14 GPU hours). The code, along with the trained
SC-MIL models for the three imbalance ratios on the two
datasets, is shared in the Supplementary material.

3.3. Experimental Results and Ablation Studies

3.3.1 Comparison of SC-MIL with other techniques

We compared the predictive performance of SC-MIL with
other techniques across different imbalance ratios. Table 3

7951



Imbalance Ratio 5 Imbalance Ratio 10

ID

OOD

F1
 S

co
re

F1
 S

co
re

Figure 4. Class-wise F1 score comparison for RCC subtyping: SC-MIL outperforms other methods across different imbalance ratios. The
performance gains are higher on minority classes, and they increase on moving from ID to OOD datasets.

Table 7. Comparison of Patch vs Bag-level SCL on TCGA-RCC
subtyping. All comparisons used SC-MIL-RS training and τ = 1

Ratio Method F1 AUC

1 SCL-RS 88.67±2.21 98.13±0.67
Patch SCL 82.87±2.81 97.33±0.82

5 SCL-RS 86.30±2.03 96.83±0.66
Patch SCL 79.68±2.87 94.71±1.05

10 SCL-RS 87.42±2.07 96.40±0.94
Patch SCL 79.80±2.57 94.90±1.09

and 5 show results on the NSCLC and RCC test sets re-
spectively. SC-MIL outperforms other techniques across all
imbalance ratios, and the difference is more pronounced at
higher imbalance ratios. To further stress test these meth-
ods, we also deployed these models on independent OOD

test datasets described above and the results are shown in
Table 4 and 6. We found that baseline model performance
dropped notably across imbalance ratios, highlighting the
difficulty in generalization, and the tendency of these mod-
els to overfit in an imbalanced setting. Performance im-
provements using SC-MIL persist in this OOD setting. In
Figure 4 we show the performance of different techniques
across all classes in RCC in both ID and OOD setting,
demonstrating the relative performance gain in each class.

3.3.2 Patch vs bag based SC-MIL

We conduct an experiment with a modification of SC-MIL
architecture, where the supervised contrastive loss is ap-
plied on patch level embeddings instead of bag level embed-
dings. In Section 2.2, we theorized that naively assigning
the bag level label to instances and then applying supervised
contrastive loss will result in incorrect label assignment. We
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Table 8. Impact of temperature (τ ) on single-stage training SC-
MIL-RS on TCGA-RCC subtyping.

Imb. Ratio Temp F1 AUC

1 0.1 86.24±2.35 97.85±0.60
0.5 87.88±2.37 97.87±0.72
1.0 88.67±2.21 98.13±0.67

5 0.1 86.14±2.61 97.04±0.96
0.5 88.35±2.34 97.49±0.68
1.0 86.30±2.03 96.83±0.66

10 0.1 85.60±2.37 96.09±0.97
0.5 84.85±2.30 96.06±0.78
1.0 87.42±2.07 96.40±0.94

show the results of training with such a scheme in Table
7. Patch level SC-MIL has inferior performance and higher
variance as compared to our formulation. We also observe
that the performance gap between the two models increases
with increasing imbalance ratio, providing evidence that our
bag-level formulation is more robust to the compounding
effect of label imbalance in pathology.

3.3.3 Impact of sampling

We found that SC-MIL with random sampling performs
better than class balanced sampling in most cases. We hy-
pothesize that this is due to reduced diversity in the feature
space as a side effect of oversampling the minority classes
or under sampling the majority class when using class-
balanced sampling, which ultimately hurts performance by
interfering with feature learning [31].

3.3.4 Impact of temperature

We experimented with temperature values of τ ∈
{0.1, 0.5, 1} and found that the models are generally robust
to temperature changes as shown in Table 8. We reason
about this through two desirable properties of representa-
tions learned through contrastive learning: uniformity in the
hypersphere, i.e, inter-class separation and tolerance to po-
tential positives, i.e., intra-class similarity [30]. The former
is favored by low values of temperature while higher val-
ues favor the latter. As shown in [30], in problems with a
larger number of classes, uniformity is harder to achieve and
higher values of temperature harm feature quality. In con-
trast, we see that for RCC and NSCLC subtyping with 3 and
2 classes respectively, model performance is less sensitive
to changes in temperature.

Table 9. Comparison of one-stage vs two-stage training on TCGA-
RCC subtyping. All comparisons used SC-MIL-RS training and
τ = 1

Ratio Stage F1 AUC

1 1 88.67±2.21 98.13±0.67
2 87.54±2.10 97.66±0.60

5 1 86.30±2.03 96.83±0.66
2 86.06±2.47 97.34±0.77

10 1 87.42±2.07 96.40±0.94
2 85.26±2.56 96.01±0.91

3.3.5 Two-stage vs single-stage training

We conducted an ablation by training models in a two-stage
manner, with SCL loss in the first stage for feature learning
followed by cross-entropy (CE) loss in the second stage.
We see that single-stage SC-MIL model (joint SCL and CE
training) performs better overall as shown in Table 9. This
could be due to incompatible feature learning between SCL
and CE stages in two-stage training. Using a smooth cur-
riculum allows a gradual transition from feature learning to
classifier learning, leading to superior performance.

4. Conclusion
Label imbalance in pathology is a challenging problem

owing to the highly skewed distribution of classes both at
dataset and WSI level. We propose SC-MIL, a novel in-
tegration of supervised contrastive learning into the MIL
framework to tackle this label imbalance problem. Ex-
periments show our bag-level formulation to be superior
to patch-level SC-MIL and other baselines across multi-
ple degrees of label imbalance. Moreover, these improve-
ments persist in out-of-distribution pathology datasets.We
hope that this improved generalization performance in im-
balanced settings drives adoption of ML in real-world clin-
ical applications.
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