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Abstract

This paper introduces a two-stage framework designed
to enhance long-tail class incremental learning, enabling
the model to progressively learn new classes, while mitigat-
ing catastrophic forgetting in the context of long-tailed data
distributions. Addressing the challenge posed by the under-
representation of tail classes in long-tail class incremen-
tal learning, our approach achieves classifier alignment by
leveraging global variance as an informative measure and
class prototypes in the second stage. This process effec-
tively captures class properties and eliminates the need for
data balancing or additional layer tuning. Alongside tra-
ditional class incremental learning losses in the first stage,
the proposed approach incorporates mixup classes to learn
robust feature representations, ensuring smoother bound-
aries. The proposed framework can seamlessly integrate
as a module with any class incremental learning method to
effectively handle long-tail class incremental learning sce-
narios. Extensive experimentation on the CIFAR-100 and
ImageNet-Subset datasets validates the approach’s efficacy,
showcasing its superiority over state-of-the-art techniques
across various long-tail CIL settings. Code is available at
https://github.com/JAYATEJAK/GVAlign.

1. Introduction

In the realm of computer vision, the rapid progress of
convolutional neural networks (CNNs) trained on balanced
datasets has led to remarkable advancements [22, 30, 31].
However, real-world scenarios frequently involve large-
scale datasets characterized by imbalanced and long-tailed
distributions [24, 26,37, 44]. In long-tail distributions, the
categories with a majority of samples are termed as long
classes, while those with fewer samples are termed fail
classes. This inherent data distribution imbalance poses a
significant challenge when training models for computer
vision tasks. Within this context, tail classes encounter
substantial under-representation during the training process,
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Figure 1. The performance of long, tail, and all classes is illus-
trated for two long-tail distributions as proposed in [25]. It is evi-
dent that training the Learnable Weight Scaling (LWS) layer with
cross-entropy (CE) loss leads to a reduction in performance for the
long classes, while simultaneously improving the performance of
the tail classes. In contrast, our proposed approach, which lever-
ages robust features and classifier alignment, exhibits an enhance-
ment in the performance of both long and tail classes, thereby im-
proving the overall all classes performance.

negatively impacting its recognition performance for these
minority categories [44]. Furthermore, the model tends to
exhibit bias towards long classes, due to extensive training
data available for these majority categories.

Moreover, in real-time applications, not all class cate-
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Figure 2. The leftmost figure ‘a’ illustrates the robust feature representations obtained in stage 1. Once robust representations are acquired,
the global variance is assigned across all prototypes figure ‘b’. Sample feature representations drawn using prototypes and these global
variance are then utilized to align the classifiers in stage 2. The rightmost figure ‘c’ depicts the aligned classifiers achieved after stage 2.
The global variance signifies the data covariance of the base class with the highest number of samples.

gories are concurrently accessible; data becomes available
in a continuous manner, and previous classes data might not
be accessible due to privacy or storage limitations [23]. Ex-
panding our model’s knowledge to encompass this continu-
ously evolving data is of paramount importance. In the ex-
isting literature, the process of incrementally adding these
classes to deep neural networks is referred to as class incre-
mental learning (CIL) [33]. In this context, the addition of
a set of new class information into the model is termed a
task. At the end of each task in CIL, the model is evaluated
on all the classes encountered so far. Typically, the initial
task is trained using the cross-entropy (CE) loss and is often
referred to as the base task, and gradually new classes are
added at each incremental task.

Recently, Liu et al. [25] introduced long-tail distribu-
tions into the domain of class incremental learning (CIL)
and coined the term “long-tail class incremental learning”.
This approach involves the model’s endeavour to progres-
sively learn new classes without succumbing to catastrophic
forgetting of previously learned classes from the long-tailed
data distributions at every task. Liu et al. [25] introduced
a two-stage approach to address the challenges in long-
tail CIL, where at each incremental task, the model learns
through two stages. In the initial stage, they employed con-
ventional incremental learning methods like UCIR [16] or
PODNET [11]. Subsequently, in the second stage, they
fixed the model parameters and trained an additional layer,
the learnable weight scaling (LWS) layer, using a balanced
dataset to address the issues in long-tail CIL.

To better understand the effectiveness of this two-stage
LWS framework, we conducted experiments on two long-
tail distributions as proposed by Liu et al. [25] on the CI-

FAR100 [21] dataset. Here, we take 50 classes from the
CIFARI100 dataset and partitioned it into two categories:
long classes (25 classes) and tail classes (25 classes), based
on the number of samples available. Upon fine-tuning the
model with the LWS layer using CE loss, we observed a re-
duction in performance on the long classes and a concurrent
improvement in performance on the tail classes across both
long-tail scenarios from Figure 1.

Inherent under-representation of tail classes within long-
tail representations often results in misaligned or inad-
equately defined classifier boundaries. Adjusting these
boundaries with balanced data samples can adversely af-
fect the performance of long classes. To tackle this chal-
lenge in the context of class incremental learning (CIL),
we propose a novel two-stage framework, termed G VAlign
(Global Variance-Driven Classifier Alignment). In this
framework, during the second stage, we propose aligning
all classifiers based on global variance and class prototypes,
thus eliminating the need for balanced data (which com-
pels the model to repeatedly encounter the same data for
tail classes) or additional layers. This global variance, as an
informative measure, effectively captures class properties
and it is intuitive to align the classifiers based on this infor-
mation. Importantly, incorporating this approach not only
preserves performance on long classes but also enhances
performance on tail classes. Figure 2 illustrates the clas-
sifier alignment of our proposed approach. Achieving such
alignment of the classifier through global variance requires
the presence of robust features and distinct class separations
marked by smoother boundaries. To meet this prerequisite,
we introduce the incorporation of mixup classes during the
initial stage. This strategic addition contributes to the culti-
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vation of robust feature representations, ultimately enhanc-
ing the approach’s effectiveness.

Figure 1 demonstrates that the proposed classifier align-
ment strategy, coupled with robust feature learning, en-
hances the performance of tail classes without reducing the
performance of long classes. This implies an improvement
in the overall performance across all classes. The paper
makes the following contributions:

* We introduce a novel two-stage approach, termed
GVAlign (Global Variance-Driven  Classifier
Alignment) encompassing robust feature learning
in the first stage and classifier alignment in the second
stage using global variance as a informative measure
to address the issues in long-tail class incremental
learning.

» Extensive experiments conducted on datasets CIFAR-
100 and ImageNet-Subset demonstrate the effective-
ness of our proposed approach over state-of-the-art
methods across various long-tail CIL settings.

2. Related works

This section summarises the works related to incremen-
tal and long-tail learning.

2.1. Class Incremental Learning

Class Incremental Learning (CIL) aims to progressively
acquire knowledge about new classes without relying on
task-specific information. However, learning from newly
annotated class data with abundant samples presents the
challenge of catastrophic forgetting, where the model for-
gets the representations of old class data. The CIL ap-
proaches in the literature can be categorized into three
groups based on their strategies to mitigate the problem
of catastrophic forgetting: 1) Regularization-based meth-
ods [2, 20, 32, 41] incorporate penalty-based loss terms at
each incremental step on the learnable model weights ac-
cording to their importance. 2) Distillation-based Recent
CIL approaches adopt distillation-based methods, using
teacher-student distillation loss [ 4] to mitigate catastrophic
forgetting. In Learning without Forgetting (LwF) [23], dis-
tillation loss is used alongside cross-entropy. Similarly,
iCaRL [33] combines distillation loss with older-task ex-
emplars selected through herding. Methods like BiC [38]
introduce new-class bias correction layers, and LwM [10]
introduce information-preserving penalties or attention loss
to counter model bias towards new classes. UCIR [16]
combines distillation loss with cosine normalization and
inter-class separation constraint, while PODNET [1 1] pro-
poses polled distillation loss to address catastrophic for-
getting. Some recent works [40, 46, 47] focus on non-
exemplar-based methods without access to old class exem-
plars. 3) Architecture-based methods [1, 18,28,29,34,39]

These methods modify the network’s width and depth at
each incremental step. Network expansion is often pro-
posed to learn new tasks, but this can be computationally
intensive. An alternative approach is to select sub-networks
from the entire architecture using masks [1,28,29], storing
the learned masks in memory. However, these methods re-
quire task-specific labels at inference time, which may not
always be available in practical scenarios.

In this work, both UCIR [16] and PODNET [11] serve as
stage 1 baselines in the context of Long-Tail CIL. However,
the proposed approach can also function as a module within
other CIL methods.

2.2. Long-Tail Learning

The long-tailed learning problem has garnered exten-
sive attention due to the prevalence of data imbalance is-
sues in real-world scenarios. To tackle this challenge, vari-
ous approaches have been explored to mitigate the disparity
between the distribution of majority and minority classes.
Some of the prominent techniques are: 1) Data Process-
ing Methods [4,6,7,12,13] such as over-sampling to am-
plify tail data, under-sampling to reduce head data, and
data Augmentation to extend tail data. 2) Class-level Re-
weighting [8,15,17,35] involves assigning different weights
to classes to prioritize learning from the tail classes. An-
other approach, 3) Decoupling [19,43,45], also referred to
as a two-stage approach, involves separating representation
learning and classifier learning into distinct stages to en-
hance performance on tail classes.

2.3. Long-Tail Incremental Learning

Recently, Liu et al. [25] introduced long-tail distribu-
tions into class incremental learning. They drew inspira-
tion from the decoupling strategy’s learnable weight scaling
(LWS) approach [19], wherein an additional two-stage pro-
cess involves training added layers using a balanced data-
loader. This strategy necessitates careful design of learning
approaches to effectively learn these supplementary weights
[19].

In our proposed GVAlign approach, we also employ a
two-stage strategy. However, distinct from the aforemen-
tioned method, we align the classifiers using prototypes and
covariance without the need for a balanced dataloader or ad-
ditional layers. Our strategy is more generalised due to the
exploration of the feature space through sampled data points
using global variance as informative measure, resulting in
improved alignment of the classifiers without compromis-
ing on long classes’ performance. Next, we will discuss the
proposed methodology.

3. Problem Definition and Motivation

In this section, we begin by providing a clear expla-
nation of the notations used in this paper. Subsequently,
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Figure 3. In stage 1, the model is trained using incremental learning approaches’ loss L;n., supplemented by the mixup loss Lz, t0
obtain robust features. In stage 2, the feature extractor remains fixed, and only the classifiers are fine-tuned using the global variance and

prototypes of the classes using classifier alignment loss L.

we delve into our two-stage training approach. In class
incremental learning, the model is sequentially trained
on a total of T tasks, with its data stream denoted as
{D© DM DT}, and the corresponding classes set
represented by {C(*), (V) .. C(T)}. One assumption in
CIL is there are no common classes across different tasks
ie. CW NCc® = ( when k # I. At each task ¢, the
model has access to data D) = {z;, 4,3, where n(*)
represents the number of samples in D), and y; € C).
In CIL, the number of samples for each class is the same

t)

and equal to ‘"—t)‘ however, in the case of long-tail CIL,

%
the data distribution of D*) adheres to a long-tail distribu-
tion. In both CIL and long-tail CIL, during training task ¢,
alongside D®), the model has access to an exemplar bank £
comprising a limited number of samples from earlier classes
C%t=1) and the end goal after task ¢ is to classify all the
classes seen so far i.e. C(°!). The addition of exemplar
bank £ creates more imbalance in training data and makes
long-tail CIL more challenging.

The model that learns sequentially is denoted as © =
{Fo,v}, where Fy represents the feature extractor with pa-
rameters 6, and classifiers are represented by . While
the number of parameters in the feature extractor remains
constant, the classifier layer parameters are incrementally
added for each new task to accommodate novel classes.
During the training task ¢, new classifiers () are intro-
duced alongside existing classifiers 1)(°*~1) to classify all
the classes seen so far. By using the training with data
{D® U £}, at the end of task ¢, the trained model ©*) =
{Fp, O is able to classify all classes from C(0:%).

4. Proposed G VAlign Framework

In traditional long-tail learning, two-stage methods have
shown promising results [19,43,45]. These approaches
decouple the feature extraction in the first stage and clas-
sifier tuning in the second stage using balanced sampling
techniques [19]. However, the direct application of such
methodologies to the context of long-tail CIL encounters
challenges posed by catastrophic forgetting [25]. To tackle
the issues in long-tail CIL, we introduce a novel approach
that entails learning robust feature representations in the
first stage and refining classifier alignment in the second
stage to mitigate the class imbalance problem. In the fol-
lowing sections, we elaborate on our stage 1 and stage 2
training procedures. Figure 3 shows the overall idea of our
proposed two-stage approach.

4.1. Stage 1: Robust Feature Learning

Inspired by [25], we have incorporated conventional CIL
techniques, such as UCIR [16] and PODNET [!1], into
stage 1 to address class incremental learning. However, it’s
essential to note that our approach is not limited to these
specific methods; we are adaptable to any CIL technique for
stage 1. In each incremental task, the loss computed by CIL
methods is denoted as L;,.. As mentioned earlier, robust
feature space representations are crucial for effectively tack-
ling long-tail CIL challenges. To bolster the robustness of
features at this stage, in conjunction with £;,,., we propose
the utilization of mixup loss [42]. This implicitly accounts
for the incremental stages and complements the classifier
tuning stage.

Suppose we have (,,,ym) and (z,,%,) from D®),
where z,,, and z,, represent images and y,,, and y,, are one-
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hot labels. We formulate the mixup samples and labels as
follows:
T=Atpm+ (1= Nz, (1)

Y= Aym + (1 - )‘)yn 2

Here, A is drawn from a Beta distribution, i.e., A\ ~
Beta(1,1). The mixup loss is then calculated as L, =
Lop(T,7), where Lop(z,y) = — S yr log (po) is
the cross-entropy loss calculated for for K classes. p, =
O©® () represents softmax outputs of the model. The total
loss for stage 1 is

£stagel = ‘Cinc + Emim 3)

4.2. Stage 2: Global Variance-Driven Classifier
Alignment

In the second stage, we use the class prototypes and the

estimated global variance to perform the classifier align-
ment as described below.
Construction of Proto Bank: Following the completion of
stage 1 training, we proceed to compute a comprehensive
class prototype bank denoted as P. The objective of this
prototype bank is to facilitate the alignment of classifiers
in stage 2 and constructed using prototypes of all classes
seen so far. Specifically, for each class k, the corresponding
class prototype P is calculated using the following equa-
tion:

Liy—r) Fo(x) 4)

szNi >

b {x,y}e(DOUE)

where N, represents the number of samples in k" class,
and the indicator variable I,y equals 1 if the sample
belongs to the k" class (i.e. y = k).

Estimation of Global Variance: In scenarios with
long-tail data distributions, relying on tail classes for
variance calculation can result in an inaccurate variance
estimate that does not accurately capture the central ten-
dencies of the class. To address this, the proposed approach
uses the class with the largest number of samples during
the base task (tf = 0) for global variance estimation. By
aligning all classifiers based on this reliable estimate, we
significantly enhance the model’s capacity to generalize

and discriminate across diverse class distributions. The
global variance . is computed as follows
1
Yo = X, — X)X, - xX)T 5
R ;( I NG

where X is the matrix that contains data points from the
class with the highest number of samples and X is the mean

Algorithm 1: Proposed GVAlign Framework for
Long-Tail Class Incremental Learning
Input: © = {Fp, 9} + Model;
{D© DM DT} < Data stream;
e1+ No.of epochs in stage 1;
e No.of epochs in stage 2;
& = {} + Empty exemplar buffer;
fort < 0toT do
DO = {z;,y:}
fore <~ 1t0e; do
B = SampleMiniBatch(D® U £);
001 — 400 (F,(B));
Line = IncrementalLoss (B3, 0(91));
Lmiz = MixUpLoss(B);
© + UpdateParameters(L;nc + Loniz);

P < CalculatePrototypes(D*) U £);
if r=0 then
| ¢ = GlobalVaraince(D(®);

for e < 1to ey do
P’ < SampleProtoFromGlobal Var(P, ¥¢);
OW0:) — (0:0) (p1;
L., = ClassifierAlignLoss(O(%));
(0) « UpdateParameters (L. );

| € < UpdateExemplars(D"));

return ©;

vector of those samples. N¢ is the number of samples in
that class.

Classifier Alignment: This stage 2 training involves lever-
aging the computed global variance ¥ as an informative
measure to explore the feature space around the prototypes
P of all classes. This exploration aids in aligning the
classifiers effectively, facilitating improved classification
performance. At this stage only classifiers are tuned using
pseudo-augmented samples P’ ~ N(P,Xq) generated
from normal distribution by employing prototypes as
means and the global variance as covariance information.
The classifier alignment loss calculated during this stage as
follows

K
Lea=— > > dxlog(® " (q)) 6)

q € P k=1

where ¢ represents the prototype one-hot label and K rep-
resents the all classes seen so far. The exemplar set £ is up-
dated using herding [33] technique. which is a commonly
employed technique in CIL approaches to store exemplars.
The complete training procedure is summarized in Algo-
rithm 1.
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Long-tail distribution type — Ordered long-tail Shuffled long-tail
Method | CIFAR-100 ImageNet-Subset™® CIFAR-100 ImageNet-Subset*
5tasks 10 tasks 5Stasks 10 tasks | 5tasks 10 tasks 5tasks 10 tasks
UCIR 42.69 42.15 56.45 55.44 35.09 34.59 46.45 45.31
UCIR + LWS (ECCV 2022) 45.88 45.73 57.22 55.41 39.40 39.00 49.42 47.96
UCIR + GVAlign (Ours) 47.13 46.82 58.08 56.68 42.80 41.64 50.69 47.58
PODNET 44.07 43.96 59.16 57.74 36.64 34.84 47.61 47.85
PODNET + LWS (ECCV 2022) | 44.38 44.35 60.12 59.09 36.37 37.03 49.75 49.51
PODNET + GVAlign (Ours) 48.41 47.71 61.06 60.08 42.72 41.61 52.01 50.81

Table 1. Experimental results on long-tail class incremental learning (* signifies that we have rerun all experiments on the Imagnet-Subset
100 dataset. Comprehensive dataset details and data can be found in the GitHub repository for reproducibility).

5. Experiments

In this section, we discuss the datasets used, implemen-
tation details, and the results obtained in both long-tail and
conventional CIL settings.

5.1. Datasets and Evaluation Protocol

To evaluate the efficacy of our proposed framework,
we conducted experiments using two benchmark datasets
specifically designed for long-tail CIL [25]: CIFAR100 and
the ImageNet Subset. For a comprehensive and fair compar-
ison, we adopted the data task splits recommended in [25],
utilizing 50 classes for the base task. Then in the 5-task
configuration (T=5), we progressively introduced 10 new

classes during each incremental task i.e. (50—10—---—10).
Similarly, in the 10-task setup (T=10), we incorporated 5
new classes in each incremental task i.e. (50 —5—---—35).

Our approach followed the same long-tail distributions as
proposed in [25].

CIFAR-100: This dataset comprises 50,000 training im-
ages and 10,000 test images, each image consisting of
32x32 pixels. These images are distributed across 100
classes.

ImageNet Subset: The ImageNet Subset consists of 100
classes, sampled from the larger ImageNet dataset [22]. All
images were resized to 256x256 pixels and subsequently
randomly cropped to 224x224 pixels during the training
phase. We evaluated all methods on this dataset to ensure
reliable and accurate evaluation.

We employ the widely recognized CIL evaluation metric,
average incremental accuracy [27,33]. Here, let ¢ represent
the task ID, where ¢t € 0,1,..., 7. We define Accf,,, as the
model’s accuracy on the test data of all tasks from 0 to n af-
ter learning task ¢, where n < t. Consequently, upon com-
pletion of task 7', the average incremental accuracy is com-
puted as % ZtT:o Acck.,. We utilized the same model archi-
tectures as in [25] to ensure a fair comparison. Specifically,
ResNet-32 was employed for CIFAR-100, while ResNet-18
was chosen for the ImageNet Subset dataset.

Our training protocol involved initiating the learning rate

at 0.1 and subsequently reducing it by a factor of 10 after
the 250", 350", and 450" epochs, resulting in a total 500
epochs for CIFAR-100 training. As for the ImageNet Sub-
set, the learning rate was set to 0.1 at the start and reduced
by a factor of 10 after the 30*" and 60*" epochs, resulting
in a total of 90 epochs for training. Throughout all experi-
ments, a fixed batch size of 128 was used. During 2-stage
classifier alignment training, we tuned only classifier layers
with a learning rate of 0.1 for 100 epochs. We considered a
standard of maximum 20 exemplars for each class to ensure
a fair comparison with other methods. We used NVIDIA
RTX A5000 24GB card to run all our experiments.

5.2. Results on Long-Tail CIL

First, we report the results on the long-tailed CIL task,
which is the main focus of this work. We integrate the
proposed GVAlign framework with UCIR and PODNET as
in [25] and compare with the state-of-the-art approach [25],
which is the only work which addresses the challenging
long-tailed CIL to the best of our knowledge. We observe
from Table 1 that across both the datasets (CIFAR100 and
ImageNet Subset) and different task setups (T=5 and T=10),
our approach consistently achieves higher average incre-
mental accuracy over the state-of-art long tail CIL method.
This improvement is consistent for both ordered and shuf-
fled long-tail distributions. Specifically, when combined
with the UCIR approach on shuffled long-tail distributions,
our method boosts CIFAR100 accuracy by 3.4% and Ima-
geNet Subset accuracy by 1.2% in the 5-task scenario. On
ordered long-tail distributions, we see a 1.25% increase for
CIFAR100 and a 0.86% increase for ImageNet Subset in the
same S-task scenario. Notably, these gains are even more
significant when PODNET serves as the baseline for CIL.
With shuffled long-tail distributions, our approach achieves
a remarkable 6.35% improvement on CIFAR100 and a sub-
stantial 2.26% increase on ImageNet Subset in the 5-task
context. Similar improvements are seen in ordered long-tail
scenarios, with gains of 4.03% on CIFAR100 and 0.94% on
ImageNet Subset.
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CIFAR 100 ImageNet-Subset™

Method
Stasks 10tasks 5tasks 10 tasks

UCIR 61.15 58.74 69.11 65.15
UCIR + LWS (ECCV 2022) 63.48 60.57 68.83  66.47
UCIR + GVAlign (Ours) 64.11 61.23 70.05  66.60
PODNET 63.15 61.16 67.92  62.39
PODNET + LWS (ECCV 2022) 64.58 62.63 6943  62.12
PODNET + GVAlign (Ours) 65.73  63.72 68.85  62.42

Table 2. Experimental results on traditional class incremental
learning (* signifies that we have rerun all experiments on the
Imagnet-Subset 100 dataset).

5.3. Results on Conventional CIL

Conventional CIL is also inherently imbalanced, since
during the incremental stages, there might be very few ex-
emplars from the earlier classes available along with large
number of examples of the new classes. Thus, it is impor-
tant to also evaluate the effectiveness of the approaches de-
veloped for long-tailed CIL setting for the conventional CIL
scenario. Table 2 reports the average incremental accuracy
achieved by the proposed GVAlign framework in conven-
tional CIL setups. We observe that the proposed approach
doesn’t just excel in long-tail distributions; it also improves
conventional CIL.

6. Analysis & Ablation Studies

In this section, we delve into the analysis of our proposed
approach. Firstly, we analyze the alignment of classifiers
using Voronoi plots [3]. Next, we examine the impact of the
number of exemplars in the context of long-tail CIL. No-
tably, our approach consistently outperforms state-of-the-
art techniques in various long-tail CIL scenarios, irrespec-
tive of the number of exemplars utilized. Subsequently, we
explore the benefits of our approach in a conventional set-
ting where all new classes contain equal samples. We ob-
serve that due to robust learning and feature space explo-
ration, our method enhances the separation between seman-
tically similar classes. This improvement alleviates poten-
tial confusion between these classes, ultimately leading to
enhanced performance.

6.1. Analyzing Classifiers

Our approach’s key contribution lies in effectively align-
ing classifiers during incremental learning for long-tail data
distributions. To highlight the significance of this align-
ment, we utilize Voronoi plots to illustrate the learning of
new classes during task 1 in the context of shuffled long-tail
CIL. Voronoi plots visually illustrate feature space regions
assigned to different classes, providing insights into clas-
sifier behavior. We present visualizations for two different
settings: T = 5, where 10 new classes are introduced, and
T = 10, where 5 new classes are added in Figure 4. The
alignment of classifiers results in a tangible enhancement in

x0T
‘e 1
n
I

(a) Scenario T'" = 5: Addition of 10 new classes (before alignment
33.91%, after alignment 38.88%).

(b) Scenario 7" = 10: Addition of 5 new classes (before alignment
43.61%, after alignment 50.01%).

Figure 4. Voronoi class boundaries in the shuffled long-tail CIL
scenario after task 1. The symbols ‘X’ indicate the initial classi-
fiers and ‘%’ represents the aligned classifiers. Class boundaries
before alignment are marked by —— and after alignment marked
by —.

accuracy for the newly introduced classes. Specifically, in
the T=5 scenario, the classification accuracy on taskl im-
proves from 33.91% to 38.88%. Similarly, in the T=10 sce-
nario, the accuracy rises from 43.61% to 50.01%.

6.2. Effect of Number of Exemplars

To understand the effect of the number of exemplars,
we conduct extensive experiments with exemplar counts of
{5,10, 15,20}, as depicted in Figure 5. Across both shuf-
fled and ordered long-tail scenarios, our approach consis-
tently outperforms existing long-tail CIL methods. Notably,
it also exhibits strong performance in conventional CIL set-
tings. As the number of exemplars increases, our approach’s
ability is even more pronounced due to the precise position
of prototypes in the representation space.
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Figure 5. Illustrates how our proposed approach consistently improves with an increased number of exemplars, benefiting from precise

prototype positioning as the number of exemplars increases.
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Figure 6. Shows the average accuracy of clear and confusing se-
mantic groups.

6.3. Separating Semantic Similar Classes

The difference in performance among different train-
ing classes depends not only upon the characteristics of
the training data (like number of examples per class), but
also on the classes themselves. For example, few classes
maybe semantically very close [©] and thus inherently con-
fusing, which can often lead to reduced performance [5,36],
even with the same number of training data per class. The
proposed framework, though developed primarily for long-
tailed setting, can also seamlessly account for these other
challenges, since it tries to push the classifiers apart in the
second stage. To verify this, we divide the total 50 base
classes into two groups: (i) clear semantic group, where 25
classes are well-separated from the rest, and (ii) confusing
semantic group, where the performance of these 25 classes
is adversely affected due to confusion with other classes.
This grouping is based on the sorting order of individual
class performances. Figure 6 illustrates the average accu-
racy of these two groups. We observe that our proposed ap-
proach significantly improves performance, particularly for
the confusing semantic group, justifying its effectiveness.

6.4. Ablation on Proposed Losses

Table 3 presents an analysis of the individual compo-
nents of our proposed methodology. Clearly, the incorpora-
tion of losses at different stages contributes to the improve-
ment of feature representations and the alignment of classi-
fiers, leading to an enhancement in overall performance.

Distribution type — Ordered long-tail ~ Shuffled long-tail

UCIR L,z Leq Stasks 10tasks 5tasks 10 tasks
v X X 42.69 42.15 35.09 34.59
v v X 4531 44.84 39.11 38.55
v v v 47.13 46.82 42.80 41.64

Table 3. Presents an ablation study showcasing the impact of in-
troducing different losses in our proposed methodology.

Conclusion

In conclusion, this paper presents a significant ad-
vancement in addressing the challenges of long-tail class
incremental learning through a novel two-stage framework.
Our approach excels in both learning new classes progres-
sively and mitigating catastrophic forgetting in the presence
of imbalanced data distributions. By incorporating robust
feature learning in the first stage and harnessing the power
of global variance as an informative measure in the second
stage, we achieve effective classifier alignment without
resorting to data balancing or additional layer tuning.
Extensive experimental validation on various datasets
corroborates the superiority of our approach compared
to SOTA methods in various long-tail class incremental
learning scenarios.
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