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Abstract

Reconstructing a user-specific hand avatar is essential
for a personalized experience in augmented and virtual re-
ality systems. Current state-of-the-art avatar reconstruc-
tion methods use implicit representations to capture de-
tailed geometry and appearance combined with neural ren-
dering. However, these methods rely on a complicated
multi-view setup, do not explicitly handle environment light-
ing leading to baked-in illumination and self-shadows, and
require long hours for training. We present a method to
reconstruct a hand avatar from a monocular RGB video
of a user’s hand in arbitrary hand poses captured under
real-world environment lighting. Specifically, our method
jointly optimizes shape, appearance, and lighting parame-
ters using a realistic shading model in a differentiable ren-
dering framework incorporating Monte Carlo path tracing.
Despite relying on physically-based rendering, our method
can complete the reconstruction within minutes. In contrast
to existing work, our method disentangles intrinsic proper-
ties of the underlying appearance and environment lighting,
leading to realistic self-shadows. We compare our method
with state-of-the-art hand avatar reconstruction methods
and observe that it outperforms them on all commonly used
metrics. We also evaluate our method on our captured
dataset to emphasize its generalization capability. Finally,
we demonstrate applications of our intrinsic hand avatar on
novel pose synthesis and relighting. We plan to release our
code to aid further research.

1. Introduction

A user-specific digital hand avatar is essential to real-
ize a realistic, immersive experience in virtual reality (VR)
and augmented reality (AR) applications. In our context,
an avatar is represented by geometry (e.g. triangle mesh)
and appearance (e.g. spatially-varying material). Accurate
geometry of the user’s hand shape is essential for precise in-
teraction with virtual objects, whereas the realistic appear-

Figure 1. Given a monocular RGB video of a user’s hand, we
reconstruct the user’s hand geometry and appearance, along with
environment lighting. Our reconstructed intrinsic hand avatar can
be posed and rendered under novel lighting.

ance of the user’s hand texture plays a vital role in providing
a sense of embodiment to the user. We focus on the problem
of automatically generating such a personalized hand avatar
from a monocular video.

Recently, there has been a lot of research in creating dig-
ital avatars of humans [7, 13, 15, 20, 21, 45, 48, 59, 67] and
faces [16–18, 68]. However, hand avatar reconstruction has
unique challenges, like large self-occlusion, contact, and
substantial pose variation compared to full-body and face.
Further, hands play a much more critical role in an interac-
tive experience, so developing methods tailored for recon-
structing hand avatars is essential.

There has been vast research in hand pose estima-
tion [2,6,10,23,26,38,49–51,55,56], but relatively less ad-
vances towards modeling hand appearance [8,11,24,28,42].
Traditional approaches to hand appearance modeling learn
a PCA basis of textures [28, 42] from a large scan of var-
ious hands. However, these approaches cannot generalize
to unseen hands. Recent advances in neural rendering have
enabled learning digital hand avatars from monocular [15,
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18, 20, 21, 24, 59, 67, 68], or multi-view videos [8, 11, 45].
However, these approaches do not disentangle lighting from
the intrinsic appearance of the user’s hand and thus fail to
account for self-occlusion.

We propose a method to reconstruct a hand avatar from
a monocular RGB video of a user’s hand acquired under
real-world environment lighting, within minutes. Our avatar
representation comprises a parametric triangle mesh and
spatially-varying physically-based materials [30]. Finally,
we model lighting using a high dynamic range environment
light probe to disentangle the intrinsic appearance of the
user’s hand and illumination. Our method jointly optimizes
a parametric mesh, material, and lighting using a realis-
tic shading model in a differentiable rendering framework.
We use a differentiable deferred renderer [19] which com-
putes direct illumination using Monte Carlo path tracing.
This enables us to generate realistic shading (c.f. HandA-
vatar [8]) under more general real-world environments (c.f.
HARP [24]).

Our method requires only a short monocular video ( 50
frames) such that each region on the hand is visible in at
least some frames.

We compare our method with state-of-the-art hand avatar
reconstruction methods on a publicly available dataset and
observe that it outperforms them on all commonly used met-
rics.

We summarize our primary contributions below

• We propose a method to reconstruct an intrinsic hand
avatar from monocular RGB video of the hand in ar-
bitrary poses captured under real-world environment
lighting. Our method jointly optimizes hand shape and
appearance in a differentiable rendering framework in
minutes.

• We extend the widely used MANO hand model by lin-
early subdividing it and incorporating per-vertex off-
sets to capture fine-level details.

2. Related Work
2.1. Explicit Models

Over the years, there have been various models to repre-
sent the human hand. OpenPose [46], MediaPipe [53] esti-
mate landmark points on the hand from RGB images to rep-
resent the pose of the skeleton. Gorce et al. [12] introduced
the idea of analysis-by-synthesis to estimate the full hand
surface represented by a triangle mesh. With the advent
of the parametric hand mesh model MANO [43], a large
number of methods [6,10,69] regress the MANO shape and
pose parameters. To allow more degrees of freedom, Ku-
lon et al. [26] regressed vertices using mesh convolutions.
There is also a large literature on depth-based hand recon-
struction [23, 50, 51]. However, all of these above methods

focus on the user’s hand shape and pose, and do not capture
its appearance. Our geometric model leverages a paramet-
ric hand mesh model to regularize the optimization and also
allows modification to the mesh to capture fine-level details
specific to the user.

Inspired by 3D morphable face model (3DMM) [4],
HTML [42] proposes a linear appearance model for infer-
ring UV texture, and NIMBLE [28] infers an albedo, spec-
ular and normal map. However, these methods are limited
by their training set and thus cannot capture unseen hands
whose appearance lies outside their dataset. Our method di-
rectly infers the intrinsic color of the user’s hand from im-
age observations and thus generalizes better than existing
PCA-based textures.

2.2. Implicit Models

The recent success of neural implicit representations has
led to several methods to reconstruct 3D geometry and ap-
pearance from image collections. NeRF [32] and follow-
ups [14,29,36,39,41,48,52,61] use a volumetric represen-
tation to calculate the radiance accumulated along a ray by
marching through a 5D light field. However, these methods
fail to capture accurate geometry because of the ambiguity
of volume rendering. Implicit surface reconstruction meth-
ods(VolSDF [60], UNISURF [37], NeuS [57]) leverage an
occupancy network or signed distance function to model a
more accurate geometry. Apart from the computationally
expensive ray marching strategy for rendering, these meth-
ods cannot handle dynamic scenes. To handle deformable
shapes, SNARF [9] proposed forward deformation fields
from canonical space to deformed space and uses iterative
root finding to find correspondences. SelfRecon [20], In-
stantAvatar [21] uses this idea to reconstruct human avatars,
while IMAvatar [68] constructs face avatars from monocu-
lar video. LISA [11], the first method to learn an implicit
shape and appearance of hands from multiview images, uses
kinematic transformations of the bones to handle deforma-
tions. While these implicit surfaces can be converted to
meshes for traditional graphics applications, this is subopti-
mal.

More recently, some methods [15, 18, 67] combine ex-
plicitly mesh-based representation with deformation net-
works and appearance networks for compatibility with stan-
dard graphics pipelines. However, none of the above
methods handle lighting, which leads to incorrect shad-
ows and baked-in illumination in the albedo. HandA-
vatar [8] attempts to mitigate this problem by introduc-
ing a self-occlusion-aware shading field which comprises
an albedo field and an illumination field. However, their
network requires a large training dataset per user per envi-
ronment, and thus inference suffers on out-of-distribution
data. HARP [24] avoids any neural networks by using an
analysis-by-synthesis approach to model hand shape and
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appearance. Specifically, it uses a mesh-based paramet-
ric model, a vertex displacement map, a normal map, and
albedo together with a shadow-aware differentiable render-
ing to obtain a personalized hand avatar from monocular
video. However, it can only handle a single light source
and has limited texture resolution. Our method also uses an
analysis-by-synthesis approach to generate a personalized
hand avatar from monocular video, but can handle environ-
ment lighting and produces a more detailed texture com-
pared to HARP, and generalizes to new shapes and appear-
ances, unlike HandAvatar.

2.3. Material and Lighting Estimation

Reconstructing an object from images is the problem of
inverse rendering, which decomposes the underlying intrin-
sic properties such as geometry, material and lighting. The
forward rendering equation [22] (for non-emissive surfaces)
computes the outgoing radiance Lo at surface point x along
direction ωo by integrating the reflected light over hemi-
sphere Ω:

Lo(x, ωo) =

∫
Ω

Lin(x, ωi)f(x, ωi, ωo)(ωi · n)dωi (1)

where Lin(x, ωi) is the incoming radiance along direc-
tion ωi and f denotes the bidirectional reflectance distri-
bution function (BRDF) which describes how much light
arriving from direction ωi at x is reflected towards ωo.

Recent methods have successfully estimated lighting and
BRDF from image collections. To obtain this intrinsic
decomposition, NeRD [5] and PhySG [63] use spherical
Gaussians, NeRFactor [65] uses a low-resolution environ-
ment map to represent illumination, while Zhang et al. [66]
uses MLPs to model indirect illumination. However, these
methods require long training and inference times because
of the multiple MLPs required for representation. In con-
trast, NVDIFFREC [35] uses deferred shading and the
split-sum approximation for direct illumination but does
not model self-shadows which are crucial in hands. Fur-
ther, NVDIFFRECMC [19] evaluates direct lighting inte-
gral using Monte Carlo integration and ray tracing to model
shadow rays. However, it requires multiview images of a
static object. Our method follows the renderer from NVD-
IFFRECMC to account for self-shadows, however, unlike
NVDIFFRECMC, our method is capable of reconstructing
from a monocular video of a dynamic hand.

3. Hand Avatar Reconstruction
Given a monocular RGB video of a user’s hand perform-

ing arbitrary poses under real-world environment lighting,
our goal is to reconstruct a personalized hand avatar of the
user. Specifically, our hand avatar representation consists

of a triangle mesh to capture the user’s hand shape (geom-
etry) and spatially-varying materials (stored as 2D textures)
to capture the user’s hand appearance. We assume that ev-
ery region on the user’s hand is visible in at least one of
the frames of the video. We also assume that the hand is
illuminated under an unknown environment lighting which
we model using a high dynamic range (HDR) environment
probe.

Our method jointly optimizes a parametric mesh, mate-
rial, and lighting using a realistic shading model in a dif-
ferentiable rendering framework [19] incorporating Monte
Carlo path tracing. Our method is summarized in Fig. 2, and
each step is described in detail below; Sec. 3.1 describes the
parametric mesh used to model the hand geometry, Sec. 3.2
details the material and lighting model while Sec. 3.3 ex-
plains our deferred rendering pipeline. Finally, we explain
our optimization procedure in Sec. 3.4.

3.1. Geometry

Our parametric mesh model is based on the MANO [43]
hand model for geometry and HTML [42] for UV mapping.
The MANO model is a parameterized human hand model
described by a function of pose θ ∈ R45 (capturing local
rotation at each of the 15 joints) and shape β ∈ R10 (coeffi-
cients for the PCA shape blend shapes) returning N = 778
vertices and F = 1538 faces. Additionally, to account for
the global rigid transformation, we include global orienta-
tion and translation in the pose resulting in θ ∈ R45+6.
However, the original MANO model is too coarse to capture
detailed geometry and appearance. Inspired by Alldieck et
al. [1], we adapt MANO as follows.

Initially, we allow offsets D ∈ R3N from the template
T ∈ R3N :

M(β, θ,D) = W (T (β, θ,D), J(β), θ,W) (2)
T (β, θ,D) = T+Bs(β) +Bp(θ) +D (3)

where W is a linear blend-skinning function using the skin-
ning weights W to pose the rest-pose skeleton joints J(β)
and vertices T (β, θ,D) (obtained after pose- Bp(θ) and
shape-dependent Bs(β) deformations).

Further, to capture fine-level details, we uniformly sub-
divide the template mesh by adding new vertices on edge
midpoints and correspondingly update the parametric mesh
model. Our subdivided mesh has N = 14652 vertices and
F = 38450 faces after performing two iterations of subdi-
vision. Our extended MANO is differentiable with respect
to the geometry parameters shape β, pose θ, and offsets D,
thus enabling gradient backpropagation.

3.2. Appearance

Material We model the hand material’s reflectance using
Disney’s principled BRDF [30] which is a parametric model
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Figure 2. The input to our method is a monocular RGB video of a user’s hand. For each frame f , we initialize the pose of the MANO [43]
parametric hand model by fitting it to observed 2D joint positions [53] and use the posed mesh to segment the hand region. We extend
the original MANO model (β, θ) by subdividing and introducing offsets D to capture detailed geometry. We use a differentiable deferred
rendering pipeline: first, we rasterize the PBR material textures along with surface intersection point and normal to obtain interpolated
vertex attributes and, then, use Monte Carlo integration to estimate outgoing radiance in the presence of an environment light. Our
method jointly optimizes the geometry ({θf} , β,D), material (kd,ks,n), and lighting (modeled as HDR light probe) parameters using
an analysis-by-synthesis approach to minimize the difference between the rendered and the input image.

offering a good balance between simplicity and flexibility.
Specifically, our BRDF is parameterized by a three-channel
diffuse albedo kd, a roughness channel r, a metalness chan-
nel m and a tangent space normal map n. Since hand skin
does not resemble a metal, we clamp the metalness value m
to be low. The specular highlight color is calculated accord-
ing to ks = (1−m)·0.04+m·kd [31]. Further, following a
standard convention [35], we store these values in a texture
korm = (o, r,m), where o is left unused. Our physically-
based material model enables us to model the realistic hand
appearance of various users.

Lighting We model environment lighting using an HDR
light probe, which supplies incident radiance from all direc-
tions on the sphere. Specifically, we use a 2D floating point
texture map parameterized by spherical coordinates to rep-
resent our light probe. Our lighting representation enables
us to model real-world environment lighting which is typi-
cally found in the usage scenarios for AR/VR devices.

3.3. Rendering

We now describe how the geometry, material, and
lighting are utilized in a differentiable deferred rendering
pipeline. We first rasterize the scene into geometry buffers
(G-buffer) that include the surface intersection point and
normal, and the interpolated material parameters for each
pixel. Given the G-buffer, we now perform the shading
pass to determine the outgoing radiance. Specifically, we
use Monte Carlo (MC) integration to estimate the outgo-
ing radiance. This requires us to calculate visibility, which

is evaluated by tracing a shadow ray in the incoming light
direction. This formulation allows us to explicitly handle
self-shadows caused due to self-occlusion among fingers.

To achieve fast optimization times, we use low sample
counts per pixel and combat the inherent variance of MC in-
tegration using differentiable image denoising (SVGF [44])
and multiple importance sampling [54]. Please refer to
NVDIFFRECMC [19] for more details on sampling and de-
noising. We follow previous work in denoising for produc-
tion rendering [3] and separate lighting into diffuse cd and
specular cs terms. We denoise each term separately, creat-
ing denoised buffers D(cd) and D(cs). The final rendered
image c is obtained (see Fig. 3) as

c = kd ·D(cd) +D(cs) (4)

Note that we use a small sample count per pixel and denois-
ing only during optimization. During evaluation and for all
the images presented in the paper, we use a higher sample
count per pixel without denoising.

The rasterizer [27] and shading [19] are differentiable
and thus allow gradients to be backpropagated to lighting,
material as well as geometry parameters.

3.4. Optimization

Given a video with F frames, we jointly optimize
the mesh parameters

(
β,D, {θf}Ff=1

)
, material param-

eters (kd,ks,n) and the light probe texture using self-
supervision (analysis-by-synthesis) on the monocular RGB
video. Our optimization minimizes the sum of data and var-
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Figure 3. Our final rendered image is obtained from diffuse re-
flectance or albedo kd, diffuse lighting cd, and specular lighting
cs. (no denoising)

ious regularizer terms.

Etotal = Edata +
∑
i

ωiEi (5)

We describe each of these terms below.

Data term Our image space loss computes the L1 norm
of the error between the tone-mapped [35] (since our shad-
ing images are HDR) output rendered image c̃ and the input
reference image c̃ref , applied on tone-mapped versions. We
also use a mask loss which computes a L2 norm of the er-
ror between the silhouettes of the rendered s and input sref
images. We obtain the input image silhouette sref using the
mesh obtained during the initialization stage.

Edata = ∥c̃− c̃ref∥1 + ∥s− sref∥2 (6)

Geometry regularizer We regularize the introduced off-
sets D by adding a Laplacian mesh regularizer [47]:

Elap =
1

N

N∑
i=1

∥δi − δ′i∥2 (7)

where δi and δ′i are the uniformly-weighted differential of
the optimized and the initial mesh for a vertex vi given by
δi = vi− 1

|Ni|
∑

j∈Ni
vj , with Ni being the one-ring neigh-

borhood of vertex vi.

Material regularizer We regularize material parameters
using a smoothness loss similar to NeRFactor [65]. We de-
fine the smoothness prior for kd as

Ekd
=

∑
xsurf

∥kd(xsurf )− kd(xsurf + ϵ)∥2 (8)

where ϵ is a small random displacement vector, kd(xsurf )
denotes the value of kd at world space position xsurf at the
primary hit point on the object. We apply similar smooth-
ness priors for specular Eks and normal En maps, respec-
tively.

Additionally, we use the learned perceptual image patch
similarity (LPIPS) [64] loss to encourage perceptual simi-
larity.

ELPIPS = LLPIPS(c, cref ) (9)

Lighting regularizer We note that the prior smooth-
ness cannot disentangle material parameters and lighting.
We use a monochrome image loss between demodulated
lighting terms (i.e., before being multiplied by diffuse re-
flectance kd) and reference image cref [19].

Elight = ∥Y (cd + cs)− V (cref∥2 (10)

where Y (x) = (xr + xg + xb)/3 is a luminance operator,
and V (x) = max(xr,xg,xb) is the HSV value component.

Initialization Our method requires that the initial mesh
roughly aligns with the input image. By adopting a track-
ing algorithm, we initialize the MANO parameters (β, θ).
Specifically, we use an analysis-by-synthesis approach to
minimize the L1 distance of the detected 2D hand joint po-
sitions {j′i}21i (obtained using MediaPipe [53] and the pro-
jected 2D joint positions {ji}21i of the posed MANO mesh.

E2D(θ) =

21∑
i=1

∥ji(θ)− j′i∥2 (11)

We use this initial mesh to segment the hand region in
the input image from the background and forearm. Our data
term depends on this input segmentation mask. Finally, the
material and lighting parameters are randomly initialized.

Implementation We minimize Etotal using SGD opti-
mizer for frame-specific parameters

(
{θf}Ff=1

)
and Adam

optimizer [25] for other parameters. Our optimization strat-
egy sequentially updates parameters for each frame, over
multiple epochs, i.e. in each epoch (i.e. over all frames), we
perform F update steps. We clamp the material parame-
ters after each iteration to ensure physically valid textures.
We use a higher learning rate for lighting parameters and
a lower learning rate for material parameters. The values
of the weights used in the regularization terms of our en-
ergy term mentioned in Tab. 1. We use PyTorch [40] for
optimization. Given a monocular video with 100 frames of
resolution 1024 × 1024, our method with 100 epochs can
reconstruct a reasonable hand avatar within 10 minutes on
an NVIDIA GeForce RTX 3080 Ti.

4. Experimental Results
We evaluate our method on the task of hand avatar re-

construction and compare it with state-of-the-art methods.
Further, to highlight the impact of our method, we demon-
strate applications in novel pose synthesis and re-lighting.
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ωlap ωkd
ωks ωn ωLPIPS ωlight

1000 0.1 0.05 0.025 0.1 0.15

Table 1. Regularization weights.

4.1. Datasets

To compare with state-of-the-art methods on hand avatar
reconstruction, we use the InterHand2.6M dataset [34].
This data is captured in a dome with controlled lighting
and provides fitted MANO parameters obtained using Neu-
ralAnnot [33]. The images are centered, scaled by a factor
of 1.3 around the hand, and cropped to 256× 256.

Further, to evaluate the method on various hand shapes
and appearances, we capture our dataset using a calibrated
(known camera intrinsics) RGB camera. We ask the user
to start with a stretched hand pose and rotate their hand to
show all regions of their hand (see Fig. 1. Our dataset com-
prises approximately 1000 frames captured from 7 different
users. This dataset is challenging because of its real-world
lighting and resembles the actual set-up where AR/VR de-
vices are typically deployed.

4.2. Metrics

We report metrics focusing on the rendered image qual-
ity, including PSNR, SSIM [58], and LPIPS. Due to the
absence of ground-truth meshes for real data, we cannot
explicitly evaluate geometry reconstruction. However, the
above metrics implicitly capture geometry reconstruction
together with appearance reconstruction.

4.3. Evaluation of hand avatar reconstruction

We compare our method with previous hand avatar re-
construction methods HARP [24] and HandAvatar [8] on
the InterHand2.6M dataset. Unlike our physically realistic
shading, HARP uses shadow mapping in its differentiable
rendering pipeline and only supports a single light source.
In Fig. 4, we observe that our method produces sharper
texture details and handles shadows more accurately than
HARP. We also observe that our method accurately captures
fine geometric details as seen in the shading images in Fig. 5
whereas these details are missing in the shading images of
HandAvatar. We also see that our method produces correct
shadows when compared to the self-occlusion-aware shad-
ing field in HandAvatar.

We further evaluate our rendering result with recent
monocular methods using volume rendering (Human-
NeRF [59]) and surface rendering (SelfRecon [20]) in
Fig. 6. Unlike our fast test-time optimization (minutes),
these methods require long training times (hours).

We quantitatively evaluate our method and compare it
with prior methods in Tab. 2 and Tab. 3. We observe that

Figure 4. We compare the reconstructed hand obtained from our
method with HARP [24], which uses a similar shadow-aware dif-
ferentiable rendering in an analysis-by-synthesis approach. Unlike
the blurred output from HARP, our method accurately captures
fine-level appearance details.

Method PSNR↑ SSIM↑ LPIPS↓
SelfRecon [20] 26.38 0.878 0.142
HumanNeRF [59] 27.64 0.883 0.114
Ours 28.66 0.897 0.090

Table 2. Quantitative evaluation on InterHand2.6M 5fps dataset
(test/Capture0/ROM03 RT No Occlusion).

Method PSNR↑ SSIM↑ LPIPS↓
HARP [24] 16.157 0.866 0.167
HandAvatar [8] 29.423 0.914 0.088
Ours 31.179 0.936 0.061

Table 3. Quantitative evaluation on InterHand2.6M 30fps dataset
(images 500 to 999 of test/Capture0/ROM03 RT No Occlusion/
cam400266).

our method outperforms existing methods on all metrics.
Finally, we show the output of our method on our cap-

tured dataset in Fig. 7. We observe that our method accu-
rately reconstructs detailed textures and disentangles light-
ing from albedo. Results on additional users can be found
in the supplementary material.

4.4. Generalization

We demonstrate the ability of our method to capture out-
of-distribution appearance as opposed to MLP-based Han-
dAvatar in Fig. 9 and Tab. 4. This demonstrates the suitabil-
ity of our method to be deployed in AR/VR applications.

4.5. Ablation Study

We evaluate the influence of our design choices. We
show the effect of introducing offsets in the MANO model
and subdivision on capturing detailed geometry in Tab. 5.

Additionally, we replace our explicit mesh-based geom-
etry module with a neural signed distance function (SDF)
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Figure 5. We compare the shadow-aware capability of our method with HandAvatar, which uses a self-occlusion-aware shading field to
model self-shadows. Compared to the local-pair occupancy field of HandAvatar, our method explicitly models shadow rays to produce
more accurate self-shadows in complicated poses.

Figure 6. Our method reconstructs high-fidelity texture details
compared to the surface rendering method of SelfRecon [20] and
correctly captures illumination compared to the volume rendering
method of HumanNeRF [59].

Method PSNR↑ SSIM↑ LPIPS↓
HandAvatar [8] 27.94 0.894 0.091
Ours 30.20 0.926 0.060

Table 4. Quantitative evaluation on InterHand2.6M 5fps dataset
(test/Capture1/ROM03 RT No Occlusion/cam400270) where
HandAvatar is trained on test/Capture0/ROM04 RT Occlusion.

integrated with a differentiable marching tetrahedron from
NVDIFFRECMC [19]. To follow their assumption of the
static object and multi-view set-up, we use 80 images from
the InterHand2.6M dataset in a fixed stretched pose (im-
age13002) of a user (capture0) captured from multiple cam-

Figure 7. On hands reconstructed from images of our captured
dataset (user1), we can see fine geometric details captured on the
palm in the normal and shading images.

Figure 8. Comparison with the multi-view static 3D object recon-
struction method of NVDIFFRECMC [19].

eras at a single time instant. In Fig. 8, we can observe
that their method fails to capture a human hand from sparse
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Figure 9. Our method based on test-time-optimization pro-
duces the correct appearance of a new user (capture1 from Inter-
Hand2.6M dataset) compared to inferred output from HandAvatar
trained on another user’s images (capture0).

MANO mesh w/o subdivision w subdivision

w/o offsets 28.12 28.24
w offsets 28.63 29.14

Table 5. Ablation study on the effect of using offsets and subdi-
vision on the original MANO model. We report PSNR on 300
frames from our captured data.

views, whereas our method gracefully reconstructs even in
a multi-view set-up.

4.6. Applications

We demonstrate some use cases of our reconstructed
hand avatar from our capture dataset (user1) with only 40
frames where the user rotates the hand in a stretched pose.

Novel pose synthesis We obtain novel poses
from the InterHand2.6M dataset (test/capture 1/
ROM03 RT No Occlusion/cam 400270) and render
the reconstructed hand avatar under a new environment
light probe obtained from Poly Haven [62]. We observe the
consistent appearance and realistic self-shadows as shown
in Fig. 1 (middle column).

Re-lighting We demonstrate the interaction of our intrin-
sic hand avatar with environment lighting. In Fig. 1, we
show the same hand avatar placed under different environ-
ment lighting and observe consistent rendering.

These applications validate the correctness of our recon-
structed intrinsic hand avatar and also emphasize the poten-
tial of our method.

5. Discussion
Impact Our method takes an important step in recon-
structing an intrinsic hand avatar of a user’s hand from a
monocular RGB video. Our method addresses one of the
main issues of other avatar reconstruction methods which

do not disentangle material and lighting, and fail to gener-
alize to new users. Thus, AR/VR applications can leverage
our method to reconstruct a user-specific hand avatar cap-
turing the user’s hand shape and appearance and providing
a more natural and immersive experience.

Limitations Our method is sensitive to a reasonably good
initialization of the mesh parameters and the segmentation
mask via the data term. Further, our method assumes that
the hand in the input video is clearly visible and thus cannot
handle occlusion caused by other objects in the scene. If
any part of the user’s hand is never visible in the video, that
region in the reconstructed hand avatar will remain at its
initialized value as it never gets updated in the optimization.
Although our method can handle dynamic hand poses in the
video, it assumes static lighting throughout the video. We
clamp the metalness of our material to lower values, which
does not allow the modeling of shiny fingernails.

Future work The material model can be improved by in-
corporating subsurface scattering observed in human skin.
Incorporating bulges and wrinkles into the geometry defor-
mation model can greatly improve realism and enable cap-
turing fine-level shape and appearance details. Another in-
teresting direction would be to model fine hair on the back
of the hand to improve the realism of the avatar.

Ethical Considerations The recent advances in recon-
structing digital avatars raise the concern of nefarious use
cases. The foremost danger in reconstructing such a hand
avatar from an RGB camera is the use of fingerprints. To
protect users’ fingerprint privacy, all images in the paper
are down-sampled before the acquisition, which also leads
to slightly blurry textures.

6. Conclusion

We present a method that generates an intrinsic avatar
of the user’s hand from a monocular RGB video. Our
method jointly optimizes a parametric mesh, physically-
based material, and environment lighting using a realistic
shading model in a differentiable rendering framework in-
corporating Monte Carlo path tracing. In contrast to exist-
ing methods where illumination is baked into the appear-
ance, our method disentangles the intrinsic properties of the
underlying appearance (modeled by Intrinsic Hand Avatar)
and environment lighting leading to realistic self-shadows.
Our method can generate an avatar within minutes and sup-
ports arbitrary hand poses captured real-world environment,
which enables our method to be used for a variety of appli-
cations.
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Sofien Bouaziz, Mario Botsch, and Mark Pauly. Robust
articulated-icp for real-time hand tracking. In Comput.
Graph. Forum, volume 34:5, pages 101–114, 2015. 1

[50] Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob
Corish, Cem Keskin, Eduardo Soto, David Sweeney, Julien
Valentin, Benjamin Luff, Arran Topalian, Erroll Wood,
Sameh Khamis, Pushmeet Kohli, Toby Sharp, Shahram
Izadi, Richard Banks, Andrew Fitzgibbon, and Jamie Shot-
ton. Efficient and precise interactive hand tracking through
joint, continuous optimization of pose and correspondences.
ACM TOG, 35, 2016. 1, 2

[51] Anastasia Tkach, Andrea Tagliasacchi, Edoardo Remelli,
Mark Pauly, and Andrew Fitzgibbon. Online genera-
tive model personalization for hand tracking. ACM TOG,
36(6):1–11, 2017. 1, 2

[52] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
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