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Abstract

Beyond the Transformer, it is important to explore how
to exploit the capacity of the MetaFormer, an architecture
that is fundamental to the performance improvements of the
Transformer. Previous studies have exploited it only for the
backbone network. Unlike previous studies, we explore the
capacity of the Metaformer architecture more extensively
in the semantic segmentation task. We propose a power-
ful semantic segmentation network, MetaSeg, which lever-
ages the Metaformer architecture from the backbone to the
decoder. Our MetaSeg shows that the MetaFormer archi-
tecture plays a significant role in capturing the useful con-
texts for the decoder as well as for the backbone. In addi-
tion, recent segmentation methods have shown that using a
CNN-based backbone for extracting the spatial information
and a decoder for extracting the global information is more
effective than using a transformer-based backbone with a
CNN-based decoder. This motivates us to adopt the CNN-
based backbone using the MetaFormer block and design our
MetaFormer-based decoder, which consists of a novel self-
attention module to capture the global contexts. To consider
both the global contexts extraction and the computational
efficiency of the self-attention for semantic segmentation,
we propose a Channel Reduction Attention (CRA) module
that reduces the channel dimension of the query and key into
the one dimension. In this way, our proposed MetaSeg out-
performs the previous state-of-the-art methods with more
efficient computational costs on popular semantic segmen-
tation and a medical image segmentation benchmark, in-
cluding ADE20K, Cityscapes, COCO-stuff, and Synapse.

1. Introduction
Semantic segmentation is a challenging task in the com-

puter vision that classifies categories for each pixel in an
image. This task has a wide range of applications, includ-
ing autonomous driving and medical image segmentation.

*These authors contributed equally.

Figure 1. Performance-Computation curves on ADE20K vali-
dation set. Compared the performance and computation of our
MetaSeg with recent models [6, 11, 20, 30]. We find that our
MetaSeg has the best trade-off between the performance and com-
putational costs.

With the great success of the vision transformer (ViT) [8]
in the image classification, the transformer-based methods
have been introduced in the field of semantic segmentation.
Most previous studies [26–28, 30] mainly utilize the self-
attention layer in the transformer block to achieve the supe-
rior performance. However, recent research [31] found that
the abstracted architecture of the transformer block (i.e.,
MetaFormer block), which consists of a token-mixer, chan-
nel MLPs and residual connections, plays a more significant
role in achieving the competitive performance than the spe-
cific token mixer (e.g. attention, spatial MLP). Therefore,
the MetaFormer architecture has the potential to be vari-
ably applied with different token mixers depending on the
specific purpose.

From the MetaFormer architecture, some recent stud-
ies [13, 25] have derived their own methods. For example,
EfficientFormer [13] employs the MetaFormer architecture
using the self-attention as the token mixer to effectively cap-
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ture the global semantic-aware features. InternImage [25]
also utilizes the MetaFormer with the deformable convo-
lution as the token mixer to capture the contextual infor-
mation. These methods have exploited the capacity of the
MetaFormer architecture only for the encoder. However,
unlike previous studies, we take advantage of the capac-
ity of the MetaFormer block more extensively for the se-
mantic segmentation task. Therefore, we propose a novel
and powerful segmentation network, MetaSeg, which uti-
lizes the MetaFormer block up to the decoder to obtain the
enhanced visual representation.

In addition, previous segmentation methods [14, 26, 30]
used the transformer-based backbone with the CNN-based
decoder. However, recent studies [11, 32] have shown that
using the CNN-based backbone for extracting the local in-
formation and the decoder for extracting the global infor-
mation is more effective in improving the performance by
compensating for the globality in the local contexts. Based
on this observation, we adopt the CNN-based backbone
(i.e., MSCAN [11]) that contains the MetaFormer block
used the convolution as a token mixer, and design a novel
transformer-based decoder. Since it is important to con-
sider the globality in the decoder to complement the CNN-
based encoder features, the proposed decoder leverages the
MetaFormer block that uses the self-attention as a token
mixer to capture the global contexts. However, the self-
attention has a limitation of the considerable computational
costs due to the high-resolution features in the semantic seg-
mentation task.

To address this issue, we propose a novel and effi-
cient self-attention module, Channel Reduction Attention
(CRA), which embeds the channel dimension of the query
and key into the one dimension for each head in the self-
attention operation. Conventional self-attention methods
[8, 14, 26, 28, 30], which embed the channel dimension of
the query and key without the channel reduction, show great
performance but have high computational costs. Compared
to these methods, our method leads to competitive perfor-
mance with the computational reduction. This indicates
that our CRA can sufficiently consider the globality even
when each query and key token is a scalar type, not a vector.
Therefore, our CRA module is more efficient and effective
than the previous self-attention modules.

To demonstrate the effectiveness and efficiency of our
method, we conduct experiments on the challenging seman-
tic segmentation datasets: ADE20K [34], Cityscapes [7],
and COCO-stuff [2]. To verify the ability for the applica-
tion, we also conduct experiments on the medical image
segmentation dataset: Synapse [1]. As shown in Fig. 1,
our MetaSeg-T and MetaSeg-B surpass the previous state-
of-the-art methods on three public semantic segmentation
benchmarks, including ADE20K, Cityscapes, and COCO-
Stuff. Especially, our MetaSeg-T outperforms SegNeXt-

T [11] by 1.3%, 0.3% and 1.0% mIoU improvements with
16.7%, 5.2% and 16.7% lower computational costs on
ADE20K, Cityscapes, and COCO-Stuff, respectively.

In summary, the main contributions of our method are
summarized as follows.

• The proposed MetaSeg is a powerful semantic seg-
mentation network that effectively captures the local
to global contexts, showing that the capacity of the
MetaFormer architecture can be extended to the de-
coder as well as the encoder.

• We propose Channel Reduction Attention (CRA), a
novel and efficient self-attention module for seman-
tic segmentation, which can consider the globality effi-
ciently by reducing the channel dimension of the query
and key into the one dimension for the computational
reduction in the self-attention operation.

• Our proposed MetaSeg outperforms the previous state-
of-the-art methods in terms of efficiency, accuracy and
robustness on three challenging semantic segmentation
datasets and a medical image segmentation dataset to
show ours applicability across different domains.

2. Related Works
2.1. MetaFormer-based architecture

MetaFormer is an general architecture of the transformer
[23] where the token mixer is not specified. Recent meth-
ods [21,22,31] have explored various types of token mixers
within the MetaFormer architecture to encourage the per-
formance. Mlp-Mixer [21] and ResMLP [22] utilized MLP-
like token mixers. PoolFormer [31] simply exploited pool-
ing as token mixers to verify the power of the MetaFormer
architecture. PVT [26], Swin [14], CvT [28], and Effi-
cientFormer [13] adopted the self-attention as token mix-
ers to aggregate the global information. These studies have
focused on exploiting a variant token mixer based on the
MetaFormer in the encoder. Therefore, we propose novel
MetaFormer block which is leverage our Channel Reduc-
tion Attention (CRA) module as a token mixer. In addition,
unlike the previous methods that apply the MetaFormer ar-
chitecture to the encoder, we propose novel approach that
the capacity of the MetaFormer architecture is extended to
the decoder to consider the globality that is helpful for im-
proving the segmentation performance.

2.2. Semantic segmentation

As ViT [8] have achieved the great success on the image
classification task, self-attention based transformer back-
bones have also been explored in the semantic segmenta-
tion task. SETR [33] was the first to use ViT as a backbone
on the segmentation task. PVT [26], Swin [14], CvT [28],
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Figure 2. (a) Overall architecture of MetaSeg, consisting of two main part: hierarchical CNN-based Encoder and Global Meta Blcok
(GMB) based decoder. (b) Details of the GMB, which is composed with the proposed Channel Reduction Attention (CRA) module and
the channel MLP. Our MetaSeg extracts the multi-scale feature that contains local information in the encoder and complements the global
information in the GMB of the decoder.

and LeViT [10] studied the hierarchical transformer-based
backbone to exploit the multi-scale features. Beyond intro-
ducing transformer backbones for the segmentation, Seg-
former [30] designed a light-weight transformer backbone
and a MLP-based decoder to consider the computational ef-
ficiency. More recent methods [11, 32] adopted the CNN-
based backbone with the transformer-based decoder to ag-
gregate the local to global information. TopFormer [32] en-
coded the tokens by the MobileNetV2 [18], and then fed
the tokens into the transformer blocks. In SegNeXt [11],
the convolution-based encoder extracts the spatial informa-
tion and the transformer-based decoder extracts the global
context. These methods [11,32] have demonstrated that us-
ing the CNN-based backbone with the transformer-based
decoder is effective for the semantic segmentation. Accord-
ing to these studies, we adopt the combination of the CNN-
based backbone and transformer-based decoder.

Additionally, transformer-based segmentation methods
[14, 26, 30] have considered the computational efficiency
of the attention mechanism due to high-resolution features.
Swin [14] proposed a shifted window self-attention by par-
titioning the feature maps into the windows. Some recent
methods [26, 30] adopted a spatial reduction attention that
reduces the resolution of the key-value. In this paper, we
introduce a novel self-attention module, Channel Reduction
Attention (CRA), which reduces the channel dimension of
the query and key into the one dimension for efficient com-
putational costs of the self-attention.

3. Method
This section describes our MetaSeg architecture, an ef-

ficient and powerful segmentation network. Basically, we
adopt the CNN-based encoder and MetaFormer-based de-
coder to aggregate the local and global information. We
first explain the overall architecture, and then explain the
encoder and decoder. Finally, we describe the Global Meta

Block (GMB) with the proposed Channel Reduction Atten-
tion (CRA) that is an efficient self-attention module.

3.1. Overall Architecture

As shown in Fig. 2 (a), our MetaSeg is based on the
MetaFormer block with a hierarchical backbone network
of the four stages. We utilize the CNN-based encoder that
adopts a series of convolutional layers as a token mixer. The
encoder aggregates the local information from the input via
the token mixer. For the decoder, we design the novel CRA
module as a token mixer to capture the global contexts with
low computational costs.

3.1.1 Hierarchical convolutional encoder

We adopt the CNN-based pyramid encoder to acquire
multi-scale features. Following previous encoder-decoder
structured segmentation networks, given an image I ∈
RH×W×3 as an input, each stage of the encoder extracts
the down-sampled features Fi ∈ R

H

2i+1 × W

2i+1 ×Ci where
i ∈ {1, 2, 3, 4} and Ci denote the index of the encoder
stage and the channel dimension. These features provide the
coarse to fine-grained features that leads to the performance
improvements of the semantic segmentation. Specifically,
we adopt MSCAN [11] as a encoder, which consists of
MetaFormer blocks using a convolution-based token mixer.

3.1.2 Lightweight decoder

The decoder of our MetaSeg exploits the MetaFormer
architecture to improve the capture the global contexts that
are not considered enough in the encoder. We discovered
that the MetaFormer block, with the self-attention module
as a token mixer, exhibits exceptional capability in gather-
ing global contexts from the multi-scale features of the en-
coder. The decoder consists of following components: the
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Figure 3. Illustration of the proposed Channel Reduction Attention (CRA). In our CRA, the channel dimension of the query and key is
reduced to the one dimension for the computational efficiency and our CRA can capture the globality of the features effectively.

Global Meta Block (GMB), the up-sampling layer, the MLP
layer and the prediction layer. The up-sampling layer ex-
pands the feature resolution to H

8 × W
8 , unifying the size of

outputs extracted from the GMB of each stage. We exclude
the features of the first encoder stage since they contain too
much low-level information and bring high computational
costs. The MLP layer then concatenates the up-sampled
features. Finally, the prediction layer predicts the segmen-
tation mask. The overall procedure in decoder is as follows:

F̂i = GMB(Fi), i ∈ {2, 3, 4}

Fup i = UpSample(
H

8
× W

8
)(F̂i), Cfuse =

4∑
i=2

Ci

F = Linear(Cfuse, CMLP )(Concat(Fup i)),

Z = Linear(CMLP , Ncls)(F ),

(1)

where Linear(a, b)(·) denotes a linear layer with a size of
a as input dimensions and a size of b as output dimensions.
CMLP denotes the channel dimension of the MLP. Ncls is
defined as the number of classes.

3.2. Global Meta Block (GMB)

The proposed GMB leverages the MetaFormer block in
the decoder to further enhance the global contexts of the fea-
ture representations extracted by the encoder, which mainly
focuses on the local context. As illustrated in Fig. 2 (b),
the GMB adopts the MetaFormer block of two residual sub-
blocks and employs a novel channel reduction self-attention
(CRA) module as a token mixer. Our CRA module effec-
tively captures global contexts of the features with efficient
computational costs. The GMB is performed at each stage

except the first stage (i.e., i ∈ {2, 3, 4}). The overall opera-
tion is defined as follows:

Mi = CRA(LN(Fi)) + Fi ,

F̂i = MLP(LN(Mi)) +Mi ,
(2)

where LN and MLP denote the layer normalization and the
channel MLP layer, respectively.

3.2.1 Channel Reduction Attention

We propose the Channel Reduction Attention (CRA)
module as a novel token mixer utilized in the GMB to con-
sider both the globality extraction and the computational
efficiency of the self-attention for the semantic segmenta-
tion. Our CRA is based on the multi-head self-attention.
The key and value are average pooled before the attention
operation. As shown in Fig. 3, the channel dimensions
of the query and key are embedded into the one dimen-
sion to further reduce the computational costs. We found
that the channel squeezed query Q ∈ RHead×HiWi×1 and
key K ∈ RHead×(HiWi/r

2
i )×1 can sufficiently extract global

similarities. The CRA operation is formulated as follows:

CRA(Fi) = Concat(Head0, ...,Headj)W
O
i ,

Qi = FiW
Q
j , Ki = AvgPool(Fi)W

K
j ,

Vi = AvgPool(Fi)W
V
j , Headj = Att(Qi,Ki, Vi) ,

Att(Qi,Ki, Vi) = Softmax(QiK
T
i )Vi ,

(3)

where WQ
j ,WK

j ∈ RCi×1, WV
j ∈ RCi×

Ci
j and WO ∈

RCi×Ci are projection parameters. j denotes the number
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Method Params(M) ADE20K Cityscapes COCO-Stuff
GFLOPs ↓ mIoU (SS/MS) ↑ GFLOPs ↓ mIoU (SS/MS) ↑ GFLOPs ↓ mIoU (SS/MS) ↑

SegFormer-B0 [30] 3.8 8.4 37.4 38.0 125.5 76.2 78.1 8.4 35.6 -
FeedFormer-B0 [20] 4.5 7.8 39.2 - 107.4 77.9 - - - -
SegNeXt-T [11] 4.3 6.6 41.1 42.2 50.5 79.8 81.4 6.6 38.7 39.1

MetaSeg-T (Ours) 4.7 5.5 42.4 43.4 47.9 80.1 81.5 5.5 39.7 40.2

SegFormer-B2 [30] 27.5 62.4 46.5 47.5 717.1 81.0 82.2 62.4 44.6 -
MaskFormer [6] 42.0 55.0 46.7 48.8 - - - - - -
FeedFormer-B2 [20] 29.1 42.7 48.0 - 522.7 81.5 - - - -
SegNeXt-B [11] 27.6 34.9 48.5 49.9 275.7 82.6 83.8 34.9 45.8 46.3

MetaSeg-B (Ours) 29.6 30.4 48.5 49.4 251.1 82.7 83.8 30.4 45.8 46.3

Table 1. Comparison of our MetaSeg with previous state-of-the-arts methods on ADE20K, Cityscapes and COCO-Stuff. GFLOPs is
calculated with 512 × 512 resolutions for ADE20K and COCO-Stuff, 2048 × 1024 resolutions for Cityscapes. Compared to previous
state-of-the-arts methods, our MetaSeg model displays great effectiveness and efficiency.

of attention heads. AvgPool is the average pooling of scale
ri ∈ {2, 4, 8} at each stage, respectively. Compared to SRA
[26] that is a previous efficient self-attention method, the
computational complexity of our CRA is as:

N ′ =
N

ri
, Ω(SRA) = (N ′)2C + (N ′)2C ,

Ω(CRA) = (N ′)21 + (N ′)2C ,

(4)

where N denotes the number of pixel tokens. In eq.(4), the
left and right terms indicate the computations of the query-
key operation and the computations of the attention weight-
value operation, respectively. By reducing the computation
of the query-key operation by C times, our CRA reduces the
total computation of the attention operation by about twice.

3.2.2 Channel MLP

The channel MLP is used to consolidate the features pro-
cessed with our token mixer. Channel MLP consists of the
two 1×1 convolution layers with a GELU activation layer.
The operation is defined as follows:

MLP(x) = Conv1×1(GELU(Conv1×1(x))) , (5)

where Conv1×1 denotes the 1× 1 convolution layer.

4. Experiment
4.1. Experimental Settings

Datasets. We conducted experiments on four publicly
available datasets, ADE20K [34], Cityscapes [7], COCO-
Stuff [2], and Synapse [1]. ADE20K is a challenging scene
parsing dataset composed of 20,210/2,000/3,352 images for
training, validation, and testing with 150 semantic cate-
gories. Cityscapes is an urban driving scene dataset that
contains 5,000 images finely annotated with 19 categories.

Method Params (M) GFLOPs ↓ mIoU (%) ↑ FPS ↑
SegFormer-B0 [30] 3.8 51.8 74.2 25.5
FeedFormer-B0 [20] 4.5 41.6 (-19.7%) 75.5 28.9 (+13.3%)
SegNeXt-T [11] 4.3 29.3 (-43.4%) 77.8 30.2 (+18.4%)

MetaSeg-T (Ours) 4.7 26.2 (-49.4%) 78.4 33.6 (+31.8%)

Table 2. FPS comparison with recent state-of-the-art methods at
the input size of 1536×768 using a RTX3090 GPU on Cityscapes.

It composed of 2,975/500/1,525 images in training, valida-
tion, and testing. COCO-Stuff is also a challenging dataset,
which contains 172 semantic categories and 164,062 im-
ages. Synapse is an abdominal organ dataset that consists
30 Computerized Tomography (CT) scans with 3779 axial
contrast-enhanced abdominal CT images. Following the ex-
perimental settings of TransUNet [4], we split the Synapse
dataset into 18 scans for training, and 12 for validation.
Implementation details. The mmsegmentation codebase
was used to train our model on 4 RTX 3090 GPUs. We
used MSCAN [11] as a backbone network. Our model with
MSCAN-T and MSCAN-B backbones were each named
MetaSeg-T, MetaSeg-B, and our decoder was randomly ini-
tialized. For semantic segmentation evaluation, we adopted
the mean Intersection over Union (mIoU) for ADE20K,
Cityscapes, and COCO-Stuff datasets, and the Dice Simi-
larity Score (DSC) for Synapse dataset. During the train-
ing, we applied the commonly used data augmentation such
as random horizontal flipping, random scaling from 0.5 to
2.0 ratios and random cropping with the size of 512×512,
1024×1024, and 512×512 for ADE20K, Cityscapes, and
COCO-Stuff datasets, respectively. For Synapse dataset,
we used random rotation and flipping for data augmenta-
tion with the size of 224×224. We trained our models us-
ing AdamW optimizer for 160K iterations on ADE20K and
Cityscapes, 160K iterations on COCO-Stuff, and 30K iter-
ations on Synapse. The batch size was 16 for ADE20K and
COCO-Stuff, 8 for Cityscapes, and 24 for Synapse. The
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Method DSC (%) ↑

V-Net [16] 68.81
DARR [9] 69.77
UNet [17] 70.11
R50+ViT [8] 71.29
AttnUNet [19] 71.70
R50+UNet [4] 74.68
R50+AttnUNet [4] 75.57
TransUNet [4] 77.48
MT-UNet [24] 78.59
SwinUNet [3] 79.13
HiFormer [12] 80.69

MetaSeg-B (Ours) 82.78

Table 3. Comparison with the previous state-of-the-art methods on
Synapse dataset.

poly LR schedule with a factor of 1.0 and an initial learning
rate of 6e-5 were used.

4.2. Comparison with State-of-the-Art Methods

ADE20K, Cityscapes, and COCO-Stuff datasets. In Ta-
ble 1, we compared our MetaSeg performance with previ-
ous state-of-the-art methods on ADE20K, Cityscapes, and
COCO-Stuff datasets. This comparison includes the num-
ber of the parameters, Floating Point Operations (FLOPs),
and mIoU under both the single scale (SS) and multi-scale
(MS) flip inference strategies. As shown in the Table 1,
MetaSeg-T showed significant performance of 42.4% mIoU
with only 4.7M parameters and 5.5 GFLOPs for ADE20K.
Compared to SegNeXt-T that uses the same backbone [11],
our MetaSeg-T achieved 1.3% higher mIoU and 16.7%
lower GFLOPs on ADE20K. Moreover, our MetaSeg-T
showed 0.3% and 1.0% higher mIoU with 5.2% and 16.7%
lower GFLOPs on Cityscapes and COCO-Stuff, respec-
tively. Our larger model, MetaSeg-B, also achieved com-
petitive performance compared to previous state-of-the-art
models. MetaSeg-B showed 48.5% mIoU with 12.9% less
computations compared to SegNeXt-B on ADE20K. Fur-
thermore, our MetaSeg-B achieved 82.7% and 45.8% mIoU
with 8.9% and 12.9% less GFLOPs on Cityscapes and
COCO-Stuff, respectively. These results demonstrated that
our MetaSeg effectively captures the local to global con-
texts by leveraging the MetaFormer architecture up to the
decoder with an efficient token mixer, our CRA.
Speed Benchmark Comparison. In Table 2, we present
the speed benchmark comparisons without any additional
accelerating techniques. For fair comparison, we mea-
sured Frames Per Second (FPS) of a whole single image
of 1536×768 on Cityscapes using a single RTX3090 GPU.
Compared to previous methods, our method achieved su-
perior FPS with a higher mIoU score. This result demon-
strates that a decrease in FLOPs of our method can lead to

Backbone Method Params(M) ADE20K
GFLOPs ↓ mIoU (%) ↑

ConvNeXt [15] UperNet [29] 60.2 234.7 46.1
MetaSeg (Ours) 37.2 31.0 46.1

MobileNetV2 [18] DeepLabV3 [5] 18.7 75.4 34.1
MetaSeg (Ours) 3.4 4.6 34.7

Table 4. Ablation study on the effect of our proposed decoder for
other CNN-based backbones on ADE20K validation set.

Stage2 Stage3 Stage4 Params(M) ADE20K
GFLOPs ↓ mIoU (%) ↑

✓ ✓ ✓ 4.7 5.5 42.4
✓ ✓ 4.3 5.4 40.4

✓ ✓ 4.7 5.4 41.6
✓ 4.0 5.3 40.4

✓ 4.2 5.3 41.0
✓ 4.5 5.3 41.4

Table 5. Ablation study for applying our proposed Global Meta
Block to different stages.

improvements in processing speed within the GPU.
Synapse dataset. In Table 3, we compared our MetaSeg
with the previous methods on Synapse dataset using DSC
(%). For a fair comparison, we utilized MetaSeg-B in the
medical image segmentation task by considering the sim-
ilar model size with the previous methods. As shown in
Table 3, our MetaSeg-B sets the new state-of-the-art re-
sult with 82.78% DSC. This result showed a 2.09% higher
DSC compared to HiFormer [12]. This indicates that our
MetaSeg is effective even for the medical image segmenta-
tion task. Therefore, we demonstrated the high capabilities
of our MetaSeg for application fields.

4.3. Ablation Study

Effectiveness of MetaSeg Decoder for Various CNN-
based Backbones. In Table 4, we experimented with other
CNN-based backbones to evaluate the effect of our MetaSeg
decoder. In semantic segmentation, ConvNeXt [15] adopts
UperNet [29] as its decoder and MobileNetV2 [18] adopts
DeepLabV3 [5] as its decoder. For these CNN-based back-
bones, our decoder showed competitive performance with
significant computational reduction of 86% and 93.9%.
This indicates that our MetaSeg decoder is an efficient and
effective architecture for various CNN-based backbone by
enhancing the visual representation from encoder features.
Effectiveness of Global Meta Block. In Table 5, we
verified the effectiveness of applying GMB in the de-
coder. We conducted experiments on various cases of ap-
plying or non-applying GMB to each Stage{2,3,4}. Fol-
lowing [11], we excluded the features from the first stage
of the encoder in this experiment since they contain too
much low-level information which degrades the segmenta-
tion performance. The results show that applying GMB to
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Token Mixer Params (M) ADE20K
GFLOPs ↓ mIoU (%) ↑

AvgPool 4.4 5.4 40.7
DW Conv 4.4 5.4 40.4
Conv 5.3 5.8 41.1
SRA [26] 5.7 5.6 42.4

CRA (Ours) 4.7 5.5 42.4

Table 6. Ablation on the effect of our CRA by applying various
token mixers to our Global Meta Block of the decoder. For a fair
comparison, we utilized the same backbone, MSCAN-T [11].

Model Token Mixer Params (M) FLOPs ↓ mIoU (%) ↑Attention (M) Total (G)

MetaSeg-T SRA [26] 5.7 62.9 5.6 42.4
CRA (Ours) 4.7 32.4 (-48.5%) 5.5 42.4

MetaSeg-B SRA [26] 33.7 125.8 31.1 48.0
CRA (Ours) 29.6 63.9 (-49.2%) 30.4 48.5

Table 7. Comparison our CRA with SRA [26] when applied to
MetaSeg-T and MetaSeg-B as a token mixer on ADE20K.

Stage{2,3,4} is most effective structure compared to other
cases. Especially, compared to Stage{3,4}, applying GMB
to Stage{2,3,4} achieved 0.8% higher mIoU performance
even though the parameters and GFLOPs are almost the
same. This result indicates that capturing the global con-
texts through the GMB from all features extracted by the
encoder Stage{2,3,4} is effective in improving the seman-
tic segmentation performance.
Effectiveness of Global Modeling Token Mixer in De-
coder. In Table 6, we conducted an experiment on apply-
ing various token mixers to our proposed meta block-based
decoder. Through this experiment, we verify which token
mixer is the most effective and efficient structure for the de-
coder when using MSCAN-T, a CNN-based backbone. The
global context modeling token mixer (e.g. SRA and our
CRA) showed the better mIoU performance compared to
the local context modeling token mixer (e.g. pooling, depth-
wise convolution and conventional convolution). This result
demonstrates the importance of considering the global con-
texts in the decoder when using a CNN-based backbone.
Efficiency of Channel Reduction Attention. In Table 7,
we focus on the parameter size and computational costs
of our channel reduction self-attention (CRA) and the spa-
tial reduction self-attention (SRA) [26] to compare which
method is more efficient in terms of capturing global con-
texts. SRA is a widely used self-attention method that re-
duces the spatial resolution of the key-value by treating the
token as a vector. In contrast, our CRA scalarizes each
query and key token by reducing the channel dimension of
the query and key into the one dimension. As shown in Ta-
ble 7, our CRA reduces the computations of the query-key
operation by a factor of C times, leading to a total computa-
tion reduction for the attention operation that is about twice

Figure 4. Visualization of our prediction maps and our attention
score maps on ADE20K.

Figure 5. Qualitative results on ADE20K dataset. Compared to
SegNeXt [11], our MetaSeg predicts more detailed for various cat-
egories.

as much as SRA. For a more detailed comparison of compu-
tations as described in eq.(4), we calculated the sum of the
computations only for the attention operations in all stages
of the decoder. As shown in Table 7, the attention operation
of our CRA has 48% and 49% less FLOPs than the SRA
on MetaSeg-T and MetaSeg-B, respectively. This indicates
that our CRA is more efficient than the previous attention
methods, as well as capturing the global context effectively.
Visualization of Features. In Fig. 4, we visualized the pre-
diction map and the attention score map of our MetaSeg-
T. The attention score map is the similarity score between
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Figure 6. Qualitative results on Cityscapes dataset. The predic-
tions of our MetaSeg are more precise than those of SegNeXt [11].

the query and key, which are applied our channel reduction
attention method. As shown in Fig. 4 (a) and (b), the at-
tention score maps showed significant similarity for people
who are far apart. In Fig. 4 (c) and (d), the similarities of
the large regions, such as a bridge and a house, were also
captured clearly. These results indicate that our CRA can
capture the meaningful similarity scores for extracting the
global context features, even though the channel dimension
of each pixel token has been reduced to the one dimension.
By considering the globality well, our final prediction maps
showed accurate segmentation results for the distant objects
and the large regions.

4.4. Qualitative Results

In Figs. 5 and 6, we showed segmentation results of our
MetaSeg and SegNext [11] on ADE20K and Cityscapes, re-
spectively. Compared to SegNext, our MetaSeg better rec-
ognized the object details near the boundaries. This indi-
cates that our model captures more useful visual contexts by
leveraging the capacity of the MetaFormer architecture up
to the decoder. In addition, our method segmented the large
regions (e.g. road and bridge) more precisely. Furthermore,
our model showed accurate predictions for far apart objects
(e.g. person and house) that belong to the same category.
These results indicate that our CRA can sufficiently con-
sider the global contexts with the computational efficiency.
In Fig. 7, we compared our predictions with HiFormer [12]
on Synapse dataset. Our method predicted more accurately
for the detailed regions. This indicates that our MetaSeg is
effective for the application domain.

Figure 7. Qualitative results on Synapse dataset. Compared to
HiFormer [12], the more elaborately predicted regions are high-
lighted with a red rectangle.

5. Conclusion

This paper proposed MetaSeg, a novel and powerful se-
mantic segmentation network that effectively captures the
local to global contexts by leveraging the MetaFormer ar-
chitecture up to the decoder. Our MetaSeg showed that
the capacity of the MetaFormer can be extended to the de-
coder as well as the backbone. In addition, we proposed a
novel attention module for efficient semantic segmentation,
Channel Reduction Attention (CRA) module, which can ef-
ficiently consider the globality by reducing the channel di-
mension of the query and key into the one dimension for
low computational costs in the self-attention operation. Ex-
periments demonstrated the effectiveness and efficiency of
our method on three public semantic segmentation datasets
and a medical image segmentation dataset for application.
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