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Abstract

In this work, we show that deep learning-based re-
identification (Re-ID) models, albeit trained only with a Re-
ID objective (i.e. if two samples belong to the same iden-
tity), encode personally identifiable information (PII) in the
learned features that may lead to serious privacy concerns.
In cognizance of the modern privacy regulations on protect-
ing PII, we propose a novel dual-stage person Re-ID frame-
work that (1) suppresses the PII from the discriminative fea-
tures, and (2) introduces a controllable privacy mechanism
through differential privacy. The former is achieved with
a self-supervised de-identification (De-ID) decoder and an
adversarial-identity (Adv-ID) module, whereas the latter
mechanism leverages a controllable privacy budget to gen-
erate a privacy-protected gallery with a Gaussian noise
generator. Furthermore, we introduce the notion of a pri-
vacy metric to quantify the privacy leakage in Re-ID fea-
tures which is not explicitly examined in prior work. We
demonstrate the feasibility of our approach in achieving a
better trade-off between utility and privacy through rigor-
ous experiments on person Re-ID benchmarks.

1. Introduction
Person re-identification (Re-ID) is an important task in

video surveillance systems as it enables value-added appli-
cations, such as person tracking across multiple cameras,
forensics, and security [42]. Briefly, the task of person Re-
ID aims to match individuals (without identity inference)
across multiple cameras that have non-overlapping views.
Formally, given a person observed on one camera (i.e. a
query), a Re-ID system will match that against a restricted
set of observed persons from other cameras (i.e. gallery) and
return the best matching candidates. The key challenges are
to deal with visual variations, such as poses, lighting condi-
tions, scale differences, and changing backgrounds, as well
as to handle the non-overlapping identities (disjoint identi-
ties) between the training dataset and actual deployment.
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Figure 1. Overview of privacy leakage in person Re-ID frame-
work (top) and our dual-stage contributions (bottom).

Re-ID models [12,18,21,40] primarily focus on improv-
ing the Re-ID utility and overlook the privacy concerns for
individuals (i.e. person identification). This is because iden-
tity inference models cannot be applied directly in prac-
tice, as the observed individuals during deployment are not
present in the training. Therefore, existing deep learning-
based Re-ID models [31, 37, 39] indiscriminately learn the
fine-grained appearance features that could be used to infer
personally identifiable information (PII), such as identity or
other personal attributes (e.g. physical appearance, gender,
body size, or clothing information). We illustrate the po-
tential privacy threats in Fig. 1a, where a Re-ID feature that
encodes fine-grained PII can be exploited for identity infer-
ence or reconstructing the observed images. We empirically
show the existence of this phenomenon in Section 5.
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To avoid the potential of PII being misused, there is
an increasing demand for privacy-preserving person Re-ID
models that can satisfy the contradictory requirements of
simultaneously achieving personal privacy protection and
high re-identification accuracy. In practice, in order to en-
able person Re-ID utility in a surveillance system, the oper-
ator needs to define a finite set of detected persons from a
particular camera(s) to form a gallery. Motivated by the fact
that a learned privacy-preserving model may still leak pri-
vacy, i.e. perfect protection is often impossible in practice,
we note that it is equally important to protect the gallery
while matching each query against the gallery.

In this work, we address the privacy leakage in Re-ID
based surveillance systems with a dual-stage person Re-ID
framework (see Fig. 1b). The proposed framework com-
prises two components. First, we propose to suppress the
PII from an arbitrary Re-ID model via a self-supervised de-
identification (De-ID) decoder and an adversarial-identity
(Adv-ID) module. Second, we aim to allow users to control
the degree of privacy in the gallery with a differential pri-
vacy mechanism after learning the privacy-preserving Re-
ID features. Here, a user controllable privacy budget is
leveraged to generate a privacy-protected gallery with a
Gaussian noise generator. In addition to the novel frame-
work, we introduce the notion of privacy metric which can
quantify the privacy leakage (i.e. PII) in the learned Re-ID
models. The key contributions of this work are as follows.

• The proposed privacy-preserving Re-ID model aims
to maintain the person Re-ID performance as well as
suppress PII via adversarial identity inference tasks.
Specifically, we propose to learn privacy-preserved
Re-ID features via de-identification (De-ID) and ad-
versarial identity (Adv-ID) information to suppress PII
from the learned features.

• We enable the user to control the degree of privacy of
a protected gallery and term it controllable privacy-
preserving person Re-ID. Specifically, we apply differ-
ential privacy (DP) on the gallery via a Gaussian noise
generator, where the added noise can be controlled via
dedicated privacy budget parameters. This approach
protects the gallery via added perturbation generated
with respective privacy budgets. The protected gallery
can be used to match the queries and retrieve the best
matching candidates in a privacy-preserving manner.

• We empirically demonstrate the phenomenon of pri-
vacy leakage information via person identification with
the existing Re-ID models. Further, the trade-offs be-
tween user privacy protection and Re-ID utility are
shown by re-identification (Re-ID) and identification
(ID) performance at different privacy budgets. Exten-
sive experiments show that our approach achieves a
better trade-off on competitive Re-ID benchmarks.

2. Related Work

2.1. Person Re-identification (Re-ID)

Person Re-ID targets to match image pairs of a person
across non-overlapping camera views [32, 41, 42]. Most of
the existing deep learning-based Re-ID models explore fine-
grained pedestrian feature descriptions and have shown sig-
nificant progress [12, 17, 21]. To further increase the Re-ID
performance, diverse auxiliary information has been incor-
porated into these deep Re-ID networks. For example, [34]
detected person pose landmarks to obtain human body re-
gions. Lin et al. [22] exploited camera ID information to as-
sist inter-image similarity estimation. [23] encoded detailed
local descriptors and find the person attributes to improve
the Re-ID performance. Barbosa et al. [4] demonstrated the
use of depth maps to exploit soft-biometric cues. Sun et
al. [35] utilized part-level features by multiple classifiers,
which offer further finer granularity for pedestrian images.
Due to their fine-grained nature, these Re-ID models com-
pletely ignore the issue of privacy leakage of individuals.
Training images of person Re-ID contain PII that could re-
veal the identity of individuals. Hence, it is crucial to de-
velop a person Re-ID model that avoids potential privacy
leakage risks. Here, our main focus is to work towards a
privacy-preserved high quality Re-ID model while prevent-
ing it from obtaining sensitive visual information that can
intrude upon people’s privacy.

2.2. Privacy Protection methods

The privacy concern about disclosing personally identi-
fiable information (PII) is data misuse. In relation to data
misuse, various legal regulations are introduced, such as the
European General Data Protection Regulation [5] and Per-
sonal Data Protection Act [8], to protect individual’s pri-
vacy rights. These privacy laws also stipulate that images
of a person are personal data. However, there is no opti-
mal solution to address the image privacy concerns of Per-
son Re-ID. One way to comply with strict data privacy reg-
ulations is data anonymization [33] which can allow data
to be used/analyzed without compromising the identities
of individuals. To address the privacy-related issues, ex-
isting anonymization methods use de-identification tech-
niques [3, 19], such as pixelization, blurring, and obfusca-
tion by removing the identity-related cues from data. How-
ever, most of these techniques tend to remove the semantic
information and compromise the usability of the data. Addi-
tionally, identity-irrelevant utilities can shift the identity of
a person which can hamper the training process for robust
Re-ID models. Here, we propose a novel approach to utilize
de-identification techniques in a principled manner that can
anonymize the data while ensuring that the anonymization
does not negatively affect the Re-ID.

Re-ID data can be easily misused for identity theft, pro-
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filing, harassment, and blackmailing and poses a severe
threat to individuals’ privacy. Some research efforts [9, 29]
have been applied towards privacy preserving Re-ID on
human faces via blurring. However, they completely ig-
nore other privacy cues that can reveal PII such as indi-
vidual behavior, location, clothing, body type, etc. More-
over, these methods are more focused on preserving Re-ID
performance instead of preserving privacy. Hence, privacy-
preservation via removing PII is not fully addressed in the
literature. Marina et al. [30] uses an RGBD camera and Ah-
mad et al. [2] used event cameras to address privacy prob-
lems in Re-ID. However, this arrangement is not feasible
and scalable in a practical environment. Zhao et al. [43]
and Cheng et al. [7] utilized an encryption strategy and ex-
ploited encrypted feature vectors to ensure privacy in Re-
ID. However, encrypting huge amounts of visual data is a
complex procedure. Zhuang et al. [45] uses federated learn-
ing (FL) and tries to preserve data privacy by aggregating
model updates. Wu et al. [38] propose a FedReID model
based on a decentralized learning paradigm to construct a
global model by simultaneously learning with multiple lo-
cal models preserved for privacy. However, statistical het-
erogeneity is a major challenge in the implementation of
federated learning-based methods and special efforts are re-
quired to design new benchmarks. Differently from these
methods, we explore a simple, yet effective mechanism that
can remove PII as well as provide a degree of freedom to
control privacy while preserving the Re-ID performance.

2.3. Differential Privacy

Differential privacy (DP) is the standard privacy protec-
tion approach that offers strong privacy guarantees. DP was
proposed by Dwork et al. [11] and is to first derive the fre-
quency distribution of the tuples in the input data and then
publish a noisy version of the distribution to preserve pri-
vacy. Subsequently, it has become the state-of-the-art pri-
vacy paradigm for sanitizing statistical databases. DP is uti-
lized extensively in healthcare applications [14, 28] to pre-
serve patient privacy. For example, Meng et al. [28] inte-
grates local differential privacy (LDP) and locality-sensitive
hashing techniques into the recommendation model to ad-
dress privacy concerns. LDP is also investigated for geolo-
cation data [36]. He et al. [14] secure the privacy of the
shared biomedical data via controlling the released infor-
mation with the help of DP. Chamikara et al. [6] applies
privacy-calibrated perturbation to biometric data with the
help of DP and provides privacy to human faces. Inspired
by the success of DP, we use the power of DP to achieve
privacy guarantees for Re-ID. However, it is challenging to
apply to unstructured and non-aggregated data. Here, our
first goal is to study the feasibility of introducing DP in Re-
ID by proposing an efficient mechanism. With this, we ap-
ply it to the Re-ID gallery database at the deployment stage

where the system operator can obtain a degree of freedom
to control privacy via adding different levels of the pertur-
bations and can run standard Re-ID algorithms to match the
users’ queries against the protected database.

3. Problem Definition

This work considers the problem of privacy preserving
person Re-ID. Given a training set with N images, (xi)

N
i=1,

belonging to K identities, the key objective is to train an
image encoder Menc(xi) to produce a corresponding fea-
ture fi for person Re-ID task. Specifically, Menc need to
satisfy two criteria: (i) D(fi,fj) < D(fi,fk) where fi & fj

belong to the same identity, fk’s identity is different from fi

& fj , and D is an arbitrary distance function (e.g. Euclidean
distance), and (ii) the identity information is suppressed in
fi such that fi cannot be used for the person identification
task.

To deploy a trained Re-ID model, a set of images from
a fixed camera with non-overlapped identities from (xi)

N
i=1

is first used to form a gallery database G. Then, any queries
from Q, which are detected from a different camera(s) from
G, can be used to retrieve the closest matches from G.

4. Proposed Approach

4.1. Overview

In this work, we propose a novel framework that bal-
ances the trade-off between utility (Re-ID) and privacy (ID),
such that it can learn privacy-preserved Re-ID features for
persons. In addition, the proposed framework also pro-
vides a degree of freedom to control privacy. As illus-
trated in Fig. 2, our proposed framework, namely Privacy
Enhancing Person Re-ID Network (PEPR-Net), has a Re-
ID encoder Menc to learn Re-ID representations fi, a de-
identified decoder Mdec to inject the anonymity informa-
tion into the learned representation, and an adversarial su-
pervision Madv to remove the identity information. To
provide controllable privacy, we apply differential privacy
through a Gaussian noise generator to generate a privacy-
protected gallery with dedicated privacy budget parameters.

4.2. Baseline Network

Our backbone network is a feature encoder based on
ResNet-50. We embed a fully connected (FC) layer of 128
units over the head of the last FC layer. Then, we utilized
the FC layer to extract the Re-ID feature representation,
which can be used for describing the visual appearance of
the person’s image. We train the encoder network using
triplet verification loss such that it can minimize the dis-
tance between positive pairs (xi and xj) and maximize the
distance between negative pairs (xi and xk).

The triplet verification loss for the encoder to perform
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Figure 2. Proposed framework. We input (xi)
N
i=1 images to

the Re-ID encoder (Menc) where N is the number of images
and trained with LRe-ID loss to extract the features (fi). We fed
fi to the De-ID decoder (Mdec) to inject De-ID information in
fi through reconstructing the images with the supervision of de-
identified images by optimizing LDe-ID loss. fi features are also
fed to the adversarial module (Madv) to remove the identity in-
formation with adversarial supervision via LAdv-ID loss.

Re-ID is given below:

LRe-ID =
1

T

T∑
i=1

[ ∥∥∥Menc(xi)−Menc(xj)
∥∥∥2
2
−

∥∥∥Menc(xi)−Menc(xk)
∥∥∥2
2
+ β

]
+

(1)

where a positive constant β represents the margin, xi is
an anchor query image, xj is the positive sample (or same
identity) for anchor, xk is the negative sample (or different
identity) for anchor. Menc(·) is the output of the encoder,
T is the number of triplets and [·]+ is the Hinge function.

4.3. Privacy preserving Re-ID Model

4.3.1 De-identified Decoder

The feature encoder (Menc) is trained together with a de-
identified decoder (Mdec) that tries to reconstruct the de-
identified image via deidentification. De-identification (De-
ID) is a method to remove personal information from data
by removing the association between a set of identifying
data and the data subject. The de-identified images can be
generated with image distortion methods such as pixeliza-
tion, blurring, and obfuscation. For the de-identified de-
coder, we use the pixelization [15] technique on the origi-
nal images to create the de-identified versions and to protect
the individual identity. We further provide these deidenti-
fied images as target images while supervising the deiden-
tified decoder. The goal of augmenting the network with a
de-identified decoder is to reconstruct the de-identified ver-
sion of the original image by calculating the difference be-
tween the reconstructed image and the de-identified orig-
inal image. Gradients that flow during backpropagation
can entangle the deidentified information back into the fea-
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Figure 3. The architecture of the De-ID Decoder network.

tures, resulting filtering out PII information from Re-ID fea-
tures while enhancing the feature robustness for only Re-
ID. Thus, it helps in circumventing privacy challenges by
reconstructing samples with deidentified images.

The decoder network consists of three convolution lay-
ers, three upsampling layers, and two activation layers (as
shown in Fig. 3). The output of the feature encoder Menc is
reshaped, upsampled, and given as input to the first convolu-
tion layer of the decoder. Each convolution layer is followed
by an activation layer where we use ReLu as an activation
function and upsampling layer to unpool the samples. After
the final convolution layer, the reconstructed image is ob-
tained as an output. The loss function for the de-identified
decoder is calculated between the output image and the tar-
get deidentified image which is given by LDe-ID as follows:

LDe-ID =

N∑
i=1

∥∥∥∥x̂i −Mdec

(
Menc(xi)

)∥∥∥∥2
2

(2)

where xi is the original input image, target ground-truth de-
identified images are denoted by x̂i, where Menc(.) and
Mdec(.) are the output of the encoder and decoder and N
is the number of images.

4.3.2 Adversarial Module

For the adversarial module Madv, we use a softmax layer
on the output of the feature encoder Menc and provide ad-
versarial supervision where we classify samples to other
classes to suppress identity information. Inspired by [25],
we keep the “ground truth” such that identity distribution is
required to be constant over all identities to train the branch.
The main advantage is to remove the identification informa-
tion from the Re-ID features by fooling the network with
adversarial supervision. Here, we minimize the negative
entropy of the predicted identity distribution and the adver-
sarial ground truth. The loss function for the adversarial
module is given by LAdv-ID as follows.

LAdv-ID =
1

N ×K

N∑
i=1

K∑
k=1

logS(i, θi)k (3)

where N images are fed to the network and K is the num-
ber of identities in the mini-batch B. We set S(i, θi)k =
σ(wi)k, where σ represents the softmax layer, S(·) repre-
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sents the predicted probability distribution over identities,
and wi refers to the learned weights.

4.3.3 Joint Training

We use a joint training strategy to train the network where
we utilized a weighted loss function to balance the utility
and privacy. Our total weighted cost function is as follows:

Ltotal = λ1LRe-ID + λ2LDe-ID + λ3LAdv-ID (4)

where λ1, λ2, and λ3 are the weighted parameters whose
values are empirically tuned to 1, 10−1 and 10−3. Here,
the training weights play an important role to train the net-
work as it prevents the network to diverge from the goal of
balancing utility and privacy.

4.4. Controllable Privacy via Differential Privacy

Various privacy regulations, such as GDPR [5], empha-
size the need for controllable privacy in the real-world de-
ployed system so that privacy can be adjusted as per de-
mands. However, currently there exist no solution of con-
trollable privacy in discriminative features. A recent com-
prehensive survey [27] indicates that controllable privacy is
an open issue and a future research challenge. This moti-
vates us to propose a novel controllable privacy mechanism
in the Re-ID framework under a real-world setting.

As mentioned earlier, person Re-ID is a verification task
(i.e. to determine if two images belong to the same iden-
tity) that deals with non-overlapping identities at the train-
ing phase and real-world deployment. We proposed to pro-
vide a controllable privacy to the test identities (Fig. 4). In
practice, the test data from disjoint cameras is first divided
into query Q and gallery G, where samples in the queries Q
are used to retrieve the closest matches from the gallery G.
Here, there is a need to protect the gallery such that PII of
any individual present in the gallery cannot be leaked while
preserving an acceptable retrieval performance.

Given a trained privacy-preserving Re-ID model M, we
first extract the features (fi)

G for the gallery G. The pro-
posed controllable privacy mechanism then applies differ-
ential privacy (DP) via a Gaussian noise generator with dif-
ferent levels of noise on (fi)

G . Applying DP to the image
domain is complex. Here, we are inspired by approximate
DP where a relaxation of DP, i.e. (ϵ, δ)-DP, can be achieved
by adding Gaussian noise. In the Gaussian mechanism, δ is
greater than 0, whereas the Laplacian mechanism is known
as pure DP where δ=0. In our experience, varying δ from
0.001 to 0.1 works well to achieve a good privacy-utility
tradeoff. Hence, we use the Gaussian mechanism. The key
idea is to add privacy-calibrated Gaussian noise that can be
controlled via different privacy budget parameters.

DP Mechanism: Consider (fi)
G to be the features of the

gallery database of the trained Re-ID model M. A pertur-
bation mechanism P : Domain → Range satisfies (ϵ, δ)-
differential privacy, if for any neighboring gallery database
(fi)

G , (fi)
G′

differing on one element and for any subset of
outputs O ⊆ Range holds:

Pr
[
P
(
(fi)

G) ∈ O
]
≤ eϵPr

[
P
(
(fi)

G′)
∈ O

]
+ δ (5)

Here, ϵ and δ are the privacy parameters. The trade-off be-
tween accuracy and privacy can be controlled by adjusting
the privacy budget parameter ϵ. A smaller privacy budget
leads to more added noise which can give better privacy and
hence – less privacy leakage. In our case, we empirically set
0 < ϵ ≤ 1 and 0.001 ≤ δ ≤ 0.1.

To add privacy-calibrated noise, we employ the Gaussian
mechanism by adding Gaussian noise η to the gallery fea-
tures (fi)

G . It helps protect privacy by introducing random-
ness with a Gaussian distribution [24]. The amount of noise
required to ensure the mechanism satisfies a given privacy
guarantee typically depends on how sensitive the function S
where S

(
(fi)

G) = (fi)
G + η; is to changes in the input and

the specific distribution. The Gaussian mechanism gives a
way to calibrate a zero-mean Gaussian perturbation Z ∼
N (0, σ2I) to the global L2 sensitivity given by

∆ = max
(fi)G ,(fi)G

′

∣∣∣∣∣∣S((fi)
G)− S(fi)

G′
∣∣∣∣∣∣
2

(6)

Sensitivity calibrates the amount of noise for gallery
database. The Gaussian mechanism is (ϵ, δ)-differential pri-
vacy, if σ ≥ ∆

√
2log(1.25/δ)/ϵ for any (ϵ, δ) ∈ (0, 1).

In our case, we use zero mean and (σdataset − 5) ≤ σ ≤
(σdataset + 5) to add perturbation such that it can satisfy
this relation. Here, σdataset is the standard deviation of the
database features.

5. Experiments
In this section, we first delineate the selected datasets

and implementation details, followed by the ablation study,
comparison with existing works, and qualitative analysis.
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Table 1. Ablation Study on Market-1501 [44] and CUHK03-NP [20]. Here, the Utility is Re-ID accuracy and Privacy refer to identification
task. mAP, Top-1 (%) and ID (%) are reported. ✓indicates the corresponding loss function is applied and otherwise ×. ‘–’ means that the
parameter is not used. Different De-ID operations is used where ⋆ represents blur, ⋆⋆ represents obfuscation, and ⋆⋆⋆ represents pixelation.

Variants
Settings Market-1501 CUHK03-NP

Utility Privacy Utility Privacy
LRe−ID LCDec LDe−ID LAdv−ID mAP Top-1 (%) ID (%) mAP Top-1 (%) ID (%)

Baseline [ResNet-50] ✓ × × × 69.22 85.54 72.74 75.74 97.29 90.14

Baseline + Clean Decoder ✓ ✓ × × 69.79 86.02 74.44 76.37 97.21 90.00

Baseline + De-ID w blurring ✓ × ✓⋆ × 58.28 77.17 47.68 70.37 95.21 79.86
Baseline + De-ID w obfuscation ✓ × ✓⋆⋆ × 61.53 80.79 53.15 62.44 82.44 60.44
Baseline + De-ID w pixelation ✓ × ✓⋆ ⋆ ⋆ × 68.34 84.03 50.27 69.23 93.50 69.71

Baseline + Adv-ID ✓ × × ✓ 55.90 74.97 37.26 58.45 83.50 60.20

Proposed (1 Stage) ✓ × ✓⋆ ⋆ ⋆ ✓ 57.65 77.55 33.55 69.40 90.36 64.07

5.1. Datasets

Market1501 [44] is a large-scale public benchmark dataset
for person Re-ID. It contains 32,668 image bounding boxes
of 1,501 pedestrians captured by six different cameras in-
cluding five high-resolution and one low-resolution camera.
Each identity in the training set has 17.2 photos on aver-
age. We randomly divided the dataset such that 50% of the
unique identities are for training and the remaining for test.

CUHK03-NP [20] contains 14,097 images of 1,467 iden-
tities. NP stands for a new protocol where it has a larger
gallery with 5,332 images of 700 identities. CUHK03-NP
has a smaller training set (767 identities) while the original
protocol has 1467 identities.

5.2. Implementation and Evaluation Protocol

Training Details: The models are trained with NVIDIA
GeForce RTX 2080 Ti GPU using TensorFlow. We use
ResNet-50 [13] as the backbone with Adam Optimizer. The
input images are resized to 256×128. We apply random hor-
izontal flipping and cropping for data augmentation. The
mini-batch size is set to 128 containing 32 persons with
4 images each. The initial learning rate is 0.0003 and is
reduced by following an exponentially decaying training
schedule until convergence is achieved.

Evaluation protocols: We use Top-1 accuracy, mean av-
erage precision (mAP) to evaluate the utility (i.e. Re-ID
task) and classification accuracy (ID) to evaluate the privacy
(i.e. identification task). The Re-ID for test set is calculated
by matching queries against the gallery, and ID is calculated
by predicting the identity of queries against the gallery. To
evaluate the privacy leakage, we study whether the learned
features can discriminate person’s identity. Since the train-
ing and test set are disjoint, we train an identity-based soft-
max classifier for the learned features on a held-out set in
the test set. Then, the trained classifier is used to identify the
remaining test set. Here, lower ID accuracy means higher

privacy preservation and vice versa. Note that higher Re-ID
and lower ID accuracy lead to better performance.

5.3. Ablation Study

We conduct an ablation study to understand the effec-
tiveness of various components in our proposed framework.
The results are reported in Table 1, Table 2 and Fig. 5.

Baseline: We first experiment with widely used ResNet-
50 [13] in the Re-ID domain as the baseline Re-ID encoder.
The objective function is argminLRe-ID. We can see the
Top-1 Re-ID performance of 85.54% at the cost of revealing
identity information of 72.74%, which can threaten privacy.

Clean Decoder: We augment the baseline network with the
clean decoder where our target output is the original image.
The loss function for the clean decoder is given by LCDec

where LCDec =
∑N

i=1 ∥xi − x̂i∥22. Here, xi is the origi-
nal input image, and the reconstructed images are denoted
by x̂i, and N is the number of images. When we add a
clean decoder to reconstruct the original input image, we
see an improvement of +1.7% in ID accuracy for Market-
1501. This shows that the network is able to exploit deep-
appearance features to gain performance.

De-identified (De-ID) Decoder: We use different de-
identification mechanisms, such as pixelation, obfuscation,
and blurring, to inject the de-identified information and pro-
vide respective de-identification images as supervision to
the decoder. The objective function of the de-identified de-
coder is argminLDe-ID given in Eqn (2). Here, we opti-
mize the baseline encoder with a deidentified decoder us-
ing argminLRe-ID and argminLDe-ID. We observe that
the pixelation operation achieves a better trade-off between
privacy and utility as compared to other De-ID operations.
Specifically, the ID accuracy reduced by -22.47% whereas
the Re-ID performance is reduced by -0.88 mAP. In com-
parison, the obfuscation and blurring mechanism greatly re-
duce the Re-ID performance.
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Figure 5. Comparison of the proposed methods, their variants, and
the baseline method on the privacy-utility trade-off.

Adversarial-Identity (Adv-ID) Module: Here, we uti-
lize the softmax layer and provide adversarial supervision
through a constant identity distribution as the ground truth.
The objective function is set to argminLAdv-ID given in
Eqn (3). Here, we find that this component helps to remove
identifiable information (i.e. -37.18% in Market-1501) and
preserves privacy. However, it is adversely impacting the
Re-ID accuracy. Here, we use a weighting mechanism in
the full proposed approach to get the advantage from this
component effectively.

Privacy-Preserved Re-ID Model (Proposed (1 Stage)):
The proposed model combines a Re-ID encoder, a de-
identified decoder (through pixelation), and an adversarial
module. We use a joint training strategy and the overall ob-
jective function is argminLtotal (c.f. Eqn (4)), where we
give higher weight to Re-ID loss and less weight to other
losses (i.e. λ2 = 0.1 and λ3 = 0.001) to bring the balance
between utility and privacy.

Privacy-Preserved Re-ID Model with Controllable Pri-
vacy (Proposed (2 Stage)): We utilize the power of DP
to control privacy through different privacy budget parame-
ters. Different values of the privacy budget parameters (i.e. ϵ
= 0.1, 0.5, and 1) are selected to demonstrate this. Our pre-
liminary study shows that the δ is more stable within the
range of 0.01 to 0.001. We compare the performance of
both baseline and our proposed privacy preserved Re-ID
model (i.e. Proposed (1 Stage)) when the controllable pri-
vacy mechanism is applied. As shown in Table 2, we can
observe that adding differential privacy-based perturbation
to the proposed model can prevent the leakage of identity in-
formation more instead of directly adding it to the baseline
models. For example, at ϵ=0.5, person identification per-
formance for baseline is dropped by only -12.34%, whereas
on our method the performance dropped is -50.44% and the

Table 2. Performance of baseline and proposed method with con-
trollable privacy. mAP, Top-1 (%), and ID (%) results are reported
on Market-1501 dataset. The performance loss against baseline
are shown in BLUE).
Methods mAP Top-1 (%) ID (%)

Baseline 69.22 85.54 72.74
Baseline + DP (ϵ = 0.1) 55.0 (-14.22) 71.9 (-13.64%) 49.0 (-23.74%)
Baseline + DP (ϵ = 0.5) 62.7 ( -6.52) 79.5 (-6.04%) 60.4 (-12.34%)
Baseline + DP (ϵ = 1.0) 63.5 ( -5.72) 80.9 (-4.64%) 71.1 (-1.64%)

Proposed (1 Stage) 57.65 (-11.57) 77.55 (-7.99%) 33.55 (-39.19%)
Proposed (2 Stage, ϵ = 0.1) 51.5 (-17.72) 69.8 (-15.74%) 14.1 (-58.64%)
Proposed (2 Stage, ϵ = 0.5) 56.4 (-12.82) 75.3 (-10.24%) 22.3 (-50.44%)
Proposed (2 Stage, ϵ = 1.0) 56.9 (-12.32) 75.8 (-9.74%) 29.9 (-42.84%)

Re-ID accuracy is still comparable. Comparing Proposed
(1 stage) with Proposed (2 stage), we observed good pri-
vacy preservation (33.55% vs 22.3% in accuracy) without
heavily compromised on the utility (57.65 vs 56.4 in mAP).

5.4. Comparison with SOTA methods

We compare our proposed method with Re-ID base-
lines with various backbones and privacy-preserving based
SOTA methods on Market-1501 (Table 3) and CUHK03-
NP (Table 4). All SOTA privacy-preserving methods focus
only on preserving the Re-ID performance and not report-
ing the privacy leakage information.

First, we demonstrate privacy leakage in existing back-
bone networks (i.e. MobileNet [16], ResNet-50, and
ResNet-101 [13]) and compare the identification accuracy
with the proposed method. Results shows that 72.74% (for
Market-1501) and 90.14% (for CUHK03-NP) of identity in-
formation gets leaked with ResNet-50 backbone, whereas
the proposed (1-stage) achieved better privacy protection
(i.e. 33.55% for market-1501 and 64.07% for CUHK03-
NP). The protection can be further enhanced with control-
lable privacy mechanism (i.e. Proposed (2-stage)) where the
identification accuracy is 23.30% and 41.14% for Market-
1501 and CUHK03-NP, respectively, when ϵ = 0.5. This
clearly demonstrates that our learned features have less PII
to identify individuals as compared to baseline.

Compared against privacy-preserving SOTA models, in-
cluding DP-SGD [1], federated learning [45, 46], Face-blur
MuDeep [9], and PIS [10], our proposed method outper-
forms all of the compared models while achieving a bet-
ter trade-off between Re-ID performance and privacy. For
example, Proposed (1 Stage) achieved 69.4 mAP in re-
identification task on CUHK03-NP while best performing
SOTA only achived 50.4 mAP. Even with further privacy
protection with differential privacy (i.e. Proposed (2 Stage)
with ϵ = 0.5), we still achieved 62.45 mAP. Note that the
privacy improvement at this stage is almost at 50% improve-
ment. The experiments empirically demonstrates the effec-
tiveness of the proposed model.

8549



Table 3. Comparisons with different baselines and privacy-based
SOTA methods on the Market-1501 dataset. mAP, Top-1 (%) and
Identification accuracy (%) are reported. – represents privacy ID
is not reported by these methods.

Methods Models Backbone Utility Privacy
mAP Top-1 (%) ID (%)

Without Mobile-Net [16] MobileNet-V1 55.52 75.18 66.15
Privacy ResNet-101 [13] ResNet-101 64.68 83.22 68.32
Preserving ResNet-50 [13] ResNet-50 69.22 86.02 72.74

Privacy DP-SGD [1] ResNet-50 4.5 17.6 –
Preserving Federated-by-Camera [46] ResNet-50 36.57 61.13 –

Face-blur MuDeep [9] 4L ConvNet 44.8 69.6 –
PIS [10] ResNet-50 51.9 74.9 –
Proposed (1 Stage) ResNet-50 57.65 77.55 33.55

Controllable Proposed (2 Stage, ϵ = 1.0) ResNet-50 56.90 75.80 29.90
Privacy Proposed (2 Stage, ϵ = 0.5) ResNet-50 56.40 75.30 22.30

Proposed (2 Stage, ϵ = 0.1) ResNet-50 51.50 69.80 14.10

Table 4. Comparisons with different baselines and privacy-based
SOTA methods on the CUHK03-NP dataset. mAP, Top-1 (%), and
Identification accuracy (%) are reported.

Methods Models Backbone Utility Privacy
mAP Top-1 (%) ID (%)

Without Mobile-Net [16] MobileNet-V1 64.29 93.36 84.50
Privacy ResNet-101 [13] ResNet-101 66.27 93.29 87.21
Preserving ResNet-50 [13] ResNet-50 75.74 97.29 90.14

Privacy Federated-by-Camera [46] ResNet-50 11.11 11.21 –
Preserving Federated-by-Identity [45] ResNet-50 47.39 51.71 –

Face-blur MuDeep [9] 4L ConvNet 22.2 23.3 –
Face-blur HACNN [9] Inception 32.9 32.4 –
Face-blur PCB [9] ResNet-50 50.4 51.1 –
Proposed (1 Stage) ResNet-50 69.40 90.36 64.07

Controllable Proposed (2 Stage, ϵ = 1.0) ResNet-50 67.12 87.23 62.47
Privacy Proposed (2 Stage, ϵ = 0.5) ResNet-50 62.45 79.32 41.14

Proposed (2 Stage, ϵ = 0.1) ResNet-50 55.21 71.75 28.79

(a) Baseline (b) Proposed (Ours)

Figure 6. Visualization of t-SNE plots on Market-1501. Each
color indicates a unique identity.

5.5. Qualitative Comparison

Feature Visualization with t-SNE. We randomly select a
set of identities from the test set and visualize the corre-
sponding features using t-SNE [26] in Fig. 6. The baseline
features (i.e. Fig. 6a) show the same identity are strongly
clustered due to identity-dependent information. Hence, it
is subjected to identity information breach of the observed
individual. In contrast, the features from proposed method
(i.e. Fig. 6b) are more uniformly spaced, revealing that they
are more identity invariant and contain less personal infor-
mation. This visualization shows the efficacy of the pro-
posed proposed model over the baseline features, and it is
consistent with the quantitative results from Section 5.4.

Reconstructed Images. The first row in Fig. 7 shows the
original images and the second row shows the reconstructed

Original
Images

Clean
decoder

De-ID
decoder

Proposed
approach

Figure 7. Samples of the reconstructed images from Market-1501.

images with the help of a clean decoder (where original im-
ages are given as supervision). Here, we can clearly see
that an adversary can decode PII, such as clothing, gender,
body type, etc., from Re-ID features. This shows that iden-
tity related features are somehow encoded. In the third row,
we show results with a de-identified decoder which demon-
strates that appearance information to identify individuals is
suppressed. Furthermore, in the fourth row, we can see that
identifiable information cannot be decoded from our pro-
posed model. This validates that our proposed model has
a strong capability to suppress identity-related information
and to learn the privacy-preserved Re-ID features.

6. Conclusion

This work proposes a controllable privacy-preserving
model to learn robust privacy-preserved Re-ID features. We
utilized a De-ID decoder and adversarial supervision mod-
ule to suppress the identity information during the model
training stage. To achieve controllable privacy, we apply
the DP mechanism on the feature space to control the iden-
tity information based on the different privacy budgets. Our
results demonstrate that the learned privacy-preserved Re-
ID features have a strong capability to balance the tradeoff
between utility and privacy. For future work, one critical di-
rection is to improve the utility preservation when a model
tries to suppress the encoded PII. Another direction is to
study the feasibility of incorporating perturbed images via
the DP mechanism during Re-ID model training.
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