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Abstract

This paper introduces an enormous dataset, HaGRID
(HAnd Gesture Recognition Image Dataset), to build a hand
gesture recognition (HGR) system concentrating on interac-
tion with devices to manage them. That is why all 18 chosen
gestures are endowed with the semiotic function and can
be interpreted as a specific action. Although the gestures
are static, they were picked up, especially for the ability
to design several dynamic gestures. It allows the trained
model to recognize not only static gestures such as “like”
and “stop” but also “swipes” and “drag and drop” dy-
namic gestures. The HaGRID contains 554,800 images and
bounding box annotations with gesture labels to solve hand
detection and gesture classification tasks. The low variabil-
ity in context and subjects of other datasets was the rea-
son for creating the dataset without such limitations. Utiliz-
ing crowdsourcing platforms allowed us to collect samples
recorded by 37,583 subjects in at least as many scenes with
subject-to-camera distances from 0.5 to 4 meters in vari-
ous natural light conditions. The influence of the diversity
characteristics was assessed in ablation study experiments.
Also, we demonstrate the HaGRID ability to be used for
pretraining models in HGR tasks. The HaGRID and pre-
trained models are publicly available'?

1. Introduction

Using gestures in human communication plays a vital
role [6]: they can emotionally reinforce statements or en-
tirely replace them. Moreover, Hand Gesture Recognition
(HGR) can be a part of human-computer interaction to de-
termine the gesture a person shows to the camera and per-
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Figure 1. The 18 gesture classes included in HaGRID (“inv.” is the
abbreviation of “inverted”).

form an action corresponding to it. Since people univer-
sally use gestures in real life, building HGR systems can
improve user experience and accelerate processes in such
domains as the automotive sector [27], [26], home automa-
tion systems [3], multimedia applications, a wide variety
of video/streaming platforms (Zoom, Skype, Discord, Jazz,
etc.), and others [10], [5]. Besides, such a system can be a
part of a virtual assistant or service for active sign language
users — hearing and speech-impaired [9], [24].

The primary objective of our study was to build the HGR
system for the following implementation in home automa-
tion devices with virtual assistants’* and the video confer-
encing service Jazz’. Primarily, the set of gestures must
be intuitive [30] and straightforward, so that system users
can remember them for comfort interaction. Also, the HGR
system should be designed with gestures suitable for con-
trolling it; frequently, these are gestures with semiotic and

3https://sberdevices.ru/sberportal/

4https://sberdevices.ru/sberboxtop/

Shttps: //developers . sber . ru/portal /products /
jazz-by-sber
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Dataset Samples Classes Subjects  Scenes Resolution  Annotations  Annotation Method
LaRED, 2014 [13] 243,000 81 10 10 640 x 480 masks automatically
OUHANDS, 2016 [22] 3,000 10 23 various 640 x 480 masks, boxes automatically
HANDS, 2021 [25] 12,000 29 5 5 960 x 540 boxes -
SHAPE, 2022 [2] 33,471 32 20 various 4128 x 3096  masks, boxes manually
HaGRID, 2023 554,800 18+1 37,583 >37,583 1920 x 1080 boxes manually

Table 1. The main parameters of the mentioned hand static gesture datasets. + 1 in the third column means the dataset contains an extra
class “no gesture”. The number of scenes in the last row cannot exceed the number of subjects. Note that the HaGRID consists of at least
90% FullHD images. The information about the annotation method for the HANDS dataset was not found.

ergotic functions [8]. Semiotic gestures aim at sharing in-
formation, in our case, between humans and computers, to
receive a system response and can be static or dynamic.
In comparison, the ergotic gestures are manipulated with
objects (e.g., swipe or drag and drop something) and can
only be dynamic. Given the above and the necessity of a
real-time system in our domains that uses lightweight mod-
els, datasets containing images with static gestures are more
suitable. Besides, related applications require that the HGR
system exclusively make decisions based on gestures, i.e.,
be robust to the amount of context in images, background,
subjects, and lighting conditions.

This paper presents the HaGRID dataset to design the
above HGR system for home automation devices and ser-
vices because existing datasets’ characteristics are insuf-
ficient (Section 2). The proposed dataset contains more
than half a million images divided into 18 classes of not-
language-oriented gesture signs (Fig. 1). Such gestures are
chosen to design a device control system and serve one
semiotic functional role. Section 4.3 of this paper presents
a methodology for designing dynamic ergotic gestures by
combining a set of static semiotic ones. A small lexicon
of the most comfortably designed actions in the dataset is
conceived to reduce HGR system complexity and avoid un-
necessary cognitive load on the device user. We also added
an extra class with samples of natural hand movements
and called it “no gesture” to avoid false positive trigger-
ing. Remarkably, our dataset consists of many images per
class, all with considerable context, which differs in back-
ground, lighting, scene, and subjects. This heterogeneity is
achieved using two crowdsourcing platforms, namely, Yan-
dex.Toloka® and ABC Elementary’. The dataset creation
pipeline is also provided in this paper as a contribution.

The HaGRID was annotated by bounding boxes to (1)
design dynamic manipulative gestures, (2) error-free recog-
nition at long distances, and in cases where there are sev-
eral people in the frame, (3) simplify full-frame hand ges-
ture classification task by reducing it to cropped hand image
classification. Also, we paid attention to other gesture user

Shttps://toloka.yandex.ru
"https://elementary.activebc.ru

experiences, i.e., the beat dancer app® implemented in our
devices — this requires recognizing both hands in the frame,
which is impossible without box markup. Besides, bound-
ing box annotations are more stable than keypoint annota-
tions under challenging conditions such as extremal lighting
and large subject-to-camera distance.

In Section 5 of this paper, we provided the set of dataset
ablation experiments to explore the degree of dataset char-
acteristics’ influence on the result of solving the HGR as
classification and detection problems. Besides, we con-
ducted experiments to demonstrate that the HaGRID can
be a sufficient dataset for pretraining HGR models with the
following finetuning.

2. Related Work
2.1. Hand Gesture Datasets

There are at least 50 hand gesture recognition
datasets.  Their gesture baskets can be divided into
3 main groups of style [15]: sign language [29] [7],
semaphores [17] [31] [13] [25] [22] [2], and manipula-
tion gestures [34] [23] [31]. The first group’s datasets pro-
pose complex dynamic gestures, which are more applica-
ble for their original purpose and redundantly for our goals
demanding straightforward actions. The last two groups
find applications in home automation systems and human-
computer interaction and perform semiotic and ergotic roles
accordingly. As we aimed to build an HGR system with a
predominantly semiotic role by adding manipulative ges-
tures solely using heuristics, only datasets with static ges-
tures are reviewed in this section.

Since the HGR system users presumably will show ges-
tures at a distance from the device, the trained model needs
to capture the whole context and search for a person’s hand
in it. However, some datasets with static gestures are in-
tended for person-independent systems and contain sam-
ples of no human body with only hand parts, i.e., cropped
hand images [16] [18], which is why they are unsuitable
for us. Static gesture datasets are frequently annotated with
the following markup types or their combinations: class la-
bels, bounding boxes, keypoints, and segmentation masks.

8https://apps.sber.ru/salute-apps/
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Only class annotations are insufficient for us due to the need
for error-free work on the multiple-hand frames. Segmenta-
tion masks are redundant and unsuitable for this task as they
are not intended to classify objects so similar as hand ges-
tures well, whereas keypoints are impossible to use as they
stick together over long distances. To our knowledge, there
are only 4 datasets for static gesture recognition with con-
text and appropriate annotations, including HANDS [25],
SHAPES [2], OUHANDS [22], and LaRED [13].

They differ by the number of samples, image resolution,
the number of classes, the presence of negative samples,
the homogeneity of scenes, and the distance between the
camera and each subject. The SHAPE and the OUHANDS
are marked by bounding boxes and segmentation masks; the
LaRED are marked only with masks, and the HANDS —
only with bounding boxes. This paper discusses datasets for
solving only hand gesture classification and hand detection
problems without segmentation.

The mentioned datasets are not appropriate for construct-
ing our HGR system due to the insufficiency of heterogene-
ity in such characteristics as scenes and subjects, which
negatively affects the heterogeneity in lighting conditions
and subject-to-camera distances. In the ablation study (Sec-
tion 5), the experiments proving the necessity of such char-
acteristics for neural network generalization are provided.
Besides, there are other disadvantages to each of them:

¢ The LaRED dataset [13] is divided into 27 main classes of
gestures and 54 additional classes created by rotating the pri-
mary gestures about two axes. It was collected by a short-
range depth camera, which implies a small context amount
in the images; therefore, the trained model is mistaken at a
significant subject-to-camera distance. Besides, each subject
performed 300 images per class with only slight hand move-
ments, making these images almost identical. Unfortunately,
we could not obtain this dataset due to an outdated link.

The OUHANDS dataset [22] was created to streamline the
testing process for Human-Computer Interaction (HCI) tools
with 10 unique categories, each containing 300 images.
However, training a robust model for our particular task may
not be achievable with this dataset. Different recording con-
ditions are only able to improve the situation partially. Be-
sides, most of the subject’s hands are close to the camera.

The HANDS [25] is a dataset for human-robot interaction
consisting of 29 suitable for this application gestures, which
are simple and easy to use. However, most of them differ
little, complicating the use of the HGR system. The authors
consider lighting conditions; nevertheless, it cannot be suffi-
cient for dataset variability with only 5 backgrounds.

» The gesture classes of the SHAPE [2] dataset are chosen with
a focus on the meaning; however, some gestures are specific
in terms of culture, which limits their usefulness to people
from other countries. The authors varied external factors dur-
ing the recording samples and adapted them to the specific
domain of mobile-related development by changing sides of
taking photos. Despite this, SHAPE is not diverse in sub-
jects, and some gestures are not intuitive for device users.

Note that the SHAPE is not publicly available, and we could
not get them upon request from the authors.

The above limitations push us to create a new HGR
dataset with no such weaknesses. From Table 1, one can
see that the proposed dataset is the largest in sample num-
ber and has the highest diversity scores across subjects and
scenes, which helps avoid overfitting.

2.2. Dataset Creation Pipeline

Since the dataset creation pipeline is one of our contri-
butions, we reviewed existing pipelines of collecting and
annotating HGR datasets. The following creation methods
differ in the choice of subjects and their quantity, depending
on their number, the method of recording and transferring
samples, and data diversification and annotation methods.

Most of the reviewed datasets were created by manual
recording, which prevented them from being more hetero-
geneous and containing enough samples. To improve the
situation slightly, the dataset’s authors attempted to diver-
sify the data. As an illustration, a variety of the HANDS
dataset was achieved through (1) 5 different backgrounds,
(2) the presence of cluttered and uniform backgrounds
while the subject is standing still or moving, and (3) artifi-
cial and natural lights. The SHAPE was diversified by vary-
ing subject-to-camera distances, backgrounds, and clothing.
LaRED dataset’s authors optimized data recording using
their software tool. However, the requirement for subjects
to record 100 frames for each gesture three times entails
low data variability. The HANDS and the SHAPE operate
one of the tricks in creating data in such limited conditions
performing the same gesture with both hands to optimize
the collecting and annotating of images and increasing the
number of classes by 2 times (right-hand and left-hand ges-
tures are 2 different classes). Regarding the labeling pro-
cess, as we know, only the SHAPE dataset was annotated
manually. Segmentation masks in the OUHANDS and the
LaRED were generated using depth images, which entails
the roughness of this markup.

The most significant limitations of existing static ges-
ture datasets are homogeneous context, restricted subject
amount, and insufficient number of samples to train robust
HGR models. It is affected by the creation of a datasets
pipeline founded on manual recording in the controlled lab
environment [14]. We utilize crowdsourcing platforms to
overcome these restrictions and build close-to-real distri-
bution variant data. The authors [14] underlined that this
choice of data creation method can enhance recognition per-
formance.

3. HaGRID Dataset

The need for a combination of such characteristics as (1)
high-resolution images, (2) heterogeneity across the image
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Figure 2. Bounding box aggregation pipeline. For hard aggregation, consistency checks are applied for all markups before averaging. If it

fails, soft aggregation prepares for successful hard aggregation.

scene, subjects, their age and gender, lighting, subject-to-
camera distance, (3) a sufficient number of samples, and (4)
static and functional gestures became the motivation for cre-
ating the HaGRID and involving crowdsourcing platforms
for it. The dataset comprises more than half a million pre-
dominantly FullHD RGB images, with the most suitable
for our domain 18 gestures and a “no gesture” class. The
dataset was recorded with 37,583 subjects and at least an
equal number of unique scenes, displaying heterogeneity in
other characteristics. In addition to class division, the Ha-
GRID is annotated by bounding boxes for the hand detec-
tion problem: each image has n corresponding bounding
boxes for n hands in a frame, where n € [1, 2].

3.1. Dataset Creating Pipeline

The dataset creation pipeline is described step by step
to showcase how heterogeneity is achieved and to provide
details on the dataset’s content and quality. The dataset
was created in 4 stages: (1) the image collection stage
called mining; (2) the validation stage, where mining rules
and some conditions are checked; (3) the filtration of inap-
propriate images; and (4) the annotation stage for markup
bounding boxes. The classification stage is built into the
mining, validation, and annotation pipelines by splitting
pools for each gesture class. We use two Russian crowd-
sourcing platforms: Yandex.Toloka (1, 2, and 4 steps) and
ABC Elementary (3 and 4 steps) to complete these stages.
Note that all crowd workers are aware of the prohibition on
the transfer of personal data to third parties and the presence
of dubious content. Using two platforms at the annotation
stage allows us to increase the final annotation confidence
due to the two different annotator domains’ involvement.

The details of each of the steps are as follows:

1. Mining. The crowd workers’ task was to take a photo
of themselves with the particular gesture indicated in the
task description. We define the following criteria: (1) the
annotator must be at a distance of 0.5 — 4 meters from the
camera, and (2) the hand with gesture must be entirely in
the frame. Sometimes, we altered lighting conditions from
low light to a bright light source to make the neural net-
work resilient to extreme cases. Periodically, we changed
countries in mining tasks on the crowdsourcing platform,
covering more ethnic groups due to their correlation with
countries. All received images were also checked for dupli-
cates using image hash comparison [4]. The mining tasks
were accompanied by instructions with a warning about the
further publication of the crowd workers’ photos.

2. Validation. We implemented the validation stage to
achieve high-confidence images by removing those where
the conditions for the mining stage were not fulfilled. The
validation stage aims to favor correctly executed images at
the mining stage, i.e., classify them with classes “correct”
and “incorrect”; only “correct” images get into the dataset.
For the high-quality validation, we operated tricks such as
access to the main tasks after training and exams and us-
ing control tasks to prevent crowd workers from cheating.
For each image at this stage, we set in the system the dy-
namic overlap of 3 to 5 performers, i.e., each assignment
was completed by at least three crowd workers. Based on
the majority rule, some photos were rejected, while the rest
have been passed to the filtration stage. After the validation
stage, about 70% of images remained for each gesture.

3. Filtration. For ethical reasons, images of children,
people without clothes, and images with inscriptions were
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Figure 3. Image resolution, brightness, subject-to-camera distance, subjects, and class separability analysis. a) image resolution distribu-
tion: samples overlap with equal transparency and density reveals quantity, the minimum dimension of 90% images is 1,080; b) subjects’
devices: only smartphones, personal computers, and tablets were used while recording; c), d), e) image distribution by subjects in train,
validation, and test sets, respectively; f) subject-to-distance distribution: distance was computed as bounding box area relative to the whole
image (the boxes occupy up to 16% of the image); g) brightness distribution: images were converted to grayscale, and average pixel
brightness was received; h) subjects’ countries distribution; i) t-SNE plot by ResNet-18 features.

removed from the HaGRID at this stage. We use a solid rule
for the filtration stage — 5 workers should filter each image.
For an answer to be accepted, it must receive at least four
positive votes from workers. Similar to the validation stage,
annotators pass a thorough exam, training, and control tasks
at the filtration stage. More than 85% images passed the
filtration stage.

4. Annotation. At the annotation stage, after passing the
exam, crowd workers should draw a bounding box around
the gesture on each image and another one around the hand
without the gesture if it is entirely in the frame with specific
labels (“gesture” or “no gesture”). Annotation overlap is
placed dynamically from 3 to 5 in each crowdsourcing plat-
form. All markups, ranging from 6 to 10, are collected from
two platforms and aggregated by one of the two schemes —
hard and soft aggregation algorithms (see Fig. 2). About 5%
of images are not aggregated after the maximum overlap is
not included in the dataset.

3.2. Dataset Characteristics

Size and Quality. HaGRID size is approximately 770
GB - it includes more than 550 thousand images divided
into 18 most intuitive classes of gestures: ‘“call”, “dis-
like”, “fist”, “four”, “like”, “mute”, “ok”, “one”, “palm”,
“peace”, “peace inverted”, “rock”, “stop”, “stop inverted”,
“three”, “three2”, “two up”, “two up inverted” (shown in
Fig. 1). Since the HaGRID was designed to control de-
vices or device apps, gestures are endowed to raise spe-
cific associations due to their meaning (see Table 4 in the
supplementary material). Such gestures allow us to solve
particular problems, such as like/dislike something by rele-
vant signs, play/stop the recording by “peace” and “stop”,

turning on/off the sound by “peace” and “mute”, controlling
the adjustable scale (e.g., volume scale) by “one”, “peace”,
“three”, “four”, “palm” and their combinations, etc. In ad-
dition, the user can combine some static gestures to create
a new dynamic gesture not included in the dataset (Sec-
tion 4.3). Each gesture class contains more than 30,000
high-resolution RGB images (Fig. 3a).

Content. The HaGRID was recorded by 37,583 unique
faces in at least as many unique scenes. The subjects’ ages
vary from 18 to 65 years old and are gender balanced. The
subjects are primarily from Russia and, to a lesser degree,
115 other countries; this distribution is proposed in Fig. 3h.
We considered the scene specifics of such applications as
home automation and video conferencing services, and we
preferred mainly indoor context with considerable variation
in lighting, including artificial and natural light. Besides,
the dataset includes images taken in extreme conditions,
such as facing and standing back to a window (see Fig. 3g).
Also, the subjects demonstrated gestures at different dis-
tances from the camera (Fig. 3f) of the smartphone, per-
sonal computer, or tablet (Fig. 3b). All images contain con-
text information that is significant for our applications (see
Fig. 5 in the supplementary material). The mean and stan-
dard deviation of HaGRID images’ pixel values are equal
[0.54, 0.499, 0.473] and [0.231, 0.232, 0.229], respectively.

Annotations. The HaGRID was annotated by bound-
ing boxes, the optimal annotation type for our applications.
Such a choice allows us to train lightweight hand gesture
detectors or recognize swipes and other dynamic gestures
for interaction with objects on the device’s screen. Each
image was annotated by at least one box for a hand with
a gesture. If the second hand is in the frame — the bound-
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Model Model size (MB)

Parameters (M)

Inference time (ms)

Metrics

Fl-score mAP
ResNet-18 89.6 11.2 49.25 97.5 -
ResNet-152 466.5 58.3 292.6 95.5 -
ResNeXt-50 184.6 23.2 135.6 98.3 -
ResNeXt-101 696.4 87 397.2 97.5 -
MobileNetV3 small 12.5 1.6 10.6 86.4 -
MobileNetV3 large 34 4.3 334 91.9 -
VitB16 686.6 85.9 325.5 91.1 -
RetinaNet ResNet-50 294.2 38.2 235 - 79.1
SSDLite MobileNetV3 small 9.4 1.9 30.7 - 57.7
SSDLite MobileNetV3 large 20 34 52.5 - 71.6
YoloV7 tiny 49 6 144 - 71.6

Table 2. Models’ training results on the HaGRID. F1-score and mAP (mean Average Precision) were chosen as the classification and
detection metrics, respectively. Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz is used for computing inference time.

ing box is provided for it with the extra class “no gesture”.
Although the “no gesture” hands are predominantly passive
and thus similar to each other, it’s sufficient to eliminate
primitive false positive errors (see the demo in the reposi-
tory). We plan to diversify the extra class by adding sam-
ples with natural hand movements similar to target gestures
in future dataset versions. Only 108,056 images contain a
bounding box with an extra class. Bounding box annota-
tions are proposed in COCO [21] format with normalized
relative coordinates.

Splitting. The dataset was split into training (74%), val-
idation (10%) and testing (16%) sets by subject. The sub-
jects in training, validation, and testing sets equal 33,966,
1,908, and 1,709, respectively. Figure 3c-e indicates that
the test and validation sets were purposely designed to be
more heterogeneous in subjects than the train set for the
most representative results. Each set preserved the origi-
nal distributions of brightness, subject-to-camera distance,
age, and gender due to their random sampling.

In addition, the anonymized user ID hash is proposed
in the annotation file, which allows the researchers to split
the HaGRID themselves. Since the dataset size is large,
we designed a small version (100 samples per class) of the
HaGRID with annotations for preview at the link for its
user comfort. For the same reason, the downscaled version
(where the maximum image dimension is 512) with a 26 GB
size is available. Dataset users can take advantage of auto-
matically generated keypoint annotations by MediaPipe [1]
to train hand estimation models. Besides, keypoint annota-
tions can be used to pre-train the model on the HaGRID and
finetune on the other hand gesture classes.

4. Base Expirements

To assess the capabilities of the dataset, we evaluated
11 popular architectures of heterogeneous size and number
of parameters for the two HGR tasks: hand detection and

hand gesture classification. We chose SSDLite with Mo-
bileNetV3 small and large backbones [28], RetinaNet with
ResNet50 backbone [20] and YoloV7 tiny [32] as detectors,
and set of 7 architectures consisting of ResNet-18, ResNet-
152 [11], ResNeXt-50, ResNeXt-101 [33], ViTB16, Mo-
bileNetV3 small and MobileNetV3 large [12] as classifiers.

4.1. Experiment Setup

Due to the large dataset size, each model, except pre-
trained on ImageNet ViTB16, was trained from scratch on
full-frame images. The metrics below were calculated on
the testing set containing 90,000 images. We downsampled
images on the maximum side to a size of 224 and padded
the minimum side to 224. The models were trained on a
single Tesla V100 with 32GB with a batch size of 128 to
convergence — an early stop was triggered if the metric did
not increase by at least 0.01 after 10 epochs. The training
set-up for the models is summarized in Table 5 in supple-
mentary material. Note that the “no gesture” class is utilized
only in the detection task, while full-frame classification is
based on 18 main classes due to each image containing one
of the target gestures.

4.2. Results

Table 2 presents the evaluation results of the selected
model architectures for solving gesture detection and classi-
fication problems. Such high performance demonstrated the
dataset’s ability to train models without added complexities
in the training stage. The demo of our gesture recognition
system solving classification and detection tasks is available
in our repository. It highlights the practical applications of
training models on image datasets, such as real-time and
video stream analysis, for product development.

4.3. Dynamic Gesture Recognition

The observance of specific rules is applied to build a dy-
namic gesture recognizer using the dataset with only static
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a) swipe right

b) drag and drop

Figure 4. The screenshots from the dynamic gesture recognition
demo: a) “swipe right” gesture recognition occurred by detecting
serial pair of left-rotated “stop inverted” and right-rotated “stop”;
b) “drag and drop” — by detecting the subsequence: “palm”, “fist”
and “palm”.

gestures. The essence of this approach is to divide the dy-
namic gesture into two components: the initial and final
gestures. For example, the dynamic gesture “swipe right”
consists of a left-rotated and a right-rotated gesture “stop”
as a start and as an end, respectively, while the gesture “drag
and drop” can be shown by “fist” and “palm” as a start-end
pair (see Figure 4).

We developed the gesture prediction queues to imple-
ment dynamic gestures as an empty list of a certain depth,
filled with events on each frame. Queues verify the cor-
rectness of the execution of a dynamic gesture. The queue
is replenished with found bounding boxes by hand detector
and corresponding classes of gestures from the classifier.
The recognition depends on the sequence of actions in the
queue, time constraints between start and end gestures, and
positional location of start and end gestures. After identify-
ing a dynamic gesture, the queue is reset, and the process
continues with the definition of static gestures.

Since we need to detect both hand gestures and interme-
diate states of the hand and to recognize rotated gestures,
the YoloV7 tiny detector and LeNet [19] as the lightweight
classifier were utilized for the demo separately.

5. Ablation Study for HaGRID

An ablation study was conducted to assess the main het-
erogeneity characteristics’ impact individually. We tested
the necessity for large amounts of data, diversity in bright-
ness, subject-to-camera distances, and number of subjects
by changing these characteristics and freezing the rest. In
the ablation study, we utilized ResNet-18, ViTB 16, and Mo-
bileNetV3 (small and large versions) for the classification
task and SSDLite with both small and large MobileNetV3
and RetinaNet with ResNet50 for detection. Several train-
ing data modifications were sampled for each of the de-

scribed characteristics to find the best one for all models.
Validation and test sets were unchanged in all experiments.
In addition to checking the influence of the characteris-
tics on the HaGRID test, we also decided to assess it on
other data — on the OUHANDS. As the HaGRID and the
OUHANDS datasets do not intersect in gesture classes, we
finetuned all models learned by different training data mod-
ifications on the OUHANDS and tested on its test set. The
results also show the HaGRID ability to be the acceptable
dataset for pretraining models for the static HGR task.

5.1. Quantitative Necessity

To assess the influence of the data amount, we trained 5
models per architecture with different sample numbers per
class from 5,000 to all samples in steps of 5,000. The deter-
ministic slice was used for a train set expansion, i.e., images
in the n[i] set are included in the n[i + 1] set. The other het-
erogeneity characteristics retain their uniform distribution
due to the premixing of data, which limits their influence
and provides the interpreted results.

Quantitative Necessity Results. The quantitative ne-
cessity results for classifiers and detectors (see Fig. 5a and
Fig. 6a) demonstrated an upward trend as the training set in-
creases. On average, the enhancement increases rapidly at
the beginning and less significantly towards the end. While
approximately 23,000 samples per class are redundant for
classifiers, then for detectors, they are essential and justi-
fied to achieve the best performance.

5.2. Subject-Diversity Necessity

The significance of the subject’s quantity is also eval-
uated by varying the number of unique individuals in the
training set. The set amount is fixed to 10,000 images per
class for all diversity experiments; this number allows us to
sample data with different heterogeneity, which is enough
for high performance. The other 2 characteristics — bright-
ness and subject-to-camera distance distributions — are also
unchanged. We utilized a sampling algorithm for each class
to vary the subject’s quantity inside 10,000 images. This
algorithm sorts the list by the number of images from a
unique subject and moves toward the middle from the left
and right at different speeds (depending on the required sub-
ject’s quantity).

Subject-Diversity Necessity Results. Despite that, the
trend is practically unchanged on the HaGRID test in classi-
fication and detection tasks (shown in Fig. 5b and Fig. 6b),
the number of subjects has a positive effect on additional
training on OUHANDS data.

5.3. Lighting-Divercity Necessity

Similar to the subjects’ experiments, we varied lighting
diversity inside 10,000 images. Four brightness coefficient
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Figure 5. The impact visualization of such dataset characteristics as a) sample amount, diversity in b) subjects, c) lighting, and d) subject-
to-camera distance to train accurate and resilient classifiers. Solid lines correspond to models trained and tested on the HaGRID dataset,
whereas the dotted line is the model pretrained on the HaGRID, finetuned on the OUHANDS, and tested on its test set. The F1-score of

the trained from scratch on the OUHANDS ResNet-18 is 60.6.
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Figure 6. Similar to the graph above, the detectors were trained on data of various heterogeneity and quantity to assess the impact of dataset

characteristics.

windows were chosen from homogeneous lighting to het-
erogeneous: [100, 150], [75, 175], [50, 200], [5, 235]. The
enormous amount of data allows us to maintain distributions
of the rest of the features: subjects and subject-to-camera
distance.

Lighting-Diversity Necessity Results. Figure 5c and
Figure 6¢ show that lighting diversity is not a significant
feature in the context of testing on the same dataset. How-
ever, finetuning on the OUHANDS dataset is most effective
with more significant brightness heterogeneity.

5.4. Distance-Diversity Necessity

As with the lighting-diversity experiments, windowed
sampling was applied to perform the ablation distances-
diversity experiment. To vary the heterogeneity of the
subject-to-camera distance, we selected windows with a
static basis close to zero: [0.04, 2.8], [0.04, 5], [0.04, 11],
[0.04, 65]. The distance coefficients were calculated as the
ratio of the area of the bounding box to the area of the im-
age:

distance = 100« W x H,

where W, H are the width and the height of the gesture
bounding box, respectively. Since bounding box annota-
tions in the HaGRID are relativity, the division by the image
area is omitted, and for perceiving convenience, we have
multiplied the result by a constant equal to 100. As in other
experiments, the training set contains 10,000 per class, and

the distributions of the rest of the heterogeneous character-
istics are saved.

Distance-Diversity Necessity Results. The classifiers’
and detectors’ performance depends on subject-to-camera
distance diversity both for the HaGRID test and for the
OUHANDS finetuning (see Fig. 5d and Fig. 6d).

6. Conclusion

In this paper, we introduce the HAnd Gesture Recogni-
tion Dataset called HaGRID, one of the largest and most
diverse in subjects and context HGR datasets. It is mainly
intended to be used in system control devices, but the
potential for its application is quite vast. Heterogeneity
in such characteristics as subjects, subject-to-camera dis-
tances, scenes, and lighting conditions positively influence
the training of a resilient model. We also show the ability of
selected classes of gestures to construct dynamic gestures
and provide its recognition demo. Our following work with
the HaGRID consists of increasing the gesture classes, sam-
ples with natural behaviors of users’ hands similar to the
target gestures, and samples with different subjects’ trans-
lations and rotations. The whole dataset, its downsampled
version, the trial version with 100 images per class, pre-
trained models, and the dynamic gesture recognition demo
are publicly available in the repository®.

https://github.com/hukenovs/hagrid
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