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Abstract

Recent works have shown that objects discovery can
largely benefit from the inherent motion information in
video data. However, these methods lack a proper back-
ground processing, resulting in an over-segmentation of the
non-object regions into random segments. This is a criti-
cal limitation given the unsupervised setting, where object
segments and noise are not distinguishable. To address
this limitation we propose BMOD, a Background-aware
Motion-guided Objects Discovery method. Concretely, we
leverage masks of moving objects extracted from optical
flow and design a learning mechanism to extend them to
the true foreground composed of both moving and static
objects. The background, a complementary concept of the
learned foreground class, is then isolated in the object dis-
covery process. This enables a joint learning of the objects
discovery task and the object/non-object separation. The
conducted experiments on synthetic and real-world datasets
show that integrating our background handling with vari-
ous cutting-edge methods brings each time a considerable
improvement. Specifically, we improve the objects discov-
ery performance with a large margin, while establishing a
strong baseline for object/non-object separation.

1. Introduction
Deep learning-based approaches have demonstrated

significant success in addressing a wide array of computer
vision tasks [5]. However, the high performance of these
methods heavily relies on the availability of abundant
labeled data: sparse labels or compromised label quality
impairs the effectiveness of supervised approaches [37].
This limitation becomes challenging when tackling dense
tasks like segmentation, where the acquisition of accurate
labels requires considerable resources. This observation
has motivated numerous studies to propose alternative
architectures, including weakly supervised [19, 40], semi-

supervised [24, 39], and unsupervised methods [27, 36],
aiming to tackle vision tasks with minimal supervision.

In this work, we address the task of localizing objects
in videos without the use of human annotations. This
task, which is commonly approached as a segmentation
problem [2, 8, 17], is particularly suited for video data due
to its inherent advantages over static images. Specifically,
the motion information derived from videos offers a
means to obtain free pseudo-labels for moving objects
localization. This makes the motivation even stronger to
explore self-supervised methods, capable of leveraging
motion cues. Moreover, the ambiguity surrounding the
definition of objects, which remains a challenge for object
discovery in images [15, 34], can be addressed in the
video data. Specifically, relying on motion cues to localize
objects provides, by design, a definition of what an object
is: we consider as object any entity that could exhibit
an independent motion. This definition is even in line
with human perception as demonstrated in [30]: in our
perception, we divide the observed scene into parts that
are capable of moving while remaining connected. Some
recent approaches draw inspiration from and build upon
this result, to address moving objects localization [6].

Recently, object-centric learning architectures have
demonstrated a significant potential for solving the object
discovery task [21]. It emerges as a new deep learn-
ing based approach to decompose the input image into
meaningful regions, in an unsupervised way. Although
initially validated on simple synthetic image datasets, many
subsequent works have proposed variants of this architec-
ture to scale it to video data as well as to more complex
scenarios. Those primarily concentrate on modifying the
reconstruction space (optical flow [17], depth [8]) and
enhancing the encoder’s capability [29]. More recently,
some works introduced the use of motion cues to direct
the learning process of slots and provided evidence of the
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Figure 1. Illustration of the addressed problem. Results from
[1] showing background over-segmentation in both settings: unsu-
pervised (middle) and using motion supervision (right). When the
ground truth is not available, foreground objects cannot be auto-
matically separated from the background.

effectiveness of this guidance signal in solving objects
discovery in complex scenarios [1, 2].

Our work fits into this same line of research, but tackles a
specific problem that is not covered by existing methods,
namely the background control in the object discovery task.
Previous works did not focus on learning the background
pattern, which results in the background being split across
the slots into noise regions, as illustrated in figure 1. This
over-segmentation of the scene is not even penalized by
the commonly used metrics, since the segmentation quality
is evaluated on foreground regions only. However, in a
real-world setting where ground truth is not available, it is
impossible to distinguish between objects and background
segments. The aim of this work is therefore to learn this
object/non-object boundary, while solving the multiple
objects discovery task.

We propose to leverage motion cues to jointly learn
the multiple objects discovery and the objectness task
(foreground/background separation). The motion cues are
moving objects masks, extracted from optical flow. For
the first task, each motion mask is used to guide one slot’s
attention. For the second, we propose to learn the gener-
alization from the moving foreground (summed motion
masks) to the true foreground containing both moving
and static objects. The complementary mask, which is the
background, is positioned within a specific slot, competing
with all others, to isolate its distinct pattern.

Our contributions can be summarized as following:

• We propose BMOD (Background-aware Motion-
guided Objects Discovery), a simple yet effective
learning mechanism for modeling the background
while solving the object discovery task. To the best of
our knowledge, this is the first method that addresses
these two tasks concurrently, without the need for hu-
man supervision.

• We demonstrate that modeling the background not
only allows for a more precise objects discovery (au-
tomatic filtering of noise segments), but also improves

the localization of foreground objects. This validates
our insight that controlling the background reduces the
amount of noise captured by the slots, making it easier
for the model to learn the object pattern.

• We establish a new baseline for the objectness learn-
ing in the object discovery task. For the first time, we
introduce the computation of suitable metrics for eval-
uating the objectness learning task (Jaccard score), or
by evaluating the two tasks together (all-ARI).

• We demonstrate through comprehensive experiments
the effectiveness of our method on the challenging
TRI-PD dataset as well as the real-world dataset
KITTI. The experiments show that multiple cutting-
edge methods derive significant advantage from our
objectness learning mechanism, without increasing ar-
chitectural complexity. Moreover, we show that our
method, when enhanced with rich features from the re-
cent DINOv2 [23] pretraining, brings about a consid-
erable performance leap. This provides evidence of the
representation bottleneck in current methods, which is
overcome through the use of improved features.

2. Related work
2.1. Objects discovery in images

Object discovery in images is the task of localizing ob-
jects without the use of human annotations. The inception
of this task was marked by heuristic-based object proposal
methods, which relied on an over-segmentation of the image
and various similarity measures to merge similar regions hi-
erarchically [25, 32, 41]. Due to their very low precision,
utilizing these object candidates in an unsupervised setting
has been challenging.

In the era of deep learning, object discovery has prof-
ited from deep features, either derived from CNNs learned
through the ImageNet classification task [33–35], or from
the more recent self-supervised pretraining, in particular of
vision transformers (ViTs) [15,27,36]. In the first category,
methods typically aim at discovering the dataset-structure,
with the most connected/similar object proposals becoming
the top object candidates. In the second category, methods
are mostly motivated to investigate unsupervised clustering
in the space of self-supervised features, given the segmen-
tation properties exhibited by ViTs [4]. In both categories,
the methods solely rely on the semantic information learned
within the image modality, which limits their ability to sep-
arate object instances.

A recent group of methodologies, known as composi-
tional generative models, has emerged as a deep learning-
based alternative to the classical clustering methods [20].
Notably, MONet [3] employs an attention mechanism to
focus on individual scene parts. Both the input image and
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the attention map are then passed into a variational auto-
encoder module, to only reconstruct the highlighted scene
part/object in the corresponding mask. IODINE [10] re-
placed the one-pass attention mechanism with an iterative
inference to refine the understanding of the image over mul-
tiple steps. In this same category, SCALOR [13] adapted
the generative process to a larger number of objects, while
Slot-Attention [21] proposed a more efficient object discov-
ery architecture with a single image encoding step. [21] dis-
covers objects by enforcing the disentanglement within the
latent space of an auto-encoder architecture.

All previous methods, whether based on heuristics or
deep learning, suffer from the ambiguity of object defini-
tion. This limitation prevents both the design of a definition-
based method and the establishment of objective evaluation
criteria. Efforts are now being directed towards video data,
which provide the means for a more generalized object def-
inition (see section 2.2). In this work, although we focus on
the analysis of video data, we provide comparisons with the
latest image-based methods, applied to individual frames.

2.2. Objects discovery in videos

In this work, we address the problem of discovering ob-
jects in videos, which is a distinct task from the video ob-
ject segmentation (VOS). The latter is more about motion
segmentation, with as objective to localize a salient moving
object within a video [38]. The task we address, in contrast,
consists in localizing objects that are capable of moving,
even when they remain static in the analyzed sequence.

Object discovery in videos emerges as a promising re-
search area, largely driven by the inherent motion infor-
mation in videos, compared to static images. The moti-
vation to exploit video data for localizing objects is not
new; the earliest methods typically selected regions of inter-
est from object candidates as spatio-temporal tubes, maxi-
mizing similarity across videos while maintaining temporal
consistency [18].

The recent advent of the slot-attention architecture [21],
recognised as a promising solution for object discovery, has
motivated many efforts to scale it to video data. SAVI [17]
and Karazija et al. [16] incorporated optical flow as a more
task-appropriate reconstruction space for the targeted seg-
mentation task. [17] also proposed the use of weak super-
vision on the initial frame, such as the centers of objects
to be tracked throughout the sequence. By design, [17]
presents the limitation of localizing moving objects only.
SAVI++ [8], in contrast, also localizes static objects through
the reconstruction of the more generic depth signal. [8]
also demonstrated the potential of data augmentations, of-
ten under-explored in unsupervised settings. Among meth-
ods that utilize motion cues for object discovery, Bao et
al. [1] introduced an explicit guidance for slots learning, us-
ing moving-object masks derived from optical flow. STEVE

[29] a concurrent work, investigated the use of a more pow-
erful transformer decoder. Building upon the findings of
these preceding methods, MoTok [2] proposed a more pow-
erful motion-guided slot attention architecture through a to-
kenized reconstruction space.

In the previous methods, attention was only allowed to
the discovery of foreground objects, without considering
a proper background modeling. Our insight, however, is
that a proper background modeling prevents the presence
of noise regions captured by each slot, which favors the
learning of the object structure. We propose in this work
a complete motion-guided object discovery architecture to
jointly learn the multiple objects localization task and the
foreground/background separation.

2.3. Unsupervised background segmentation

Early attempts to solve the task of fore-
ground/background separation focused on the image
modality. In simple scenarios with a neat background,
methods typically relied on thresholding or binary cluster-
ing in the color space or other hand-crafted features [14].

A more recent category, known as saliency detection
methods, aim to extract a salient foreground from the back-
ground in an unsupervised way. In particular, LOST and
TokenCut [27, 36] used deep features from pre-trained vi-
sion transformers (ViTs) [4]. LOST defined object regions
as the patches least correlated with the whole image, while
TokenCut investigated applying spectral clustering [26] to
self-supervised ViTs features. More recently, FOUND [28]
proposed to discover the background as the class containing
the least activated patch in ViT activation maps, and then re-
fine it using a lightweight segmentation head. This method
was presented as a way of overcoming the ambiguity of ob-
ject definition. However, we believe that the problem of ob-
ject definition remains valid for the background class, since
the two are complementary semantic concepts.

In the video modality, the binary segmentation that re-
ceived significant attention was motion segmentation. Ac-
tive benchmarks on this subject have been established under
the terminology of Video Object Segmentation (VOS) [38].
While this provides a well-defined criterion for object iden-
tification (i.e. moving objects), we believe this definition is
restrictive. Indeed, without also localizing the static objects,
we can only achieve a limited understanding of the scene.

Our method, in contrast, proposes by design a fore-
ground/background separation, where the targeted fore-
ground is composed of both moving and static objects. The
robustness of our method in complex scenarios is ensured
by the use of motion cues, extracted from optical flow,
which is typically insensitive to an increasing background
complexity in the color space. Moreover, we also decom-
pose the foreground class into object instances, which is not
covered by the previous background segmentation methods.
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3. Method
3.1. Context: motion guided slot-attention for ob-

jects discovery

Since our method is based on a slot attention architecture
[21] involving the use of motion information [1], we first
briefly describe these two approaches below.

The slot attention architecture [21] has been proposed
as a deep learning-based alternative for the classical unsu-
pervised clustering methods [20]. It consists of an auto-
encoder architecture with a latent space that is partitioned
into embedding vectors called slots. The architecture com-
petes among these slots to provide a comprehensive expla-
nation for the input image. The mechanism for partitioning
the image is encouraged by the use of a small decoder: each
slot is individually passed through the decoder. The small
decoder being unable to explain the whole scene from one
slot, this compels the features to be split across the slots,
encouraging image partitioning into meaningful regions.

In our method, we build upon a recent variant of slot at-
tention that exploits motion cues to guide slots learning [1].
Concretely, the method receives as input a sequence of T
video frames. Each frame is passed through a CNN en-
coder for features extraction. Features from the T frames
are then combined using a convGRU module to get spatio-
temporal information Ht, for each frame It. This represen-
tation is then assigned to K slots through the attention mod-
ule. Specifically, given k, q, v three learnable linear projec-
tions, attentions between features H and slots S are com-
puted as W = 1√

D
k(H) · q(S) ∈ RN×K , where N is

the feature maps size and D the dimension of features af-
ter projection. Attentions are used to update the current
slot state St = W tv(Ht), where W t are computed using
the slot state at frame It−1. [1] introduced the use of mo-
tion guidance by assuming access to M motion masks for
the sequence of T frames. The masks are resized to match
the dimensions of the attention maps W and subsequently
paired with them via a bipartite matching algorithm. Mo-
tion supervision then occurs between these pairs of masks
m and the learned attention maps W . The method shows
that introducing motion cues replaces the initial inductive
bias about individual slot decoding, which reduces memory
demands. Although this architecture showed generalization
ability to objects without corresponding masks, it still suf-
fers from the object/non-object ambiguity, since slots with
no supervision may contain either objects or background re-
gions. This motivates our work which we describe in next
sections.

3.2. Modeling the background class using motion
cues

Illustrated in figure 2, our method receives as input T
video frames It ∈ Rh×w×3. Spatio-temporal representa-

tion Ht ∈ Rh′×w′×D′
for each frame is extracted following

the process in [1], with D′ the dimension of features out-
put by the convGRU module. These features are then for-
warded to the attention module where we propose to jointly
learn the object discovery task and the background model-
ing. The objective is to force background regions to occupy
one single slot’s attention map, instead of being randomly
split across multiple slots. We denote Sbg the slot dedicated
to the background class and Wbg ∈ Rh′×w′

the correspond-
ing attention map. It is important to note that the motion
segments cannot directly provide information on the posi-
tions of background regions, since the complement of these
masks also contains the static objects we aim to localize
(see ablation study in section 5.1). Instead, these masks
can be used as samples of what the object of interest looks
like. Therefore, we propose to learn the background class
by compelling its complementary mask Wfg = 1 − Wbg

to contain the true foreground class with both moving and
static objects. The complementary background mask Wbg

will thus contain all remaining, non-object regions. On
the other hand, the softmax operation applied to the atten-
tion maps W ensures their complementarity, preventing the
background class from appearing in other object slots. Note
that Wfg is an auxiliary attention map only used in the train-
ing phase to help the background modeling. It is not in-
volved in the object discovery nor the image reconstruction
task.

We formulate the foreground modeling as one-class
learning problem, since only the positive class is known
(some moving objects masks). This paradigm is commonly
used for binary classification tasks [12]. In our proposed
foreground modeling, the samples to classify are the pixels
positions in Wfg . The positive class corresponds to pixels in
motion (e.g. moving cars), which we propagate to also cap-
ture static objects of the same semantic class (e.g. parked
cars). For a given frame It, the corresponding moving fore-
ground mask is denoted mfg =

∑C
c=1 mc, where C is the

number of motion masks available for frame It. In order to
compel all objects regions to be activated in Wfg , we use
the following negative log likelihood (NLL) loss:

LNLL,reg(mfg,Wfg) = − 1

N

N∑
i=1

mfg(i) log(Wfg(i))

+
α

Ns

Ns∑
j=1

Wfg(j)

(1)

where N = h′ × w′ is the size of Wfg , Ns the number of
pixels with no motion information in mfg and α a weight-
ing hyper-parameter. The first term in equation 1 is the
NLL loss that forces all motion segments to be contained
in Wfg , encouraging generalization to visually similar re-
gions (static objects). We can easily predict the collapse
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Figure 2. Pipeline of the proposed method. The input sequence is encoded into a spatio-temporal representation, which is then forwarded
to the slot attention module. This produces a set of slots along with their respective attention maps. The separate motion masks individually
supervise the attention of objects slots, while their sum (mfg) is generalized to form the true foreground, using the LNLL,reg loss. The
complement of the learned foreground class is assigned to a specific attention slot Wbg so as to isolate the background pattern. Finally,
the sum of slots, weighted with their respective attention maps, is decoded to reconstruct the input sequence. B/W masks represent binary
supervision masks derived from motion, while masks shown in the viridis colormap are learnable attention maps.

that would occur if only this first term is used: the model
would converge towards a trivial solution by activating the
entire map Wfg , which is not the desired behavior. We
rather want the model to only activate objects regions (mov-
ing and static) in Wfg . For this, we add as a regularization
term in 1 the average activation within the unlabeled regions
of mfg (i.e. where mfg is 0), so as to constraint the model
confidence in non-object regions. Given a batch size B and
T frames per sequence, the final fg/bg loss is defined as
follows:

Lfg/bg =
1

BT

B∑
b=1

T∑
t=1

LNLL,reg(m
b,t
fg ,W

b,t
fg ) (2)

3.3. Background-aware motion guided objects dis-
covery

Similar to [1], the object discovery task is learned through
the motion guidance of slots learning: a bipartite match-
ing is performed to associate the motion masks to some of
the K objects attention maps (excluding the slot assigned
to the background). These receive a supervision using the
corresponding mask and the Binary Cross-Entropy (BCE)
objective function. Different from [1], our method includes
a dedicated attention map specifically for the background
class, which competes with other slots, while being pre-
dominant. This would bias the model towards activating
most regions in the background slot, resulting in some ob-
jects being lost, specially small ones. To avoid this, we use
a weighted BCE loss denoted LwBCE , where the weights
are set automatically and depend on the object size. Given
a motion mask m containing one moving object, which

matches the predicted attention map W , LwBCE between
the two is defined as follows (for the sake of simplification,
we denote the i-th element of m and W as mi and Wi re-
spectively) :

LwBCE(m,W ) =
1

N

N∑
i=1

(−(2− r).mi log(Wi)

− (1−mi) log(1−Wi))

(3)

where r is the ratio of the number of object pixels to the
whole mask size and is computed as 1

N

∑
i mi. In the

above, the first loss term is assigned a dynamic weight
which depends on the size of the object and varies between
1 and 2: the smaller the object in m , the more the model is
encouraged to activate its corresponding pixels in W . This
weighting has proven effective in maintaining the objects
discovery performance, even in the presence of a predom-
inant class (the background) competing with other object
slots (see ablation study in section 5.1).
Finally, the learned slots are broadcasted into 2D maps. The
sum of the slots, weighted each by its corresponding atten-
tion map, are decoded to reconstruct the input frame. This
dense pretext task ensures the activation of all image re-
gions, which further encourages the generalization to non-
moving objects. It is learned using a mean squared error
(mse) loss between the original and reconstructed video se-
quence. The final loss is defined as follows:

L = Lmse + LwBCE + Lfg/bg (4)
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4. Experiments
We conduct our experiments on two video object discovery
benchmarks: ParallelDomain (TRI-PD) [1] and KITTI [9].
We further demonstrate the generalizability of the proposed
background learning mechanism by integrating it into an-
other state-of-the-art method [2]. This comparison is con-
ducted under two different settings on TRI-PD, which dif-
fer in the source of the motion masks. In the unsupervised
setting, referred to as estimated in the results tables, these
masks are derived from optical flow (see section 4.3). In the
second setting denoted gt, ground-truth instance masks of
moving objects are used as guidance signal. Results in this
setting provide an upper-bound for the unsupervised one.

4.1. Datasets

ParallelDomain (TRI-PD): Introduced by [1], TRI-PD is
a recent benchmark for objects discovery in urban driving
scenarios. This is a challenging dataset, composed of dense,
photo-realistic scenes, which also provides useful support
for a variety of visual tasks, as it includes diverse semantic
and instance-level annotations. Following [1], we train our
object discovery models on a set of 924 video clips, each
200 frames long. Evaluations are performed on a separate
test set of 51 video sequences.
KITTI is a real-world video dataset of urban scenes scenar-
ios, and an active benchmark for various perception tasks.
We use for training all raw-data from the KITTI benchmark
(without annotations), totalling 147 videos. Following pre-
vious works [1, 2], evaluation is conducted on the instance
segmentation subset of KITTI, composed of 200 frames.

4.2. Metrics

fg-ARI and all-ARI: The Adjusted Rand Index (ARI) is a
measure used to quantify the similarity between two clus-
terings (gt and predicted) in a permutation-invariant way. In
the literature of object discovery, studies typically compute
the fg-ARI, which stands for ARI in foreground regions.
This metric does not account for the segmentation quality
in the background regions. We introduce in this paper the
computation of the more suitable all-ARI metric, by also in-
corporating the background class into the ground-truth clus-
ters. In all-ARI, both the foreground objects discovery and
the quality of background segmentation are evaluated.
Jaccard score: The Jaccard score is calculated as the ratio
of the size of the intersection to the size of the union of two
label sets: the ground truth and the predicted labels. We use
this metric to assess the quality of foreground/background
classes separation. The final score for each of the two
classes is the average Jaccard Score accross all frames.

4.3. Implementation details

Base setting (BMOD): In this setting, we use a resnet18
[11] encoder, without pre-training. For a fair compari-

son, we follow the same training schedule as the method
in which we incorporate our background handling mech-
anism [1, 2]. Particularly, we use a batch size of 8 with
input sequences of length T = 5. Frames are resized to
(480 × 968) and (368 × 1248) for TRI-PD and KITTI re-
spectively. The regularization strength α, involved in the
background modeling, is set to 0.2 for TRI-PD and 0.4 in
KITTI dataset. In the unsupervised setting, we use the same
motion masks as previous methods [1, 2]. These are gen-
erated using the approach proposed in [7] which maps the
optical flow to instance masks. The optical flow is com-
puted using RAFT [31] and the mapping is learned on the
synthetic dataset FlyingThings3D [22]. Following previous
methods, models trained on KITTI are initialized with pre-
training on TRI-PD dataset, using estimated motion masks.
Evaluation on TRI-PD is conducted following the protocol
in [1] where windows of size T frames (same size as dur-
ing training) are successively passed to the model. In KITTI
dataset, since the test frames are not temporally linked, eval-
uation is conducted on each frame individually.
Enhanced setting using self-supervised pretraining
(BMOD*): In this setting, we replace the resnet18 en-
coder with a ViT-S/14 pretrained using the recent DINOv2
method [23]. For this, we resize the input frames dimen-
sions to adapt to the ViT patch size. Input sizes become
(490 × 980) and (378 × 1260) for TRI-PD and KITTI re-
spectively. We tested integrating the multi-scale features
described in DINOv2 paper. Specifically, we extract fea-
tures from the last 4 layers of the ViT model, which we
concatenate, getting new embedding vectors of size 384×4,
with spatial dimensions down-sampled with a factor 14. Be-
fore passing these features maps to the convGRU, we up-
scale them to match the spatial dimensions yielded by the
resnet18 encoder, resulting in a down-sampling factor of 4.

4.4. Unsupervised objects discovery

We recall that the primary objective of our work is to enable
background handling, for a more precise objects discovery.
The results from tables 1 and 2 show that this modeling
also improves the localization of foreground objects (e.g.
we observe +3% improvement in fg-ARI with BMOD( [1])
in the unsupervised setting). This validates our assump-
tion that isolating the background minimizes the presence
of random segments in the learned attention maps, which
favors a proper learning of the object structure. Although
we observe in one test (BMOD( [2]), estimated, table 1), a
slight decrease in fg-ARI (−0.9), our approach brings a sig-
nificant gain of performance on the more complete all-ARI
metric (+20.2, table 3). Our results are further improved
when using self-supervised pretraining (BMOD*). This is
well-justified given the rich semantic and depth information
contained within these features [23]: objects are more eas-
ily captured as regions of independent motion, consistent
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Figure 3. Qualitative comparison under the unsupervised setting on TRI-PD (left) and KITTI dataset (right). By row: the input
frame, results of [1] showing both objects and noise segments (indiscernible given the lack of confidence criteria in the unsupervised
setting), our segmentation result showing the noise reduction through background modeling.

Guidance signal Method fg-ARI
- SlotAttention [1, 21] 10.2
- MONet [1, 3] 11.0
- SCALOR [1, 13] 18.6
- IODINE [1, 10] 9.8
- MCG [1, 25] 25.1

gt motion

Bao et al. [1] 59.6
BMOD ( [1]) 74.1
BMOD* ( [1]) 83.0
MoTok [2] 76.3
BMOD ( [2]) 81.5
BMOD* ( [2]) 87.5

estimated motion

Bao et al. [1] 50.9
BMOD ( [1]) 53.9
BMOD* ( [1]) 58.5
MoTok [2] 55.1
BMOD ( [2]) 54.2
BMOD* ( [2]) 60.9

Table 1. Evaluation of objects discovery performance on TRI-PD
dataset under two settings. Best results are put in bold, second
best underlined. BMOD([X]) stands for our method built upon
the approach in [X] and BMOD* is our method enhanced with
features from DINOv2 [23] pretraining.

depth, and similar semantics.

4.5. Background modeling using motion cues

In this section, we highlight our main contribution, namely
learning the object/non-object boundary without human su-
pervision. We use two distinct metrics to evaluate this task,
all-ARI and Jaccard Score (see section 4.2). We recall that
in our method, the background slot is known since it is
constrained by design. Calculation of the Jaccard Score is
therefore straightforward. For previous methods, however,
no information of the background class is available. For
a fair comparison, we consider in these methods as back-
ground the largest segment returned in all slots. Even so,
the results in table 3 show the clear improvement brought by
our method in the two tested settings: with motion supervi-

Method fg-ARI

SlotAttention [1, 21] 13.8
MONet [1, 3] 14.9
SCALOR [1, 13] 21.1
IODINE [1, 10] 14.4
MCG [1, 25] 40.9
SAVI [2, 17] 20.0
SAVI++ [2, 8] 23.9
STEVE [2, 29] 11.9
Karazija et al. [16] 50.8
Karazija et al. (WL) [16] 51.9
Bao et al [1] 47.1
BMOD ( [1]) 54.7
BMOD* ( [1]) 60.8

Table 2. Performance comparison of BMOD and previous meth-
ods for unsupervised object discovery on KITTI dataset.

sion and unsupervised. Particularly, incorporating our train-
ing mechanism into [1] brings considerable all-ARI im-
provement of +22.3 on TRI-PD under the unsupervised set-
ting, and a further enhancement of +13.5 on KITTI dataset.
The other observation we can draw is that, for both fg-ARI
and the fg/bg separation tasks, a wide gap remains between
the two settings gt and estimated (the upper-bound results
being very high), suggesting strong potential for improve-
ment by addressing the quality of pseudo-labels.

5. Ablation and further analysis
5.1. Analysis of the composition of objective func-

tions

In this section, we investigate the composition of our ob-
jective functions. First, we test a more naive way of isolat-
ing the background, by explicitly placing the non-moving
background in one slot’s attention map, using BCE loss.
As expected, this method fails to capture most foreground
objects, resulting in a critical degradation of fg-ARI. In-
deed, the non-moving background in the estimated masks
contains all static objects and a few moving but difficult-
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Dataset Guidance Method all-ARI Jaccard score
fg-class bg-class

TRI-PD

gt

Bao et al. [1] 18.1 19.3 46.2
BMOD ( [1]) 79.7 73.0 95.8
BMOD* ( [1]) 84.9 78.2 97.6
MoTok [2] 25.2 26.5 64.3
BMOD ( [2]) 81.7 75.7 96.5
BMOD* ( [2]) 84.0 77.0 97.5

est

Bao et al. [1] 6.3 15.0 33.4
BMOD ( [1]) 28.6 27.2 77.5
BMOD* ( [1]) 29.1 26.5 78.7
MoTok [2] 4.7 14.8 28.5
BMOD ( [2]) 24.9 25.1 73.2
BMOD* ( [2]) 26.7 25.7 75.2

KITTI est
Bao et al. [1] 4.2 9.1 39.3
BMOD ( [1]) 17.8 13.7 70.5
BMOD* ( [1]) 21.7 14.9 69.9

Table 3. Performance comparison of BMOD with previous meth-
ods on foreground/background separation.

to-capture instances. All these elements are considered as
background in the previous test. Another test is to apply
regularization to the whole attention map. One might
be motivated to do this to attenuate the noisy regions con-
tained in the estimated motion masks, but this is not opti-
mal as it encourages the model to attenuate activation on
object regions too. Finally, we test the variant of our pro-
posed loss functions without the dynamically weighted
BCE described in section 3.3, by setting a fixed weight of
one, instead. As expected, not accounting for object size
in our method, when one group/class is predominant (back-
ground), encourages the model to place more objects in that
group, causing objects to be lost (see table 4).
all-ARI results are not reported here since they are not in-
formative when there is a significant loss in fg-ARI. In this
case, a high all-ARI means that objects have been falsely
attributed to the predominant class (background). Our aim,
however, is to handle noise in the background without com-
promising the ability to capture objects.

Method fg-ARI
isolate only non-moving background 10.1
regularization on the whole map 48.4
w/o weighted BCE 45.0
Our full approach (BMOD) 53.9

Table 4. Ablation study on the design of the objective functions on
TRI-PD under the unsupervised setting.

5.2. Enhancing the unsupervised setting perfor-
mance: gains from noiseless pseudo-labels

In this section we investigate the upper-bound performance
that can be achieved in the unsupervised setting, which cor-

responds to the use of pseudo-masks of moving objects, ex-
tracted from optical flow. It is important to note that these
estimated labels are subject to a significant amount of noise
arising from camera motion. This noise takes the form of
random segments which are used to guide the slots learn-
ing. In this study, we apply a simple heuristic related to
the nature of the analysed scenes, to filter out this noise.
Since we’re looking to localize objects of a driving scene,
which are unlikely to lie at the top of the frame, we apply
the heuristic to the position of the objects, filtering out any
segment in the first upper tier of the image. As can be seen
below, this simple heuristic provides a stronger baseline
for all-ARI, while maintaining objects localization perfor-
mance (equivalent fg-ARI). This indicates that the method’s
potential for improvement is related to the quality of the
pseudo-labels, justifying further exploration in this area.

Method fg-ARI all-ARI Jaccard score
Fg-class Bg-class

Bao et al. [1] 50.9 6.3 15.0 33.4
BMOD ( [1]) 53.9 28.6 27.2 77.5
BMOD + noiseless pseudo labels 52.3 58.8 51.5 91.6

Table 5. Study of the impact of noise contained in pseudo-labels.

6. Conclusion

In this work, we present an objects discovery method that
takes into account the particular semantic concept of the
background, which is isolated while decomposing the scene
into objects regions. We showed through the computation
of adapted metrics the effectiveness of our method in sep-
arating object/non-object regions, without human supervi-
sion. In addition, objects localization was found to bene-
fit considerably from the background modeling. This im-
portant result is justified by the noise reduction induced by
our method, enabling better focusing on object regions. We
hope the baseline proposed in this work will motivate fur-
ther research on background modeling in object discovery.
A further analysis showed the potential for scaling the per-
formance of the method by improving the quality of the mo-
tion masks. We believe this deserves further exploration in
future work. Finally, given the reduced amount of noise
among our produced segments, this work opens up the per-
spective of re-using the discovered objects, for example,
with a pseudo-labeling approach.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650–9660, 2021. 2, 3

[5] Junyi Chai, Hao Zeng, Anming Li, and Eric W.T. Ngai. Deep
learning in computer vision: A critical review of emerg-
ing techniques and application scenarios. Machine Learning
with Applications, 6:100134, 2021. 1

[6] Honglin Chen, Rahul Venkatesh, Yoni Friedman, Jiajun Wu,
Joshua B Tenenbaum, Daniel LK Yamins, and Daniel M
Bear. Unsupervised segmentation in real-world images via
spelke object inference. In European Conference on Com-
puter Vision, pages 719–735. Springer, 2022. 1

[7] A. Dave, P. Tokmakov, and D. Ramanan. Towards segment-
ing anything that moves. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pages
1493–1502, Los Alamitos, CA, USA, oct 2019. IEEE Com-
puter Society. 6

[8] Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van
Steenkiste, Klaus Greff, Michael C. Mozer, and Thomas
Kipf. SAVi++: Towards end-to-end object-centric learning
from real-world videos. In Advances in Neural Information
Processing Systems, 2022. 1, 3, 7

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Interna-
tional Journal of Robotics Research (IJRR), 2013. 6
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