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Abstract

Conditional image synthesis performs admirably when
trained on well-constructed and balanced datasets. How-
ever, in practice, training datasets frequently contain mi-
norities (i.e., a class with a few samples), known as im-
balanced data, which causes difficulties in learning gen-
erative models. To address conditional image synthesis
with imbalanced data, we analyze a diversity issue of label-
preserving data augmentation and an affinity issue of non-
label-preserving data augmentation. From this observation,
we present label augmentation, which works as inter-class
data augmentation that effectively augments data by pre-
dicting a new label for a given image using the prediction
of a pretrained image classification model (i.e., probabili-
ties for each class). We incorporate our label augmentation
into the discriminator of a seminal conditional generative
adversarial network (GAN) model, proposing Softlabel-
GAN. Using class probabilities extracts class-invariant and
shared features between similar classes, achieving data
augmentation with high affinity and diversity. Our exper-
iments on imbalanced datasets show that Softlabel-GAN
produces images with high quality and diversity while be-
ing hardly affected by the number of samples in each
class. Code: https://github.com/raven38/
softlabel-gan.

1. Introduction

The impressive success of conditional deep generative
models [12,24,37,45,48,49,62] has been largely aided by a
large amount of well-collected, balanced, and diverse data,
typically consisting of not only a large number of images
in total but also a certain number of images in each class.
Despite the enormous number of images available online,
collecting special or rare objects is not always feasible ow-
ing to annotation costs, data constraints (e.g., paintings of
a specific artist), unauthorized data, and privacy concerns.
As a result, imbalanced data [20] is inevitable in real-world
scenarios, leading to the failure of generative models and
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Figure 1. Generated examples on AnimeFace [1]. DiffAug-
GAN (DiffuAug) generates images with low diversity (red rectan-
gles). Smooth-GAN (Smooth) generates images that differ from
the given class (dashed black rectangles). In contrast, Softlabel-
GAN (Ours) can avoid overlapped images and images without re-
spect to the given class. Each class has five samples.

amplifying biases. The potential risk of the latter has been
discussed in terms of AI ethics [2, 35, 50]. Training gener-
ative models in the imbalanced data regime is thus consid-
ered necessary, potentially broadening generative models’
real-world applications and providing safety to them.

Data augmentation is a straightforward solution for im-
age generation with limited data. According to [13], two
important aspects of data augmentation are affinity and di-
versity, with affinity indicating how small the distribution
shifts between the augmented and training data distributions
and diversity indicating the complexity of the augmented
data. Low-affinity data causes the model to learn incorrect
features, whereas low-diversity data causes the model to
easily memorize training data, degrading the quality and di-
versity of generated images. Achieving augmentation with
high affinity and diversity is difficult for imbalanced data
because of two reasons: (i) the number of training samples
is insufficient in minor classes and (ii) the minor class sam-
ples are not diverse. As a result, data augmentation with
high affinity and diversity is vital for successfully condi-
tional image synthesis with imbalanced data.

Data augmentation consists of two parts: label-
preserving data augmentation [11, 25, 56, 64, 65] and non-
label-preserving data augmentation [54, 61]. The former
part directly modifies only image inputs, whereas the lat-
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ter one does the labels of inputs. The label-preserving data
augmentation for images mostly employs geometric trans-
formations, image filters, and color intensity transforma-
tions, and their operations are limited to those that maintain
input labels. On the other hand, non-label-preserving data
augmentation allows arbitrary operations. Label-preserving
data augmentation is widely used in generative adversarial
networks (GANs) [25, 56, 64, 65], with notable results on
limited and balanced data. However, in our case, where the
data is not only limited but also imbalanced (i.e., the ap-
pearance of minor classes), the current data augmentation
is insufficient to expand the data distribution. The main rea-
son is that such data augmentation creates additional data
by solely reusing the samples within each class, leading to
augmented data with high affinity yet low diversity. For in-
stance, simply applying geometric, color, corruption, and/or
filtering transformations to the training data (e.g., DiffAug-
ment [64]) leads to a rapid imbalance between a generator
and a discriminator, yielding images with low diversity (i.e.,
repeat almost the same images) (Fig. 1).

Our main idea is to predict a new label for a given im-
age by assigning probabilities to all classes to which the
image belongs. Therefore, our novel augmentation is a type
of non-label-preserving data augmentation, which we call
label augmentation. We approach our problem by incorpo-
rating our simple yet effective label augmentation into the
discriminator of a seminal cGAN model. More precisely,
we first prepare an image classification model pretrained on
the imbalanced data. Then, we use the output of the softmax
function (i.e., probabilities for each class) obtained through
the pretrained classifier as the class condition in the discrim-
inator. Using class probabilities enables our model to take
into account semantic similarities between classes with re-
spect to the perception of pretrained classifiers. Naive label
augmentation methods [54,61] blindly distribute class prob-
abilities to the data, resulting in augmented data with high
diversity but low affinity, as well as the generation of images
that are irrelevant to the given class (Fig. 1). By contrast,
our augmentation precisely distributes class probabilities,
resulting in augmented images with both high affinity and
diversity. Consequently, our method hinders the training of
the discriminator and balances the generator and the dis-
criminator, yielding better-generated images (Fig. 1). Our
contributions can be summarized as follows:

• We observe that existing data augmentation ap-
proaches provide either diversity or affinity for imbal-
anced data.

• We find that assigning classifier output with suffi-
cient entropy to samples can be interpreted as inter-
class data augmentation that increases the diversity per
class. We thus propose a simple yet effective label aug-
mentation method that produces augmented data with
high affinity and diversity using a pretrained classifier.

• We propose Softlabel-GAN, which uses our novel la-
bel augmentation, for conditional image synthesis in
an imbalanced data regime. To the best of our knowl-
edge, this is the first study that investigates label aug-
mentation in learning cGANs with imbalanced data.

• We demonstrate, on several imbalanced datasets, that
our method outperforms the other methods. Further-
more, the experiments show our advantages with intra-
class fidelity and diversity.

2. Related Work
Image generation with limited data aims to improve
the training stability and generation quality without the
immense amount of data. Collecting large high-quality
datasets is not always possible because of the tremendous
annotation cost, data constraints, and privacy. In some
cases, we only collect a few examples for each class, e.g.,
photos of a specific landmark or illustrations of a specific
artist. Since training GANs without a huge amount of data
is crucial, several studies [16, 21, 25, 51, 64] paid attention
to the data efficiency aspect. Some approaches [25, 64]
are able to learn from limited data by using data augmen-
tation (i.e., label-preserving data augmentation). In con-
trast to data augmentation-based approaches, another line
of research [7,26,36,53] employs semi- and self-supervised
learning to reduce the cost of human annotation. Recent
works [42, 44] design architecture-specific methods for im-
age generation with limited data. We introduce a data aug-
mentation approach, which achieves high-affinity and high-
diversity augmentation on imbalanced data.
Non-label-preserving augmentation is a set of data aug-
mentation. While the label-preserving augmentation di-
rectly modifies an input image, the non-label-preserving
augmentation modifies an input label. Of which, label
smoothing [54] and Mixup [61] are popularly used. Label
smoothing [54] replaces hard targets with soft targets by
taking the weighted average of the original targets, avoid-
ing overconfidence on several tasks [9, 57]. Online label
smoothing [60] quantifies class similarities and then as-
signs class-wise soft labels, unlike our method, which as-
signs instance-wise soft labels. Mixup [61] trains a net-
work on convex combinations of the samples and their la-
bels to improve accuracy and robustness to hyperparame-
ters. These methods [54, 61] often provide incorrect infor-
mation to cGANs owing to blindly distributing class prob-
abilities, resulting in the high diversity yet low affinity of
augmented data. In this work, we present content-aware
label augmentation for imbalanced data, which builds aug-
mented data with high affinity and diversity.
Pretrained recognition models have been widely used in
training GANs. To generate images considering their con-
tents, the high-level features extracted from a pretrained
model as an alternative to the human visual perception are
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Table 1. Comparison of balanced and imbalanced datasets. For
each dataset, we indicate the range of the number of images in
each class, a ratio (largest class samples/smallest class samples),
overall samples, and the number of images per class and the ratio
after our label augmentation. The number of samples per class on
the imbalanced dataset is various and significantly less than that
on the balanced one. A higher ratio indicates more imbalance.
Our augmentation actually increases the minor class samples (last
column).

Dataset
#Samples
per class Ratio #Samples

#Augmented
samples

Augmented
ratio

Balanced datasets
CIFAR-10 [28] 5000 1× 50000 — —
CIFAR-100 [28] 500 1× 50000 — —

Imbalanced datasets
AnimeFace [1] 17–161 9.5× 14490 109–792 7.2×

Oxford-102 Flowers [41] 40–258 6.5× 8189 50–315 6.3×
Imbalanced CIFAR-10 65–1720 26.5× 3208 149–2232 14.9×

Imbalanced CIFAR-100 6–36 6× 2993 35–176 5×
Imbalanced Tiny ImageNet 9–586 65.1× 47602 60–680 11.3×

Stanford Cars [27] 24–68 2.8× 8144 73–263 3.6×

used [8, 22, 31]. The feature distance between two images
with the pretrained VGG [52] has been widely used in style
transfer [22] and super-resolution [31]. Knowledge distil-
lation [15] transfers knowledge from a teacher model to
a student model that solves the same task as the teacher
solves for model compression [6, 32, 47, 58]. A concur-
rent work [10] proposes a CLIP [43]-based knowledge dis-
tillation method and exploits huge external knowledge for
image generation. In contrast, we aim to share knowledge
among classes to enhance minority classes.

3. Preliminary Knowledge

3.1. Imbalanced dataset

Depending on the number of samples in each class, any
dataset can be classified as either a balanced or imbalanced
dataset [5, 20, 34]. While a balanced dataset possesses
classes with roughly the same number of samples in each,
an imbalanced dataset possesses some classes with a few
samples. As we can see in Tab. 1, the ratios between the
major and minor classes of imbalanced datasets are much
higher than those of balanced datasets.

On the basis of the above definition [34], we collect some
imbalanced datasets to verify our method. We use Anime-
Face [1], Oxford-102 Flowers [41], imbalanced CIFAR-10,
imbalanced CIFAR-100, imbalanced Tiny ImageNet, and
Stanford Cars [27] in our experiments. Note that we con-
struct imbalanced CIFAR-10/100 and Tiny ImageNet from
the original ones [28,59] (see Sec. 5.1 for more details). For
comparison, we list the number of classes and the number
of samples per class for balanced and imbalanced datasets
in Tab. 1, showing that the imbalanced datasets used in our
experiments are more challenging.

3.2. Conditional GANs

Conditional GANs aim to model the conditional distri-
bution of a target dataset using a generator G : Rdz×Rk →
Rd and a discriminator D : Rd × Rk → R, where d and dz
are the dimensions of an image and a latent variable, respec-
tively. Here, the class label y ∈ Rk with k being the number
of classes indicates the probabilities of an instance belong-
ing to each class, including one-hot vectors. The generator
G maps condition yf ∈ Rk and latent vector z ∈ Rdz from
a prior distribution p(z) to output xf = G(z,yf ) ∈ Rd.
The discriminator D learns to distinguish between the gen-
erated distribution p and the target distribution q. The dis-
criminator receives either a pair of a real sample xr ∈ Rd

and a corresponding label yr ∈ Rk or a fake pair (xf ,yf ).
The objective functions of cGANs are

LD =Eyr∼q(y),xr∼q(x|y) [fD(−D(xr,yr))]

+ Eyf∼p(y),z∼p(z)

[
fD(D(G(z,yf ),yf ))

]
, (1)

LG =Eyf∼p(y),z∼p(z)

[
−D(G(z,yf ),yf )

]
, (2)

where fD(·) = max(0, 1 + ·) is the hinge loss [33, 37, 55].
Conventional cGANs optimize the above functions, lead-
ing to the generated distribution being close to q(x|y) on a
well-constructed dataset. In contrast, we aim to learn a dis-
tribution that is close to q(x|y) on an imbalanced dataset.

4. Proposed Method

4.1. Label augmentation for imbalanced data

Imbalanced data possesses a special property, whereas
some classes have a certain number of samples (i.e., ma-
jor classes) while others do not (i.e., minor classes). The
existence of minor classes leads to the failure of straight-
forward data augmentation, which directly applies transfor-
mations to training images. The reason can be explained
as follows. Label-preserving data augmentation uses sam-
ples within each class to augment data. This strategy works
well for major classes while it cannot provide enough di-
versity given minor classes. Namely, the augmented data
have high affinity yet low diversity. Obviously, they easily
trigger learning short-cut features.

To address the inadequacy of label-preserving data aug-
mentation, we focus on increasing the affinity and diversity
of augmented data. Needless to say, all training data would
share some features such as color and shape. Inspired by the
above observation, our method is designed to allow a class
to implicitly borrow samples from other similar classes as
augmented samples rather than reusing samples within the
class. An appropriate way is non-label-preserving augmen-
tation, in which a single image is shared by multiple classes.
However, naive label augmentation methods automatically
distribute the probability. Label smoothing [54] makes new
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Label-preserving data augmentation [64]

Label smoothing [54]

Our label augmentation
Figure 2. Training samples from the same class after applying
each augmentation method (i.e., images that assign probability to
the class). The blue rectangles mean augmented samples, and the
others are original samples of the class. Unlike other methods,
our label augmentation imports similar images from other classes,
resulting in augmented data with high affinity and diversity.

labels dissociate from the image content. Mixup [61] ex-
pands the class distribution by using convex combinations
even for dissimilar class pairs.

We thus develop a distribution manner that distributes
probabilities associated with each input image. Namely, we
employ a pretrained image classifier for our label augmen-
tation. Assigning the predictions of the classifier to samples
as new labels enables the discriminator to consider the rela-
tionships between classes in training. Our label augmenta-
tion, therefore, facilitates learning with the proper informa-
tion and balancing the generator and the discriminator. As
shown in Fig. 2, while typical data augmentation methods
complete data augmentation within each class, label aug-
mentation does classes by importing instances from other
classes. Therefore, label augmentation can be interpreted
as inter-class data augmentation.

We compare augmented data obtained by different aug-
mentation methods (Fig. 2). Label-preserving data augmen-
tation [64] only reproduces images similar to original im-
ages, resulting in augmented data with high affinity and low
diversity. Label smoothing [54] imports images different
from the original images, resulting in low affinity and high
diversity. In contrast to the above methods, our label aug-
mentation imports images (from other classes) that are sim-
ilar to the original class images (e.g., the characteristics of
the same hair color and similar painting style), resulting in
augmented data with high affinity and diversity.

4.2. Softlabel-GAN

We propose Softlabel-GAN by incorporating our label
augmentation into the discriminator of a cGAN model.
More precisely, we feed the probability vectors of input im-
ages to the discriminator instead of one-hot ground truths.
In what follows, we will formally present our label augmen-
tation as well as how to combine it with the discriminator.

Embedding

Inner 

product

Adversarial 

loss

(a) Projection.

Linear

Inner 

product

Adversarial 

loss

(b) Ours.
Figure 3. Discriminator architectures for cGANs: a projection dis-
criminator and a discriminator with our label augmentation. (a)
The typical conditional discriminator receives a pair of an image
and a label: (xf ,yf ) or (xr,yr). (b) Our discriminator receives
a pair of an image and a probability vector obtained from a pre-
trained classifier ŷr = C(xr): (xf ,yf ) or (xr, ŷr).

Label augmentation definition. Let T :Rd×Rk→Rd×Rk

be a label augmentation function. We define T (x,y) =
(Tx(·), Ty(·)) where Tx is an image prediction function
(i.e., predicting a modified image) and Ty is a label predic-
tion function (i.e., predicting a new label for given image).
Our Tx is the identity function. Unlike Ty used in [54, 61],
which directly predicts a new label from a given label y, our
Ty predicts a new label ŷ from a given image x.

As discussed above, we aim to distribute class proba-
bilities to the given image x precisely, indicating that ŷ is
assigned to multiple classes. Therefore, we use a pretrained
classifier C : Rd → Rk as Ty . The new label ŷ is obtained
using C as ŷ = C(x). In other words, T (x,y) = (x, ŷ).
Integration of label augmentation and discriminator.
We now integrate ŷ obtained by our augmentation into
Eq. (1), defining the objective of Softlabel-GAN as

LD =Eyr∼q(y),xr∼q(x|y) [fD(−D(xr, ŷr)))]

+ Eyf∼p(y),z∼p(z)

[
D(G(z,yf ),yf )

]
. (3)

We also employ Eq. (2) as the objective function of the gen-
erator for our training scheme. The generator only takes
one-hot inputs yf in both the training and testing phases.
Our discriminator takes ŷ for real samples and yf for fake
samples, which are sampled from the uniform distribution.
We apply our label augmentation to only real samples be-
cause our augmentation aims to correct the class imbalance
in the dataset. Figure 3 illustrates the difference between
our discriminator and the widely used projection discrim-
inator [38]. Note that in Fig. 3, we omit the generator of
Softlabel-GAN for simplicity because we maintain the gen-
erator of projection-based GANs.

Our method increases the diversity of the augmented
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data while maintaining high affinity by importing simi-
lar images from other classes. This is because it assigns
higher probabilities to proper classes (e.g., correct or similar
classes) and lower probabilities to improper classes (e.g., ir-
relevant or dissimilar classes) according to the perception of
a pretrained classifier. As opposed to our method, the data
augmentation-based methods [25,64] limit the diversity due
to only reusing a few samples inside each class. By aug-
menting data with high affinity and diversity, our method
prevents just memorizing training data.

Generally, we can use another function as T . Label
smoothing [54] (i.e., T (x,y) = (x,y(1− α) + α1/k) and
Mixup [61] (i.e., T (x,y) = (λx+(1−λ)x′, λy+(1−λ)y′)
have label prediction functions Ty(y) = y(1− α) + α1/k
and Ty(y) = λy + (1 − λ)y′, respectively. Unlike our
method taking Ty : Rd → Rk, naive label augmentations
take Ty : Rk → Rk (i.e., predicting a new label from a
given label). Augmenting a class without considering actual
image contents results in the low-affinity augmented data.

We checked that our label augmentation works as data
augmentation. The number of samples that assigned a prob-
ability above a threshold of 0.01 to a class was counted as
the number of samples belonging to the class. Our label
augmentation indeed increases the minor class size (Tab. 1,
last column).

4.3. Implementation details

We use BigGAN [4] to examine Softlabel-GAN. We
build Softlabel-GAN upon BigGAN [4] by integrating our
label augmentation and DiffAugment [64] with three trans-
formations: translation (within [−1

8 ,
1
8 ] of the image size),

color (including random brightness within [−0.5, 0.5], con-
trast within [0.5, 1.5], and saturation within [0, 2]), and
cutout (masking with a random square of half image size).

We use SpinalNet [23] as pretrained classifier C be-
cause it achieves stat-of-the-art performance on fine-grained
datasets and empirically works well on imbalanced data.
We train SpinalNet on a target dataset with the entropy reg-
ularization term. Empirically, the weight of the term is set
to 0.3 for all datasets. We then use the trained classifier
to realize our label augmentation. The classifier feeds on
input before applying DiffAugment. Note that our method
does not require a perfect classifier because we aim to as-
sign probabilities to similar classes.

We convert input probability vectors by a fully connected
layer without a bias term instead of an embedding layer
to accept ŷ ∈ Rk (i.e., a non-one-hot vector). Then, we
use the discriminator D(x,y)=ϕ(x)V y+ψ(ϕ(x)) with
the feature extractor ϕ : Rd→Rl, the discriminator head
ψ : Rl→R, and the weights of the linear layer V ∈Rl×k

(Fig. 3).
For the experiments with the resolution of 32×32, we set

the latent dimension dz =128. We use a minibatch size of

128 and a learning rate of 2×10−4 for both the generator and
discriminator. For the experiments with higher resolution,
we use the hierarchical latent space with 20 dimensions for
each latent variable and the shared embedding with 128 di-
mensions. We use minibatch sizes of 512 and 32 for the
resolutions of 64×64 and 128×128, respectively. We use
the learning rates of 1×10−4 and 4×10−4 for the generator
and discriminator, respectively.

5. Experiments
5.1. Datasets

AnimeFace [1] is constructed by extracting face regions
from the images of anime characters obtained from the web.
It consists of 176 characters (i.e., classes), where each class
contains between 17 and 161 images (128× 128).
Oxford-102 Flowers [41] consists of 102 flower classes.
The smallest class has 40 images and the largest one has
258 images. All images are resized to 128× 128.
Imbalanced CIFAR-10 is an imbalanced subset of CIFAR-
10 [28]. The original CIFAR-10 contains 50,000 32 × 32
images as the training set. The building procedure for this
dataset consists of three steps. First, we shuffle the order
of class labels. Then, to define the frequency of each class,
we consider a histogram that has the same number of bins
as the number of classes and approximates the range [0, 3)
in a lognormal distribution with a standard deviation of 3.
Each sorted class corresponds to one bin, and we finally ran-
domly pick up samples so that the overall class frequency
follows this histogram. The dataset contains 3208 color im-
ages, with 65–1720 images per class.
Imbalanced CIFAR-100 is an imbalanced subset of 32×32
CIFAR-100. We build it in the same manner as imbalanced
CIFAR-10 and use a χ2-distribution with 3 degrees of free-
dom instead of a lognormal distribution. The dataset con-
sists of 2993 images with 6–36 images per class.
Imbalanced Tiny ImageNet is a subset of Tiny ImageNet
128×128 [59] (200 classes). We take it in the same man-
ner as imbalanced CIFAR-10/100 with the range [1, 4) in a
Pareto distribution with a shape parameter, α = 2. It con-
tains 47602 images with 41–483 images per class.
Stanford Cars Dataset [27] consists of 196 classes with
24–68 images per class. All images are resized to 128×128.
The dataset provides 8144 images.

5.2. Compared methods and evaluation metrics

Compared methods. We use BigGAN [4] as a base model
and carefully integrate data and label augmentations into
it. Since BigGAN [4] cannot work properly without data
augmentation as seen later in Sec. 5.4, we employ DiffAug-
ment [64] for all the compared methods.

For comparison (Sec. 5.3), we compare Softlabel-GAN
with DiffAug-GAN (i.e., BigGAN [4] with DiffAug-
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Figure 4. Generated examples on Stanford Cars [27]. DiffAug-
GAN cannot generate the color variations of target classes.

ment [64]). We also use Smooth-GAN (i.e., BigGAN [4]
with DiffAugment [64] and label smoothing [54] with α of
0.1) as a strong baseline with naive label augmentation.

For detailed analysis (Sec. 5.4), we use two ablated mod-
els: Softlabel-GAN−−, which is our model without both
augmentations (i.e., BigGAN [4]), and Softlabel-GAN−,
which is our model without data augmentation (i.e., Big-
GAN [4] with our label augmentation). Additionally,
we prepare Smooth-GAN− (i.e., BigGAN [4] with label
smoothing [54]).
Evaluation metrics. We employ Inception Score (IS) [46],
Fréchet Inception Distance (FID) [14], and LPIPS [63] di-
versity score. In addition, we use Precision, Recall, Den-
sity, and Coverage [30, 39]. We also calculate intra-class
metrics: intra-FID [38], intra-LPIPS, intra-Precision, intra-
Recall, intra-Density, and intra-Coverage to more exten-
sively evaluate the quality within each class. Intra-FID,
intra-LPIPS, intra-Precision, intra-Recall, intra-Density,
and intra-Coverage are the averages of the FID, LPIPS, Pre-
cision, Recall, Density, and Coverage calculated for each
class, respectively. For FID and intra-FID, we sample 10K
generated images. For LPIPS and intra-LPIPS, we sample
100 generated images for each class.

5.3. Experimental results

Qualitative comparison. Figures 1 and 4 provide the
examples generated by Softlabel-GAN and the baselines,
showing that our method succeeds in the plausible and di-
verse image generation on imbalanced training data. On
AnimeFace (Fig. 1), all methods can produce plausible im-
ages. However, from the perspective of the distribution
of generated images, DiffAug-GAN produces only a few
modes regardless of latent variables, resulting in less diverse
images, and Smooth-GAN generates images with a wrong
class. On Stanford Cars (Fig. 4), DiffAug-GAN generates
images with low diversity. By contrast, our method gener-
ates the color variations of car models. We provide more
examples in Supplementary Material.
Quantitative comparison. Table 2 provides quantitative
results on the six datasets. Our method outperforms the
others in FID and intra-FID on all datasets, demonstrat-

Figure 5. As the number of samples in the minor classes decreases,
the FIDs obtained by DiffAug-GAN and Smooth-GAN increase
considerably, implying that those methods worsen. In contrast,
Softlabel-GAN achieves a relatively consistent performance re-
gardless of the minimum number of samples for each class.

ing the superiority of Softlabel-GAN in overall and per-
class performance. Table 2 also shows that our method
achieves higher LPIPS and intra-LPIPS scores than other
methods in most cases, indicating that our generated im-
ages are more diverse. Tight standard deviations of intra-
FID and intra-LPIPS of our method indicate consistent per-
formance in each class. Unlike in the case of FID, which
neglects the minor classes, Tab. 2 demonstrates the superi-
ority of our method in terms of intra-class metrics, which
considers the quality of minor classes. Smooth-GAN some-
times achieves the highest diversity score because images
that ignore a given class condition result in a higher di-
versity score, but not actual diversity. Unlike Smooth-
GAN, Softlabel-GAN generates images always consistent
with a given class (see Figs. 1 and 7). As shown in Fig. 1
and Tab. 2, our method achieves diverse image generation.
We note that KD-DLGAN [10] achieves a FID of 11.63 on
Stanford Cars.

Next, we evaluated the effects of the number of minor
class samples on the performance of the compared meth-
ods. To this end, we train the compared models on imbal-
anced CIFAR-10 using variable sizes of minor class sam-
ples (i.e., 120, 90, and 65 samples, respectively). Figure 5
indicates that while DiffAug-GAN and Smooth-GAN sig-
nificantly deteriorate their performance as the number of
samples decreases, our method achieves stable performance
even with the limited amount of data. When compared with
DiffAug-GAN, our method reduces performance degrada-
tion by 70%. These observations clearly show the benefits
of our method in boosting the robustness to minor classes.

5.4. Detailed analysis

We evaluated the necessity of DiffAugment [64]; see the
first three rows of Tab. 3. For this ablation study, we use
AnimeFace and Oxford-102 at the resolution of 64 × 64.
Softlabel-GAN achieves better FID over the ablation mod-
els (Tab. 4). We can see the necessity of the DiffuAugment
baseline. In addition, our label augmentation further brings
a performance gain over the baseline.

To confirm the contribution of each augmentation, we
explore the FID and LPIPS (computed on each class) ob-
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Table 2. Quantitative results on the six benchmark datasets.
Method AnimeFace

FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑
DiffAug-GAN 25.09 0.5049 66.25±17.00 0.4018±0.0266 0.877 0.231 0.967 0.027 1.220 0.538 1.437 0.975
Smooth-GAN 22.46 0.5111 64.40±15.87 0.4211±0.0226 0.885 0.319 0.946 0.077 1.271 0.589 1.372 0.985
Softlabel-GAN 19.14 0.5183 57.43±16.56 0.4627±0.0314 0.890 0.454 0.952 0.225 1.442 0.659 1.365 0.988

Oxford-102 Flowers
FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑

DiffAug-GAN 28.70 0.5826 159.51±57.66 0.3964±0.0566 0.795 0.435 0.848 0.051 0.484 0.408 0.527 0.850
Smooth-GAN 23.36 0.5961 141.47±47.02 0.4313±0.0463 0.798 0.547 0.798 0.205 0.567 0.478 0.571 0.924
Softlabel-GAN 20.97 0.5793 126.32±42.69 0.4696±0.0407 0.815 0.585 0.796 0.300 0.613 0.513 0.612 0.927

Imbalanced CIFAR-10
FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑

DiffAug-GAN 57.24 0.2090 112.96±26.62 0.1647±0.0154 0.742 0.468 0.557 0.343 0.435 0.393 0.277 0.569
Smooth-GAN 66.75 0.2017 125.31±35.36 0.1751±0.0197 0.697 0.399 0.502 0.317 0.392 0.382 0.238 0.567
Softlabel-GAN 54.59 0.2058 109.79±24.72 0.1773±0.0167 0.756 0.408 0.590 0.337 0.477 0.438 0.308 0.590

Imbalanced CIFAR-100
FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑

DiffAug-GAN 37.70 0.2774 209.54±37.19 0.1543±0.0381 0.830 0.416 0.742 0.080 0.703 0.680 0.502 0.902
Smooth-GAN 34.36 0.2570 205.59±34.82 0.1704±0.0382 0.772 0.500 0.714 0.112 0.619 0.701 0.476 0.914
Softlabel-GAN 32.70 0.2438 201.61±32.50 0.1948±0.0352 0.770 0.577 0.699 0.262 0.635 0.712 0.446 0.948

Stanford Cars
FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑

DiffAug-GAN 8.99 0.5664 95.00±12.62 0.5437±0.0207 0.869 0.616 0.921 0.310 1.389 0.856 1.247 1.000
Smooth-GAN 7.91 0.5863 103.55±12.56 0.5436±0.0171 0.857 0.657 0.894 0.436 1.217 0.851 0.990 0.999
Softlabel-GAN 7.35 0.5855 89.04±11.64 0.5452±0.0168 0.884 0.664 0.927 0.455 1.228 0.851 0.972 1.000

Imbalanced TinyImagenet
IS↑ FID↓ LPIPS↑ intra-FID↓ intra-LPIPS↑ Precision↑ Recall↑ Intra-Prec↑ Intra-Rec↑ Density↑ Coverage↑ Intra-Dens↑ Intra-Cov↑

DiffAug-GAN 4.33 159.74 0.5496 332.61±34.55 0.2630±0.0319 0.341 0.000 0.139 0.000 0.080 0.017 0.022 0.049
Smooth-GAN 4.48 151.10 0.5573 334.39±33.84 0.3991±0.0544 0.352 0.003 0.128 0.001 0.075 0.020 0.016 0.070
Softlabel-GAN 14.58 53.22 0.6631 238.83±53.74 0.5755±0.0501 0.648 0.647 0.475 0.270 0.357 0.264 0.212 0.634

Table 3. Ablation study on the imbalanced datasets using FID.
Method AnimeFace Oxford-102 CIFAR-10 CIFAR-100

Softlabel-GAN 17.26 46.32 36.72 49.99
Softlabel-GAN−− 36.16 84.36 79.16 80.99
Softlabel-GAN− 32.89 60.31 72.81 73.94
Smooth-GAN− 40.45 78.20 83.68 72.80

Table 4. Comparison with Mixup and Oversample using FID.
Method AnimeFace Cars Oxford102 CIFAR-10 CIFAR-100

Softlabel-GAN 19.14 7.35 20.97 54.59 32.70
Mixup 24.87 14.53 39.13 56.36 36.32
Oversample 26.07 9.83 29.36 59.03 40.83

Table 5. FID scores in the experiments at 256× 256 resolution.
DiffAug-GAN Smooth-GAN Softlabel-GAN

AnimeFace 20.5066 20.6889 17.2493
Stanford Cars 10.1542 23.3695 9.8605

tained by both methods in depth. Figure 6 shows the
histograms of FID and LPIPS for each class on Anime-
Face. DiffAug-GAN has a larger variance of class FID and
LPIPS, varying the performance by each class data. It has
the distributions of FID and LPIPS with longer right and
left tails than Softlabel-GAN, respectively. Softlabel-GAN
wins 152 classes out of 176 against DiffAug-GAN in FID
and wins 175 classes in LPIPS. To sum up, the proposed
method reduces standard deviation in addition to improv-
ing performance, indicating that label augmentation and
data augmentation make different contributions. Along with
qualitative and quantitative results (Sec. 5.3), our method is
promising in dealing with imbalanced data.

Figure 7 shows the examples generated by cGANs with
label augmentation, i.e., Softlabel-GAN and Smooth-GAN.

(a) Class FID scores (↓) of all classes.

(b) Class LPIPS scores (↑) of all classes.

Figure 6. Histogram of class FID and class LPIPS scores on Ani-
meFace. The mode to the left in FID and the mode to the right in
LPIPS indicate good performance. The narrow distribution means
achieving consistent performance. The performance of DiffAug-
GAN varies by class more than Softlabel-GAN.
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Figure 7. Comparison of GANs with label augmentation. All im-
ages are generated with the same class, but some images contain
a different class from the the other images in Smooth-GAN. Each
class has four samples.

Note that we use the same class to generate images (i.e.,
two first rows belong to a class and two last rows belong to
another class). Unlike Softlabel-GAN, Smooth-GAN gen-
erates images of a different class from a conditional class.
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Table 6. FID scores in experiments with the ADC-GAN [19] base-
line.

DiffAug-GAN Smooth-GAN Softlabel-GAN

AnimeFace 35.0864 23.1834 21.0494
Stanford Cars 20.6485 23.4987 14.5688

Table 7. Comparison with the diffusion model with classifier-free
guidance (CFG) on TinyImageNet in FID, intra-KID, intra-LPIPS,
intra-Precision (i-P), intra-Recall (i-R), intra-Density (i-D), and
intra-Coverage (i-C).

Method FID intra-KID intra-LPIPS i-P i-R i-D i-C

CFG [18] 21.92 0.065 0.271 0.783 0.419 0.732 0.867
w/ our label augmentation 22.04 0.064 0.268 0.795 0.426 0.773 0.880

Table 8. Quantitative results on ImageNetLT [34].
Method FID LPIPS intra-FID intra-LPIPS i-P i-R i-D i-C

DiffAug-GAN 48.19 0.6641 371.1±29.20 0.615±0.015 0.232 0.632 0.045 0.600
Softlabel-GAN 49.17 0.6601 352.0±29.05 0.643±0.011 0.251 0.723 0.055 0.707

Figure 8. Differences between class FID scores of DiffAug-GAN
and Softlabel-GAN. The large gains in minor classes and small
gains in major (rightmost) classes show that our method effectively
contributes to minor classes.

We count the generated images with a class different from a
conditional class. First, we generate 50 images per class
on AnimeFace and compute the color histogram of each
generated image. The color histogram describes the num-
ber of pixels in each color range over all pixels of an im-
age. Next, we calculate the average of the histogram cor-
relations among images with the same class and use the
inter-quartile range rules to detect images with a differ-
ent class from a given condition. DiffAug-GAN, Smooth-
GAN, and Softlabel-GAN generate 11, 52, and 12 images
that differ from the given conditions, respectively. DiffAug-
GAN and our method can generate the correct class, while
Smooth-GAN fails. This is because Smooth-GAN blindly
distributes probabilities without considering the given im-
ages. This observation clearly confirms the outperformance
of our label augmentation against other methods. In the ex-
periments with 256 resolution, we also observe the superi-
ority of our Softlabel-GAN over the baselines as shown in
Tab. 5. The experiments with an ADC-GAN [19] baseline
(Tab. 6) show that our method works on another architec-
ture. We also conduct the experiment with a Vision-aided

GAN [29] baseline. Vision-aided GAN achieves FIDs of
15.77 on AnimeFace, 14.48 on Stanford Cars, and 26.88
on Oxford102, and Vision-aided GAN with our label aug-
mentation achieves FIDs of 13.61 on AnimeFace, 11.01
on Stanford Cars, and 16.84 on Oxford102. We also re-
port fine-grained metrics for the experiments in Supplemen-
tary Material. For the applicability of our method to an-
other generative model, we integrate our label augmentation
into diffusion models. We compare classifier-free guidance
(CFG) [17, 18, 40] and CFG with our label augmentation
on the imbalanced TinyImageNet dataset. In this experi-
ment, we use intra-Kernel Inception Distance (KID) [3] in-
stead of intra-FID due to the huge inference costs of diffu-
sion models. In Tab. 7, our method shows that marginal
improvements over a diffusion model with CFG in fine-
grained metrics. Table 8 shows the experimental results on
ImageNetLT [34]. Our method demonstrates the improve-
ments in fine-grained metrics on the large-scale dataset. The
comparison of per-class performance in Fig. 8 clearly shows
our method provides performance gains in minor classes.

We discuss the impact of classification accuracy on gen-
eration quality. The accuracies of the pretrained classifiers
in the experiments for AnimeFace, Oxford102, imbalanced
Tiny ImageNet, and Cars are 81.2%, 99.9%, 84.4%, and
99.9%, respectively. An accuracy of less than 90% is not
sophisticated but useful for training the cGANs. We further
analyze the insensitivity of the classifier performance to the
generation quality in Supplementary Material.

6. Conclusion
We investigated the problem of image generation in an

imbalanced data regime. To prevent overlooking minor
classes in conventional approaches, we introduced label
augmentation to increase diversity while maintaining affin-
ity. Furthermore, we proposed Softlabel-GAN by incorpo-
rating our label augmentation into the discriminator. Owing
to the use of classifier predictions as a discriminator’s class
condition, Softlabel-GAN enables us to extract the features
from other class samples, resulting in more focus on mi-
nor classes. Comprehensive benchmarking on imbalanced
datasets shows that our method outperforms other methods
and is less affected by the number of samples of each class.
Our limitation is that our method outperforms conventional
methods on only imbalanced datasets and does not outper-
form them on balanced datasets, as conventional methods
perform well with sufficient training data.
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