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Abstract

We present a generative adversarial network (GAN) in-
version with high reconstruction and editing quality. GAN
inversion algorithms with expressive latent spaces produce
near-perfect inversion but are not robust to editing opera-
tions in a latent space, leading to undesirable edited im-
ages, a phenomenon known as the trade-off between recon-
struction and editing quality. To cope with the trade-off, we
revisit the hyperspherical prior of StyleGANs Z and pro-
pose to combine an extended space of Z with highly ca-
pable inversion algorithms. Our approach maintains the
reconstruction quality of seminal GAN inversion methods
while improving their editing quality owing to the con-
strained nature of Z. Through comprehensive experiments
with several GAN inversion algorithms, we demonstrate
that our approach enhances the image editing quality in
2D/3D GAN.'

1. Introduction

The combination of generative adversarial network
(GAN) inversion [2, 3,5, 11, 14,29,31,47,54,55] and la-
tent space editing [12, 34, 36] enables us to edit a wide
range of real image attributes, such as aging, expression,
and light condition, by applying editing operations in the
latent space of GANs [12,27,34,36] to the inverted latent
codes obtained by GAN inversion methods. To this end,
many methods [2, 3, 11, 4] aimed at finding the latent
code of StyleGANs [17-20] that generates a given image
have been developed. The majority of GAN inversion stud-
ies [11,14,42,44] have focused on reducing reconstruction
loss by exploring novel embedding spaces, encoding meth-
ods, and optimization algorithms.

Nevertheless, it is still challenging to achieve a good
trade-off between reconstruction and editing quality in
GAN inversion [56]. The reconstruction quality indicates
the degree of similarity between the input and reconstructed
images. On the other hand, the editing quality indicates
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Figure 1. (left) Quantitative analysis of reconstruction and edit-
ing quality. We report MS-SSIM between target and inverted im-
ages and FID between target images and edited results obtained
by GANSpace with the editing intensity of 20. The scores are
calculated on the CelebA-HQ test set. F/W(Py) [14], Z, and
Z7T show the trade-off between reconstruction quality and edit-
ing quality. F/Z" improves the editing quality of /W (Pxr)
without losing reconstruction quality. (right) Examples of inver-
sion and edited results for compared latent spaces. Our F/Z*
achieves GAN inversion with high reconstruction and editing qual-
ity by overcoming the flaw of existing inversion methods.

how realistic and plausible the edited image is after per-
forming latent space editing operations. As shown in Fig. 1,
the original StyleGAN prior Z has the hyperspherical con-
straint, resulting in insufficient reconstruction quality yet
high editing quality. In contrast, popular latent spaces such
as W [20], WT [2], and S [44] are derived from Z by
utilizing a mapping network. This approach may enhance
the quality of reconstructed images, but it occasionally fails
to produce the desired edited images owing to the uncon-
strained nature of these spaces.

Recent attempts such as SAM [29], PTI [31], and P [56],
which are built upon W or W, aim at maintaining the per-
ceptual quality of edited images during the performance of
semantic editing operations. Since they still rely on uncon-
strained latent spaces, it is impossible to avoid undesirable
edited images. To address the trade-offs, our main target is
to enhance the reconstruction quality by using a more ex-
pressive space or a generator tuning technique while simul-
taneously preserving the editing quality through the use of
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the constrained latent space.

To begin with, we revisit the original latent space Z,
characterized by its high editing quality. Because employ-
ing Z alone lacks reconstruction quality, we propose to en-
hance the reconstruction capability by expanding Z to Z+
in a similar fashion to prior research [39,45]. Subsequently,
the integration of Z% with advanced inversion methods,
such as F/W™ [14], is performed to further improve the
overall reconstruction quality.

Qualitative and quantitative evaluations show that our
proposed method maintains image quality after performing
editing operations without sacrificing reconstruction quality
(Fig. 1). Our contributions are as follows:

* We revisit the Z space for GAN inversion, pointing out
that a combination of an extended space of Z (i.e., Z)
and highly capable inversion can maintain reconstruc-
tion quality while guaranteeing high editing quality for
real image editing using GAN inversion.

* We extend cutting-edge 2D/3D GAN inversion ap-
proaches (e.g., F/Wt [14], PTI [31], SAM [29],
and HFGI3D [48]) with Z*, demonstrating competi-
tive reconstruction quality with baselines and improve-
ments in editing quality over the baselines. In addition,
our approach elevates the latent editing methods (e.g.,
Local Basis) that necessitate Z from the realm of syn-
thetic image editing to that of real image editing.

2. Related work

GAN inversion aims to project real images into low-
dimensional latent codes, which can be mainly classi-
fied into encoder-based and optimization-based approaches.
The former type of approach [6, 30, 40, 42] trains an en-
coder network that predicts latent codes that reconstruct
input images. The latter one [2, 3, 31] directly optimizes
the latent code to reconstruct a target input. Hybrid ap-
proaches [14, 29] initialize a latent code with the encoder
prediction and then fine-tune the latent code using an opti-
mization method.

Pioneering studies of GAN inversion aim at the faith-
ful reconstruction of target images. For example, ex-
tending a latent space leads to high reconstruction qual-
ity [2, 3, 44]. Recently, Kang et al. [14] and Feng et
al. [11] have improved the reconstruction performance for
out-of-range images. Another recent direction is to in-
crease robustness in downstream tasks [56]. Zhu et al. [56]
aimed to increase editing quality by introducing the reg-
ularization that directs latent codes toward a high-density
region. In addition to 2D GANs [15, 32, 33], GAN inver-
sion has also been investigated for the recently developed
3D GANs [1,4,6,8,10,21,24,37,38,40,48,50]. Although
our study has the same goal as in [56], our approach is to

use a latent space where we know the bound of the codes,
which is not the case in [56].

Semantic image editing [, 12,23,34,36,53] is one of the
downstream tasks of embedding real images into a latent
space. The task modifies a latent code along semantically
meaningful directions to generate an intended image. Su-
pervised [34] and unsupervised [ 12, 36] approaches are in-
vestigated to explore semantic directions. GANSpace [12]
finds useful directions by computing eigenvectors on the
empirical distribution of a latent code. SeFa [36] factor-
izes the weights of layers that feed on latent codes. The
above methods explore global semantic directions, which
are shared among the latent codes and are called global
methods. Unlike global methods, local methods [9, 53] ex-
plore semantic directions with respect to each latent code.
We edit image attributes by applying semantic image edit-
ing methods to the latent code obtained by our approach.

3. Approach

We first review various latent spaces in StyleGANSs.
Then, we introduce F/Z* that improves editing quality
while maintaining reconstruction quality.

3.1. Analysis of StyleGAN spaces

Z and Z7 spaces. The generator G : Z — X learns to
map a simple distribution, called the latent space Z, to the
image space, where * € X is an image, and z € Z is
uniformly sampled from a hypersphere. The primitive latent
code of the StyleGAN family has 512 dimensions.
AgileGAN [39] and StyleAlign [45] employ the ex-
tended space Z+, which provides a different latent code
from Z for each layer. Each element 2 in Z7 is defined
as zt = {z1,29,...,2n}, where z; € Z. A code z;
is an input for each layer of a StyleGAN generator and is
transformed by the mapping network and AdaIN [13] be-
fore being fed into the generator. The number of layers is
N = 18 for a 1024 x 1024 StyleGAN. Note that the ex-
tended space has not been explored in GAN inversion, as
discussed in [47]. Indeed, AgileGAN [39] addresses styl-
izing portraits without prioritizing faithful reconstruction,
and StyleAlign [45] demonstrates that ZT does not yield
accurate reconstruction for real image inversion. As shown
in [39,45,47], while the Z and ZT spaces have the issue
of insufficient reconstruction quality, the constraint nature
of the spaces (i.e., hypersphere) leads to edited images with
less deterioration.
W, W7, and S spaces. StyleGANSs also use the interme-
diate latent space VW where each w € W is produced by a
mapping network consisting of eight fully connected layers
denoted as M : Z — W. Owing to multiple affine trans-
formations and nonlinearity functions in M, the features of
W are more disentangled than those of Z.
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Figure 2. Latent spaces of StyleGANs. The space F /W™ introduced by Kang et al. [14] consists of F and W™ spaces, and it even
leads to the faithful reconstruction of out-of-range images. Using Z or Z7 instead of W, we introduce F/Z and F/Z* spaces without
sacrificing reconstruction quality with the aid of F. The base code f is an intermediate output of the StyleGAN generator with spatial

dimensions. The detail codes w4+ and zar4 are the subset of wt

generator. The optimizing codes are highlighted in blue.

Thereafter, in [2, 3], the W7 space is introduced, achiev-
ing a lower reconstruction loss by allowing the control of
details of images. Each element w™ in W is defined as
wt = {w;}Y,, where w; € W. The S space [44] is
spanned by style parameters, which are transformed from
w € WV using different learned affine transformations for
each layer of the generator.

Although the W, W, and S spaces derive faithful re-

construction quality, distortions and artifacts may appear in
edited images [39,46,56]. This is because the embeddings
with these spaces for the images may not correspond appro-
priately to the StyleGAN prior Z7, and they cannot guaran-
tee that the edited latent code reaches the original spaces. In
this study, we aim at latent editing without suffering quality
deterioration with the aid of the nature of Z or Z7.
Pf(/ space. Zhu et al. [56] introduced space P and their
normalized space Py, to explore the GAN inversion trade-
offs. The deactivated space of W is computed by using the
inversion of Leaky ReLU. The P, space is presented by
whitening P using the principal component analysis (PCA)
parameter computed on one million latent codes in P. Since
the distribution of Par can be interpreted as the Gaussian
distribution with zero mean and unit variance, we can cal-
culate the density of the latent codes in Pyr. As discussed
in [26], the regularization on P,/ ensures realistic inversion
outcomes. For faithful reconstruction quality, Pxr can be
extended to Pj(/ similar to W7 [2,3] or Z7.

Although Pj\? improves the robustness of the recon-
structed latent codes, editing operations are performed on
the W or W7 space. This means that utilizing the regular-
ization on Py leads to maintaining the image quality only
within the neighborhood of an inverted code. Hence, the
weaknesses of the unconstrained spaces as discussed above

and z T, respectively, and are the inputs of the upper stages of the

remain. We thus seek the latent space that also guarantees
generation quality in the editing phase.

F/WT and F/S spaces. Kang et al. [14] proposed the
F /W space consisting of the F and W spaces for gen-
eralization performance for out-of-range images (Fig. 2a),
and the space was also investigated in SAM [29] and Bar-
bershop [55]. The coarse-scale feature map f € F is an
intermediate output of a generator before taking fine-scale
latent codes wys = {war, Wary1,- .., wy }. An element
w* = (f,wy) of F/WT consists of the base code f
and the detail code w4 . The information of a noise input
and bottom latent codes {w1, wa, ..., wy 1} is contained
in f, and the feature map controls the geometric informa-
tion. Kang ef al. [14] have integrated the regularization on
Py into F/WT to obtain robust latent codes. The com-
bined space has extended the range of images that can be
inverted. The F /S space [49] employs the S space [44] as
an alternative to W+,

While these spaces achieve faithful reconstruction qual-
ity, it has the same limitations as W, W+, S, and PX[.
This is because latent editing is performed on unconstrained
spaces. Thus, to continue using the Z space, we leverage
the F space, which complements the lack of representative
capacity of the constrained latent space (Figs. 2b and 2c).

3.2. F/Z* space

We introduce the F/Z* space as an example of our ap-
proaches. We also introduce our methods based on seminal
GAN inversion approaches later. Overall, there is still no
existing latent space that can guarantee both reconstruction
quality and editing quality. As discussed in [26, 39,46, 56],
leveraging the Z or Z space leads to high editing quality
in exchange for reconstruction quality. To overcome these
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limitations, we present an alternative latent space, F/ Z+t,
by extending the StyleGAN prior Z. The space consists of
the feature space F for increasing representative capacity
and a constrained latent space Z* for maintaining editing
quality. We use the combination of the spaces F and Z*
because we cannot achieve sufficient reconstruction quality
when using the space Z% to increase the editing quality.

The latent space F/ZT can do semantic editing with-
out image collapse while maintaining the reconstruction
quality (Fig. 2c). We define F/Z% by combining the F
and Z7 spaces. Each element z* € F/Z% is defined as
z* = (f,znmy), where zpr = {zu, 20141, .- -, 2N IS 2
set of latent codes for the fine scales of the generator. We
also introduce F/ Z for comparison, consisting of F and Z
instead of Z7.

F/Z7 has the desirable properties required for GAN in-
version: high reconstruction and editing quality. Our space
is characterized by high reconstruction capability attributed
to the feature space F and high editing quality attributed to
the primitive space Z. For PULSE, it is discussed in [26]
the importance of considering a manifold of a latent space,
which controls the content quality. Following this discus-
sion, Zhu et al. [56] assume that the deactivated YV follows
a Gaussian distribution and picks a latent code located in a
high-density region. To greatly benefit from considering the
latent manifold, we employ bounded latent codes. Since we
know the shape of Z, we completely utilize the information
of the Z distribution.

3.3. Inversion to F/Z*

We introduce an inversion algorithm that projects images
to the F/ZT space. We obtain latent codes by a hybrid
method that first projects a target image to F by using a
pretrained encoder to obtain an initial base code and then
directly optimizes the base and detail codes.

Given an input image x, we find a latent code z* that
reconstructs & by optimizing an objective function Lyecon,
which is defined as

Lrecnn(z*) = LMSE(z*) + /\peerer(Z*)7 (1)

where Lyisg and Ly, are the mean squared error (MSE) and
perceptual losses [22,52], respectively. The hyperparameter
Aper controls the contributions of Lysg and Lye,. MSE loss
is defined as Lysg(z*) = ||l — G(2*)||?, and perceptual
loss is defined as Lper(2*) = |¢p(z) — ¢(G(2*))||* with
the LPIPS network ¢, which is a pretrained network with
the VGG backbone. MSE and perceptual losses are the dis-
tances between the target and inverted images in the data
and feature spaces, respectively. We use perceptual loss
to enhance reconstruction quality and particularly to avoid
blurred images [22,28,52].

For efficient optimization, we initialize the base code by
employing an encoder. We first compute a rough base code

using an encoder and then optimize a precise base code. We
train an encoder ': X — F by optimizing the loss function:

Lene :||G(E(w¢)7w}qw+) - wHQ 2
+ /\enchﬁ(G(E(wi)vwfw—i-)) - ¢(w)|‘27

where G : f X wy/+ — « is a generator (we use a dif-
ferent notation from the above-mentioned G in Section 3 to
emphasize the various inputs), f* and w3, are sampled
codes corresponding to the sampled latent code z € Z,
and g is the weight of the second term. Training im-
ages ¢ = G(f*®, w},, ) are reconstructed from the sampled
codes f* and wj,, . We train the encoder on only the pairs
of sampled latent code and generated images (no real im-
age is used) because wj,, corresponding to given images
is unavailable. The downsampled images x| have a reso-
lution 8% larger than the feature space F. To consider the
encoded latent codes, we use a regularization that penalizes
the distance between initial and current latent code in opti-
mization. The regularization term for f is defined as

Lreg(Z*) = ”fo - .fH27 3)

where f0= E(x). The loss prevents the latent code f from
straying too far from the encoded code f°. The final ob-
jective function for GAN inversion on F/Z% is given by

L(2") = Lrecon(2") 4 AregLireg (27), 4)

where A, is the weight of the regularization loss. We re-
tract the latent codes z 7 to the surface of the hypersphere
of radius v/512 after every iteration to compute precise gra-
dients of the latent zj;y. From the definition of hyper-
sphere, we update each latent code z; € zp;4 indepen-
dently by calculating

2 = VB2 (5)

Moreover, in latent editing, our approach ensures the pres-
ence of the edited code within the latent space by calculat-
ing Eq. (5) after performing editing operations on Z7.

4. Experiments

We evaluate our latent spaces from two aspects: recon-
struction quality and editing quality. For a fair comparison,
we note that all experimental settings strictly adhere to pre-
vious studies, namely, we compare the editing results on the
off-the-shelf latent editing algorithms. Our goal is not to im-
prove the quality of semantic directions, but rather to intro-
duce editing robustness into existing GAN inversion meth-
ods. For the reconstruction quality comparison, we verify
that our spaces do not underperform the compared spaces.
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Figure 3. Inverted images with different latent spaces. Any latent space complemented by the F space achieves faithful reconstruction,
whereas the other spaces fail. /2™ achieves high-quality reconstructions on par with 7 /W"(Py) qualitatively, and the results of 7/ Z "
are competitive with that of 7/W*(Pxs) quantitatively. Image credits are listed in Supplementary Material.

F/Z7 (Ours)
Figure 4. Comparison of editing with random directions with high
intensities of up to 20. Editing on F/Z* always produces natural
images, whereas editing on F/W(Px) produces images lacking
in quality as shown in the rightmost images.

For the editing quality comparison, we demonstrate that our
spaces preserve the perceptual quality of edited images bet-
ter than other spaces.

Implementation details. For the inversion, we iteratively
update the latent code 1200 times with the Adam optimizer.
We set the learning rate to 0.01 and Aepe = Aper = Areg = 10.

Reconstruction quality comparison. We first compare the
reconstruction performance using StyleGAN2 trained on
FFHQ [19] in both qualitative and quantitative ways. Fig-
ure 3 shows the reconstructed results, LPIPS loss, and MSE

Table 1. Quantitative comparison of latent spaces with the average
MSE, SSIM, MS-SSIM, and LPIPS on the test sets of CelebA-HQ.
F/Z7 yields a comparable performance to F /W1 (Pyr).

Z  Zt WH(Py) 6] FJZ F/WH(Py) 14 F/Z+(Ours)
MSE, 0.1211  0.0680 0.0772 0.0235 0.0162 0.0165
SSIM+ 0.6062 0.6708 0.6634 0.7352 0.7522 0.7524
MS-SSIM+  0.5523  0.6376 0.6190 0.7730 0.7974 0.7990
LPIPS, 0.4721 0.3946 0.4186 0.2862 0.2625 0.2603

loss for five commonly used benchmark images. We test
five standalone spaces without F (i.e., W, W+, W+ (Py),
Z, and Z7), IDInvert [54], and four latent spaces with
F (i.e. F/WH(Py), F/S, F/Z, and F/ZT). We can
see that all standalone spaces fail to reconstruct the im-
age details well. Furthermore, the expansion of Z to Z+
demonstrates an improvement in reconstruction quality be-
cause Z7 is 18-fold larger than Z. On the other hand,
F-based latent spaces (i.e., F /W' (Pyr), F/S, F/Z, and
F/ZT) reconstruct images effectively because the feature
space J magnifies the latent space’s capacity. Among them,
F/WT, F/S, and our F/Z* have the finest visual recon-
struction quality.

The qualitative observations are also validated by the
LPIPS, structural similarity index measure (SSIM), multi-
scale SSIM (MS-SSIM) [43], and MSE. We show the scores
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Figure 6. (Pn) [14],
F/S [49], and F/Z" with directions obtained by Interface-
GAN [35].

on the test set of CelebA-HQ [16] in Tab. 1. Similarly to
Fig. 3, both the 7/Z* and F/W™(Py) spaces consis-
tently demonstrate comparable levels of reconstruction per-
formance when evaluated using quantitative metrics. How-
ever, F /W™ (Py) yields edited images that are less real-
istic, as will be shown afterward. Later in this paper, we
also show that our approach achieves a comparable level of
reconstruction performance even on other algorithms.

Editing quality comparison. To assess the robustness of
inverted latent codes, we first examine if they can move
freely in the latent space using random directions. To this
end, we sample a 512-dimensional vector from a Gaussian
distribution with a mean of 0 and a variance of 0.04, and
then we add the sampled editing vector scaled with the edit-
ing intensity to an inverted code. As seen in Fig. 4, when
the editing intensity is increased (right-hand images), the
edited images produced using F /W™ (Pxs) exhibit corrup-
tion, indicating that the inverted code deviates from the la-
tent space. In contrast, our 7/ Z* effectively maintains the
quality of edited images regardless of the editing intensity,
owning to the hyperspherical constraint imposed by Z.
Subsequently, the images are edited using actual seman-
tic directions. We use GANSpace [12] to discover semantic
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Figure 7. Quantitative comparison of editing quality. We compute
the identity similarity between the target and edited images. Each
light-color line indicates the results of a semantic direction. Each
deep-color line indicates the mean of the results of each method.
Achieving high identity similarity in cases with high intensity in-
dicates that our method has a higher editing quality than the com-
pared methods.
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Figure 8. Quantitative comparison of editing quality. We compute
the FID between the target and edited images with a high intensi-
ties of up to 50. Our method achieves a lower FID in edited images
with high intensity, indicating that our method has a higher editing
quality than the compared methods.

directions. We present two edited images with intensities of
-2 and 2 for each editing direction (Fig. 5). It is obvious that
the edited images produced by utilizing /W™ (Py) and
F /W exhibit deficiencies in facial parts or unexpected
water droplets. On the other hand, it is observed that both
F/Z and F/Z* spaces consistently maintain the editing
quality of images. We also show the results obtained using
two more directions different from those in Fig. 5. More-
over, for each direction, we edit the images using six differ-
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Figure 9. Results of editing with StyleGANI1 trained on the LSUN
Cat dataset. Editing using our F/Z™ preserves the image content
(cat).

ent intensities within the range of [-2.0, 2.0].

Additionally, we compare the edited images with Inter-
faceGAN [35], as illustrated in Fig. 6. Our methods more
effectively mitigate the distortions appearing in edited im-
ages than the other competing methods.

Finally, we evaluate the editing quality of our approach
quantitatively. For this comparison, we measure the sim-
ilarity between the original and edited images. The simi-
larity comparison shows editing quality because edited im-
ages with collapses lead to low similarity scores. We use
MTCNN [51] as the face detector and InceptionResNet
V1 [41] trained on VGGFace2 [7] as the feature extractor.
We cannot assume that the intensity in the Z distribution
is on the same scale as in the W and S distributions and
need to carefully design the experiments for a fair compar-
ison. To this end, we use normalized intensity and observe
the convergence of the editing performance. We measure
the changes in the logit value A, of a pretrained classi-
fier for attribute a [25] between the original and edited im-
ages with intensity «, and we normalize the intensity by
A,. We use InterfaceGAN to obtain makeup, smiling, and
eyeglass directions. To compute identity similarity, we use
cosine similarity between the target and edited images. For
each method, we plot the identity similarities between the
original and edited images with each normalized intensity
of editing in Fig. 7. We plot 15 lines for each method
(five targets x three semantic directions). The similarity
score of F/S gradually decreases compared with that of
F/WT(Pyr). Although the similarity scores of the com-
pared methods drop to 0.2, our F/Z7 maintains a high
similarity score even when the editing intensity is high.

We also provide the FID comparison on CelebA-HQ test
set. The images are edited using a wide range of intensities
[0, 50] with a step size of 5. For each intensity, we mea-
sure the FID between the target and edited images. We plot
all FIDs in Fig. 8. In contrast to the latent spaces utilizing
W, our methods obtain stable FID scores even when the
editing intensity is high. The FIDs of 7/ Z ™ flatten off after
an intensity of more than 20, showing that 7 /Z" has su-
perior editing quality than F /W regardless of the scale of
the latent space. These observations support the qualitative
evaluation finding that 7/ Z7 achieves high editing quality.

Editing comparison on another GAN model. We evalu-

PTI [31] |

LPIPS
MSE

PTI[31]
w/Zt

SAM [29]
w/Zt

[
0.0793
0.0041

LPIPS 0.1247
MSE 0.0095 0.0060

0.3838
0.0080
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Figure 10. Reconstruction comparisons on state-of-the-arts. The
Ist and 3rd rows are inverted results of PTI and SAM. The 2nd and
4th rows are inverted results of the methods that use Z* instead
of W or WT. The results indicate that we can replace the original
latent space with Z* without losing reconstruction quality to im-
prove editing quality.

ate the effectiveness of the space on another GAN model.
Figure 9 shows the results of editing with StyleGAN1 [19]
trained on the LSUN Cat dataset. BDInvert [ 14] results in a
complete corruption of the cat’s face in the edited image,
which is not the case in our method. Together with the
results discussed above, we may conclude that our space
maintains robustness and generalization, regardless of the
specific GAN model employed. More results on other
datasets are provided in Supplementary Material.

All the comparisons above reveal that F/Z is superior
to the existing spaces. The utilization of the hypersphere
space in F/ZT improves editing quality compared with
F /W (Pyr) without sacrificing the reconstruction quality.
Indeed, the quantitative performance of F/Z* is compara-
ble to that of /W™ (Pyr). Furthermore, the inverted re-
sults of F/Z* and F /W™ (Pyr) are nearly identical.
Integration Z7 into state-of-the-art GAN inversion. We
further demonstrate the effectiveness of our ZT space.
Figure 10 shows the images reconstructed by PTI [31],
SAM [29], and their Z% version. We can see that the use of
Z7T in PTI and SAM does not sacrifice reconstruction qual-
ity. Quantitatively, the reconstruction quality of our PTI ex-
tension is consistent with that of PTIL. PTI achieves an SSIM
of 0.7299 and a MSE of 0.0136 for the CelebA-HQ test set.
Our method (PTI with ZT) achieves an SSIM of 0.7286 and
a MSE of 0.0131. Figure 11 shows that integrating the Z+
space into SoTA inversion methods relaxes editing distor-
tions. We additionally provide examples of editing using
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Figure 11. Comparison of editing using SAM and PTI. Replacing
W™ in SAM or W in PTI with Z* prevents the deterioration of
the perceptual quality of edited images.
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Figure 12. Examples of editing with InterfaceGAN using F/Z*.
F/Z7 can be used in editing with a wide range of attributes in-
cluding spatial ones.
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Figure 13. Examples of editing with Local Basis [9]. Local Basis
performs well on real image editing as well as synthesized one
owing to our method.

F/Z7T with InterfaceGAN directions in Fig. 12 including
geometric editing. The results show that ZT naturally per-
forms latent editing.

Latent editing with Local Basis. Similarly to
GANSpace [12], Local Basis [9] finds semantic directions.
However, because it requires latent codes in Z, it lacks the
capacity to edit real images. In contrast, the latent code in
Z corresponding to real image is known in our method, en-
abling us to effectively utilize Local Basis for real image
editing, as illustrated in Fig. 13.

Inversion for 3D GANs. Since our approach simply re-

target  inversion novel views edited
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Figure 14.  Inversion, novel view, and edited results in
HFGI3D [48]. Our method avoids the collapse of an edited im-

age while performing inversion and novel view synthesis on par
with the original HGFI3D.

places latent spaces, it is not limited in 2D StyleGANs. We
can naturally integrate our approach into StyleGAN-based
3D GANs. We also evaluate our approach in 3D GANS.
We use EG3D [£] trained on FFHQ and set HFGI3D [48]
as the inversion method. We first invert the target image
with HFGI3D and HFGI3D with Z%. Then, we generate
different view images and edit the obtained latent codes us-
ing InterfaceGAN with the young direction. Moreover, in
3D GANsS, our approach can reconstruct target images well,
generate different view images, and edit the image without
losing perceptual quality (Fig. 14).

5. Conclusion

In this study, we the revisited Z space with the hy-
perspherical prior for GAN inversion. We integrated con-
strained latent space ZT into expressive inversion meth-
ods, resulting in the presented methods (e.g., 7/ Z ). Our
thorough experiments on PTI, SAM, F/ W, and HFGI3D
demonstrate that we can preserve the perceptual quality of
edited images while maintaining reconstruction quality on
par with capable baselines by replacing an unconstrained
space (e.g., W) to Z%. Our method also allows editing
real images using 2D/3D GANs without concern about im-
age collapse.

Limitation. Since this study focuses on the editing qual-
ity, whether semantic directions correspond to a certain at-
tribute is not evaluated. Latent editing for Z and Z is less
explored than that for W, W+, and S. Investigating local
editing methods (e.g., Local Basis) and nonlinear editing
methods may contribute to accurate latent editing in Z+.
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