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Figure 1. We investigate a conditional image generation in which we relax the assumption on training data. A dataset consists of labeled
and unlabeled data. Labeled data contain clean samples, closed-set label noise samples whose actual categories are known classes (green
dotted rectangle), and open-set label noise samples whose actual categories are outside the known classes (solid red rectangle). Unlabeled
data contain closed-set samples as well as open-set samples whose categories are outside the known classes (red dashed rectangle). In
contrast to previous assumptions (a,b,c), our data assumption (d) generalizes these approaches by integrating a variety of data. v~ indicates

full usage, while (v') is partial usage.

Abstract

Label-noise or curated unlabeled data are used to com-
pensate for the assumption of clean labeled data in training
the conditional generative adversarial network; however,
satisfying such an extended assumption is occasionally la-
borious or impractical. As a step towards generative model-
ing accessible to everyone, we introduce a novel conditional
image generation framework that accepts noisy-labeled and
uncurated unlabeled data during training: (i) closed-set
and open-set label noise in labeled data and (ii) closed-set
and open-set unlabeled data. To combat it, we propose soft
curriculum learning, which assigns instance-wise weights
for adversarial training while assigning new labels for un-
labeled data and correcting wrong labels for labeled data.
Unlike popular curriculum learning, which uses a thresh-
old to pick the training samples, our soft curriculum con-
trols the effect of each training instance by using the weights
predicted by the auxiliary classifier, resulting in the preser-
vation of useful samples while ignoring harmful ones. Our

experiments show that our approach outperforms existing
semi-supervised and label-noise robust methods in terms
of both quantitative and qualitative performance. In par-
ticular, the proposed approach matches the performance of
(semi-)supervised GANs even with less than half the labeled
data.'

1. Introduction

Significant breakthroughs [3, 6, 17,23,24,26,34,35,45]
in class-conditional image generation (cGANSs) yield im-
ages with high fidelity and diversity; yet they are all trained
in a supervised fashion where the training data consist of
carefully labeled samples. However, the training data for
supervised learning require immense labor cost, making it
difficult to achieve a sophisticated performance. To deflate
the labor cost in collecting data, semi-supervised [16,21]

IThe code is available at: https://github.com/raven38/
NOSSGAN
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and label-noise robust [ 14, 36] approaches have been inves-
tigated. Despite the substantial efforts of semi-supervised
c¢GANSs [16, 21] to reduce the amount of labeled data, a
dataset with a high annotation cost is still required.

In this work, to significantly reduce the data collec-
tion and annotation cost, we present a new framework for
training cGANSs (see Fig. 1), which utilizes unreliable la-
beled and uncurated unlabeled data. Namely, in this study,
we aim to unify the research directions for training condi-
tional image generation on imperfect data: annotation qual-
ity [14, 36] and unannotated data [16,21]. In our realistic
data assumption, the dataset consists of two parts: noisy la-
beled data (i.e., labeled data with closed-set and open-set
label noise) and uncurated unlabeled data (i.e., unlabeled
data with closed-set and open-set samples). Here, closed-
set and open-set label noise mean that the actual labels of
samples with label noise are inside and outside the known
category (label) set, respectively. Closed-set and open-set
unlabeled samples also mean that the actual unknown labels
are inside and outside the known category set, respectively.
The objective of the new framework is to generate images
with known categories. This setting generalizes (i) semi-
supervised image generation [16,21] where the labels are
reliable and (ii) label-noise image generation [14,36] where
labeled data contain only closed-set label noise, and unla-
beled data are not available. Hence, this new data assump-
tion enables the use of personal collection or user-annotated
data in conditional image synthesis.

To address the complex data, we propose soft curriculum
learning, which makes clean and fully labeled data from
noisy and partially labeled data while assigning weights to
samples for adversarial training. The learning technique
eliminates harmful samples (e.g., samples with failed la-
bel assignment and samples far away from the training cat-
egories) while preserving useful ones (e.g., samples with
proper labels). Motivated by our aim, we jointly train cGAN
and an auxiliary classifier that assigns clean or new labels to
labeled or unlabeled samples, respectively, and confidences
to all real samples. Our implicit sample selection mech-
anism addresses the shortcomings of curriculum learning
techniques [4, 8, 43, 44], which potentially retain harmful
samples and miss helpful ones because it explicitly uses a
predetermined or adaptive threshold. Consequently, our ap-
proach allows to handle noisy labeled and uncurated unla-
beled data naturally, resulting in maintaining the number of
training samples while reducing the effects of adverse sam-
ples. Since our method is free of the hard selection proce-
dure, we call it soft curriculum learning.

Our comprehensive experiments demonstrate that soft
curriculum learning works well in challenging imperfect
datasets containing label noise and unlabeled data. More
precisely, we observe performance gains of our method
over baselines in terms of the Fréchet Inception Distance

(FID) [11], Inception Score (IS) [32], FY/s, Fg [31], and
intra-FID (iFID). Qualitative results also indicate the effec-
tiveness of our method in terms of fidelity and diversity.

In summary, our main contributions are as follows:

1. We introduce a new problem: conditional image gen-
eration trained on datasets that consist of labeled data
with closed-set and open-set label noise and unlabeled
data composed of closed-set and open-set samples.

2. We develop a soft curriculum technique for correct-
ing wrong labels and assigning temporal labels while
weighting the importance of each instance by employ-
ing an additional classifier trained jointly.

3. We consistently demonstrate the effectiveness of our
method in experiments on various GAN architec-
tures (i.e., projection- and classifier-based cGANs) and
datasets. Note that recent attempts at limited data em-
ploy only a projection GAN.

2. Related work

Conditional image generation with imperfect data. One
of the prominent research directions in image generation is
to build a training framework without requiring large and
curated datasets [13, 15, 33, 38, 39, 48]. Semi-supervised
learning approaches [5, 16,21] explore cGANs in partially
labeled data. Introducing an additional classifier enables
a discriminator to be trained on labeled real data. OSS-
GAN [16] considers a more practical scenario where the
labeled and unlabeled data do not share the label space,
and it proposes entropy regularization to identify open-
set samples smoothly. Robust learning for image genera-
tion [14, 36] is aimed at learning a clean conditional dis-
tribution, even when labels are noisy, by modeling a noise
transition. In this study, we extend these directions to a real-
world scenario. Our setting relaxes the assumption of label
reliability in a semi-supervised fashion and allows robust
learning to exploit open-set label noise and unlabeled data.
Semi-supervised and robust learning in image recogni-
tion. In image recognition, there also remains the issue that
supervised learning requires datasets, i.e., cleanly labeled
large-scale datasets, which are difficult and sometimes im-
possible to collect. To address the issue, two popular frame-
works (i.e., semi-supervised [10,27] and label-noise robust
learning [25]) have been explored in recent decades. Re-
cent attempts address a more realistic scenario where the
categories of samples are not bounded by the known cate-
gories. Open-set semi-supervised learning [22, 30, 43] in-
volves unlabeled data containing samples with categories
unseen in labeled data, with the aim of classifying closed-
set samples precisely while rejecting open-set samples.
Learning methods robust to closed-set and open-set label
noise [1,29,40,42] generalize methods that only consider
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closed-set noise [2, 25]. In this study, we attempt to unify
these research directions that are independently addressed
in conditional image synthesis.

3. Problem statement

We present a novel training setting for data-efficient con-
ditional image generation that leverages noisy labeled and
uncurated unlabeled data. For K-class conditional im-
age generation, let D; = {(x;,y;)}, ., be the noisy la-
beled training set consisting of n; labeled samples, where
a d-dimensional instance &; € R? and its corresponding
noisy label y; € Y sampled from labeled data distribu-
tion p(x,y) : (x;,y;) ~ p(x,y). The noisy label space

Y ={eW, . .. eE1D ) consists of the standard ba-
sis vectors of the K-dimensional space. The clean label
space Y = Y U {open-set classes} is inaccessible. Let

D, = {u;};*, be an uncurated unlabeled training set hav-
ing n, samples, where an instance u; € R? is sampled
from the unlabeled data distribution p(u) : w; ~ p(u).
Unlabeled data also include both closed-set and open-set
samples. The goal of the conditional image generation
is to model the true distribution without label noise via
a generator GG and a discriminator D. The generator G
generates samples G/(z,y) from a latent vector z € R
and a conditioning label y drawn from a prior distribution
(z,y) ~ a(z,y) = q(2)q(y), where q(2) is typically the
standard Gaussian distribution and ¢(y) is the uniform dis-
tribution over ). The discriminator D aims to identify fake
samples (G(z,y), y) from real samples (x, y).

Before formulating our method, we introduce a super-
vised cGAN model. The conditional GANSs for a fully and
cleanly labeled dataset optimize the losses Lp and L¢ for
the discriminator and the generator, respectively:

Lp =E (g y)~p(a.y) [f0(—D(z,y))]
+ E(zy)mg(za [[D(D(G(2,9),9)], (1)
Lo =E(z y)ng(z) [~ D(G(2,9),y)], )

where fp(-) = max(0, 1+ -), which is a hinge loss [20,37]
for the discriminator. We alternately update the generator’s
and discriminator’s parameters using L and Lp to learn
a generator that generates indistinguishable samples and a
discriminator that distinguishes fake and real samples well.
To build our method, we customize Egs. (1) and (2).
Although SoTA cGANs achieve outstanding perfor-
mance, the absence of a dataset with sufficient quantity and
reliable labels leads to poor performance and training insta-
bility. Difficulties in training on a dataset with limited quan-
tity and quality are how to improve the stability of the train-
ing and how to estimate appropriate labels for unlabeled
data under noisy labels. To overcome these difficulties, we
consider a technique that assigns labels while handling label
noise, based on curriculum learning and robust learning.

4. Method

Intuitive idea. Curriculum learning [4, 8,43, 44] filters out
adverse samples from the dataset, aiming to train a model
on only useful samples. However, since curriculum learning
employs explicit thresholds, it does not leverage the feature
of ignored samples, resulting in shrinking training datasets.
Furthermore, curriculum learning methods [43] for semi-
supervised learning maintain label noise.

To overcome these flaws, we consider a safer way of
learning cGANs on noisy data, aiming to reduce the adverse
effect of misclassification while maintaining the amount of
training data. Therefore, we must achieve three objectives:
handling label noise containing open-set noise; handling
unlabeled data including open-set samples; and eliminating
samples causing negative effects from both labeled and un-
labeled data. Our main idea is to make clean data from noisy
labeled and uncurated unlabeled data and to control the ef-
fects of each instance tolerantly. Our method can train the
discriminator on all samples via the instance-wise weight
distribution, label correction, and label assignment (Fig. 2),
unlike curriculum learning, which picks unlabeled samples
and trains a model on all the labeled and selected unlabeled
data. Our instance-wise weighting mechanism leads to a re-
duction of the negative effects of label noise in labeled data
by assigning small weights for samples that could not be
corrected by the auxiliary classifier or are open-set.
Overall concept. In addition to a generator G : R x) —
R? and a discriminator D : R? x AKX~ — R, we employ
a classifier C' : R — AK~1 where AK~1 is a probability
simplex whose vertices are in ). To extend the above loss
function (Egs. (1) and (2)) into our setting, we introduce dis-
criminator losses for noisy labeled and uncurated unlabeled
data, L% and L5, respectively, and an auxiliary classifier
loss L¢s. Our approach can be divided into four key com-
ponents: training a robust auxiliary classifier, assigning new
labels to unlabeled data, correcting labels for labeled data,
and weighting loss for real data (i.e., both labeled and un-
labeled data). To involve noisy labeled and unlabeled data,
we optimize the loss functions Lp and Lg:

Lp =Lagy + L + Loy + Moas, (3)
L6 =E(z y)mg(z) [~ D(G(2,9),9)], )
where )\ is a balancing parameter between the adversarial

loss and the classification loss. We use the discriminator
loss for fake data in the same way as the supervised way:

Ceflillile = IE(z,y)~q(z,y) [fD (D(G(zv y)a y))] )

Soft curriculum is an instance-wise weighting frame-
work for discriminator training, which aims to assign small
weights to harmful or irrelevant samples (e.g., wrongly la-
beled closed-set and open-set samples) and large weights to
helpful samples (e.g., correctly labeled samples).
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Figure 2. Overview of the proposed method. The auxiliary classi-
fier is trained with the classification loss lgc e (Eq. (7)). It corrects
wrong labels in labeled samples by C(x), assigns labels to unla-
beled samples by C'(u), and distributes confidences c for discrim-
inator optimization (Eq. (10)). The discriminator is trained with
the adversarial loss for labeled, unlabeled, and fake data (Egs. (5),
(8), and (9)). Zoom in for best view.

Robust training of auxiliary classifier. We employ an
auxiliary classifier for label assignment and correction (de-
tails in a later paragraph). During classifier training, besides
real labeled data, we also use generated samples to increase
the number of training samples. Incorporating generated
samples into the training may prevent memorizing training
samples (i.e., overfitting). The classification loss is given by

Las =E(z,y)~pa.y) lace(C(2), y)]
+E(z,y)qu(zy)[ZGCE(C(G(Zvy))vy)]- (6)

For robust classification with label noise, we use the gener-
alized cross-entropy [47], which is the generalization of the
mean absolute error (MAE) [7] and the cross-entropy. The
loss of the generalized cross-entropy is given by
— (T4

lace(9,y) = 1(1;.1;)’ @)
where the hyperparameter ¢ € [0, 1] controls the trade-off
between optimization and noise robustness. When ¢ = 1,
it is equivalent to the MAE, which is robust to label noise
but difficult to optimize. When ¢ = 0, it is equivalent to
the cross-entropy loss, which can be optimized easily. The
discriminator and classifier share the feature extractor to ex-
tract features efficiently. We use the classifier prediction for
the label assignment of unlabeled data and the label correc-
tion of labeled data.
Label assignment of unlabeled data. To assign new la-
bels to unlabeled data, we take the classifier’s softmax out-

puts g = C(u) as a condition in discriminator inputs. We
use soft labels (i.e., probability vector) for the robustness to
classification errors and open-set samples instead of hard
labels. Soft labels prevent the discriminator inputs from
wrong labels with the classifier mistake because soft labels
assign a small probability to the correct class and avoid as-
signing a probability of 1 to the wrong class.

Label correction of labeled data. To correct noisy labels
for labeled data, we take the interpolation between a given
label and a predicted label, (y + g)/2, before feeding la-
bels into the discriminator where, g = C(x). Since some
samples have proper labels depending on the label noise ra-
tio, overwriting the given labels loses helpful information
about samples with correct labels. We use the simple av-
erage because the average weighted with confidence may
amplify the negative effects of wrong predictions. While
we use predicted labels for inputs of the discriminator to
real labeled and unlabeled samples, we maintain labels for
generated samples because their labels are already proper.
Confidence assignment. To focus on helpful samples, we
quantify the sample-wise importance in the discriminator
training via classifier predictions. The discriminator losses
for labeled and unlabeled data are defined by

LY =E@yp@yle/(—=D(x, (y +9)/2))], ©®)
L8 = Eymp(uylefp(—D(u, 9))], )

where § = C(x) and gy = C(u) are the softmax outputs of
the classifier, and the confidence in the soft curriculum ¢ €
[0, 1] is the normalized entropy of the classifier prediction:

PN Ai lo Ai

c=1— Z:yiey—ygy (10)
log K

Here, large c is assigned for samples with high confidence

and small ¢ for samples with low confidence.

S. Experiments

Datasets. For the comprehensive evaluation, we perform
experiments on TinyImageNet [41], ImageNet [28], and
WebVision [19] datasets. We construct partially labeled
datasets consisting of noisy labeled and uncurated unla-
beled samples to benchmark our method. We use four vari-
ables that control a dataset configuration: the ratio of label
noise, the number of closed-set classes, the labeled sam-
ple ratio, and the usage ratio. For the WebVision dataset,
we omit the procedure for injecting label noise since it al-
ready contains label noise. To raise the open-set label noise,
we first shuffle the labels by the ratio of label noise. We
change a label to another label uniformly with the prob-
ability equivalent to the ratio of label noise. The label
transition is run among all the classes. Second, we di-
vide the fully labeled dataset with flipped labels partly into
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Table 1. Average and standard deviation of Fz, F /g, FID, Inception score (IS), and iFID over three trials on TinyImageNet with 150
closed-set classes, 20% labeled samples, and 10% label noise. We compare the results of our proposed method with 15 baselines. Our
method yields better performance (i.e., higher Fs, F /g, and IS and lower FID and iFID) and consistent performance (small standard
deviation). The best results are highlighted in bold, and the second best results are underlined.

Fy 1 Figt FID, I iFID,,
DiffAug CR-GAN [48] 0.9341 £.0103 0.9669 & .0034 41.6848 &= 1.0075  12.0270 £ 0.3451  227.2077 = 3.3538
RandomGAN 0.6908 +.0310  0.8061 & .0492 84.2262 +9.7936  7.6780 £ 0.6785  312.8149 -+ 6.1245
SingleGAN 0.9374 +.0009 0.9761 & .0018  35.5989 £ 1.5018  12.3043 £ 0.2951  233.8048 = 4.3930
S3GAN [21] 0.9287 +.0027 0.9667 & .0031  39.8652 + 1.2017  12.1443 +£0.2344  223.5165 + 0.5562
OSSGAN [16] 0.8954 +.0119 0.9598 & .0029 46.9769 £ 3.0722  10.8745 £ 0.4495  236.6557 = 5.0004
CurriculumGAN 0.9146 +.0128 ~ 0.9388 £ .0144  34.4142 +0.6545 = 13.3153 £ 0.6545  217.9899 + 1.5723
reRandomGAN 0.4890 +.0396  0.7653 & .0154 88.9622 £3.7217  6.8242 £0.5130 317.4159 & 2.2235
reSingleGAN 0.8969 +.0047 0.9422 +.0099 362851 & 1.3121 124421 £ 0.3234  237.1689 -+ 2.2875
reS3GAN 0.9089 +.0070  0.9476 & .0024  37.4676 £ 0.7783  13.0772 £ 0.2206  221.3113 = 0.6992
reOSSGAN . 0.8745 £.0037  0.9320 £ .0044  40.1548 + 1.1753  12.1081 £ 0.1531 ' 229.1839 + 1.6075
rcDiffAugCRGAN 0.9332 +.0044 0.9617 & .0078 43.5950 £ 2.2703  11.8126 £ 0.4097  226.1654 + 4.4462
rcRandomGAN 0.7466 + .0298  0.8801 & .0312  69.7574 + 4.8421  7.5598 +0.9622  293.7392 + 5.9841
rcSingleGAN 0.9409 + .0072  0.9743 & .0026  34.1262 & 1.3978  12.9476 £ 0.3931  223.1789 + 3.8244
rcS3GAN 0.9258 & .0072  0.9661 £ .0056 42.0012 +£2.1783  12.0116 = 0.3488  228.4053 + 4.8632
recOSSGAN ... 0.9281 +£.0082  0.9692 +.0006  42.0705 £ 1.1632 ~ 12.0458 + 0.2670  227.5382 + 2.3760
Ours 0.9581 + .0063  0.9789 & .0003  29.6607 = 0.4979  14.7235 + 0.3509  206.6937 = 2.1925

closed-set classes and partly into open-set classes. The rest
of the classes, which are the number of closed-set classes
subtracted from 1000 classes, are considered as open-set
classes. Since label noise is brought before separation into
closed-set and open-set classes, the subset for closed-set
classes contains both open-set and closed-set label noise.
Then, we take a subset of closed-set samples in accordance
with the labeled sample ratio as labeled data, and we take
the remaining closed-set samples as unlabeled data. Finally,
we extract unlabeled samples from open-set class samples
on the basis of the usage ratio and concatenate them with
unlabeled samples that originate from closed-set samples.
We use the usage ratio of 100% if not otherwise specified.

Compared methods. We use CR-BigGAN [46] with Dif-
fAugment [48] (DiffAug CR-GAN) as a base architecture,
and we build all the compared methods on it. We compare
the proposed method (Ours) with DiffAug CR-GAN [3],
RandomGAN, SingleGAN, S?GAN [21], OSSGAN [16],
and CurriculumGAN. RandomGAN is a naive baseline and
assigns labels to unlabeled samples by picking a label from
y € ) with equal probability. SingleGAN is another simple
baseline and assigns constant labels [1/K, ..., 1/K]" to all
unlabeled samples without considering their content. Cur-
riculumGAN uses curriculum learning for semi-supervised
learning by following [43] instead of our soft curriculum.
For further comparison, we introduce two types of extended
baseline (i.e., relabeling and rcGAN [14]). The extended
relabeling baselines are denoted by the prefix ‘re’ correct
labels of labeled samples by using Eq. (8) and predicted
labels y = C(x) for labeled samples. The methods with

the prefix ‘rc’ include rcGAN, which is a technique for ro-
bust learning with label noise. The details of the compared
methods are given in Supplementary Material.
Implementation details. In the experiments on the Tiny
ImageNet [18] datasets at 64 x 64 resolution, we use a
minibatch size of 1024, a latent dimension of 100, and a
learning rates of 1x10~*and 4 x 10~*for the generator and
the discriminator, respectively. In the experiments on the
ImageNet [28] and WebVision [19] datasets at 128 x 128
resolution, we have a minibatch size of 256, a latent dimen-
sion of 120, and learning rates of 5x10~°and 2x10~*for the
generator and discriminator, respectively. We update a dis-
criminator in two steps per iteration. We train the auxiliary
classifier with the same learning rate as the discriminator.
We select a parameter A in the preliminary experiments with
the 150-class TinyImageNet dataset and set 0.1 for all the
experiments. The parameter g in generalized cross-entropy
is 0.7, which is the default value in [47].

Evaluation metrics. We use IS [32], FID [11], iFID, F} /g
score [31], and Fy score [31]. FID is a measure of the dis-
tance between the generated and reference images in the
feature space using overall data, and iFID uses per-class
data, but it was not possible to separate the evaluated val-
ues into fidelity and diversity. On the contrary, F /g and Fg
quantify fidelity and diversity, respectively. We sample 10K
generated images for all metrics and use the evaluation set
as the reference distribution for FID, iFID, F} /5, and Fg.
Comprehensive study. We first conduct a quantitative
study on the TinylmageNet dataset with 150 closed-set
classes, 50 open-set classes, 20% labeled data, and 10% la-
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Table 2. Ablation study on Tiny ImageNet with 150 closed-set classes, 20% labeled samples. AB1 is the method without generalized-cross
entropy. AB2 is the method without curriculum learning. AB3 is the method without curriculum for labeled data.

30% label noise 50% label noise
Fs1  Fisg? FID] ISt iFIDJ Fs1  Fisg? FID] ISt iFIDJ

AB1  0.8874 09615 36.2120 123104 232.8597 0.8910 0.9427 35.5164 12.2659 245.5752

AB2 09092 0.9619 39.7125 11.6496 236.4422 0.9131 0.9671 40.9006 10.7329 253.2198

AB3  0.9145 0.9625 31.2353 13.5164 222.1403 0.8322 0.9517 35.6693 11.4738 241.6102
Ours 0.9238 0.9664 30.5527 14.0052 221.6443 0.9492 0.9743 33.0788 12.3833 238.7180

DiffAug CR-GAN HESingleGAN BOSSGAN rcGAN rcSingleGAN rcOSSGAN CurriculumGAN  HEOurs
I T i T T 1 1.0 1.0
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Figure 3. Quantitative results for different label noise ratios. We report the results of the experiments on the TinyImageNet dataset with 150
classes, 20% labeled data, and label noise ratios of {10%, 30%, 50%, 70%, 90%}. We compare the methods over datasets with different
label noise ratios. The blue lines indicate the results of the proposed method. Our method considerably outperforms baselines in difficult
datasets (i.e., high noise ratio).

Table 3. Quantitative results on ImageNet with closed-set 100
classes, 5% labeled data, 10% label noise. Our method outper-

Table 5. Quantitative results on ImageNet 256 x 256.

forms the baselines in terms of all metrics. Fst Fyst  FID) ST iFID}

DiffAug CR-GAN 0.8177 0.7290 83.6051 20.8947 274.5373

Fst  Fyst FID| ISt iFID RandomGAN 07707 0.8242 60.1051 19.3663 282.4955

DiffAug CR-GAN ~ 0.8526 07430 82.8757 14.6339 256.1464 SingleGAN 0.8052 07934 624891 19.4504 2803701

RandomGAN 07479 0.8783 70.9336 15.0161 300.5579 S°GAN 09002 0.8473  52.2834 27.6553 225.6078

SingleGAN 0.6599 08349 77.8994 14.0210 3109954 OSSGAN 0.9146 08124 537868 28.3792  229.9876
0SSGAN 0.8959 0.8453 684343 17.4661 284.4511
Ours 0.9443 09430 57.1299 223548 219.5597

Table 6. Quantitative results of other cGAN models on Tinylma-
geNet. In addition to a projection-based GAN , our method shows

the performance gain over classifier-based cGAN models.

Table 4. Quantitative results on ImageNet with closed-set 200

classes, 5% labeled data, 10% label noise.

ADC-GAN [17] TAC-GAN [9]
BT Fyst  FIDY ISt iFID} FID| ISt FID| ISt
DiffAug CR-GAN  0.8962 0.8171 567504 22.4951  228.9962 ;

RandomGAN 07620 0.9095 49.4013 17.3114 266.7480 Supervised 66.5229  8.6387 50.4258  9.2594
SingleGAN 07434 08903 514632 17.3922 292.1951 RandomGAN  40.2519 10.5410 37.7453  10.9988
S3GAN 04078 0.5097 111.2998  8.7617  246.3401 SingleGAN 43.6353 10.2666 38.5622 10.6992
OSSGAN 09245 0.8995 44.3262 23.0263 238.2692 S3GAN 50.7904 10.0583 39.2887 10.5139
Ours 0.9630 0.9433 29.6751 33.5418 183.1367 OSSGAN 113.1070 47492 417552 10.3462
Ours 37.0131 12.1424 37.4393 11.3654

bel noise. Namely, the dataset consists of 15K labeled sam-
ples and 85K unlabeled samples. Table 1 shows the average
and standard deviation of FID, IS, F} /g, F3, and iFID over

performance from naive baselines, because reRandomGAN
and reSingleGAN add much extra noise.

three trials. Our method achieves the best scores in terms of
all metrics and achieves tight standard deviations, showing
consistent improvement over the baselines. On the contrary,
this is not the case for the improvement by rcGAN. In re-
labeling baselines, only classifier-based GANs improve the

We then investigate the robustness of the method to
label noise in experiments with different label noise ra-
tios. In Fig. 3, we show the performance of the meth-
ods in the experiments with different label noise ratios
{10%, 30%, 50%, 70%,90%}. Our method still outper-
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Figure 4. Class-conditional image synthesis results on ImageNet.
Our method produces plausible images while respecting the given
condition.

Table 7. Quantitative results on WebVision [19].

Fst Fyst FID) ISt iFID|
DiffAug CR-GAN 07812 0.7725 74.3157 14.3693  249.0955
RandomGAN 0.7840 0.8627 54.8598 14.7182 246.9653
SingleGAN 07065 0.8276 64.8178 13.5105 280.1292
S3GAN 0.8209 0.8680 63.4304 14.6397 238.7989
OSSGAN 07911 0.8294 66.7111 14.9287 242.6553
Ours 0.8465 0.8866 51.1604 18.0428 213.5669

forms other methods even when the labels are considerably
noisy (e.g., 90%). CurriculumGAN easily fails in the ex-
periments in difficult datasets (e.g., 70% or 90%).

Ablation study. To evaluate the individual contribution of
each component, we carried out an ablation study. We pre-
pare three ablation models: AB1 AB2, and AB3. ABI
is equipped with cross entropy loss instead of generalized
cross-entropy, having lost the robustness to label noise.
AB2 does not use curriculum learning and assigns equal
weights to all samples. This method corrects wrong la-
bels, assigns new labels, and distributes equal weights to
all samples, and their classifier is trained on generalized
cross-entropy. AB3 does not correct the labels of the la-
beled data. The method assigns new labels to unlabeled

data and distributes weights in accordance with the classi-
fier’s confidence. It is close to ordinal curriculum learning.
The results of the ablation study on two configurations are
given in Tab. 2. With cross-entropy, AB1 drops in perfor-
mance as a result of the contribution of the robust classifier.
Since correcting labels of labeled samples without soft cur-
riculum may add extra label noises, AB2 exhibits the worst
performance in terms of FID, IS, and iFID in datasets with
a high label noise ratio. AB3 shows a large degradation in
performance under highly noisy data by maintaining label
noise. In both trials, the final model (Ours) enhances the
performance of the ablation models by the combination of
robust training and soft curriculum learning.

Evaluation on large datasets. We evaluate the proposed
method on more complex and challenging datasets to eval-
uate its stability. Table 3 shows the quantitative results of
the ImageNet experiments. In the experiments, we observe
the performance gains over baselines in terms of quantita-
tive metrics. Figures 4 and 5 and Tab. 4 show the experi-
mental results on the ImageNet dataset with 200 closed-set
classes, 5% labeled data, 10% label noise, and 10% usage
ratio. Namely, the dataset has about 12K labeled samples
and 345K unlabeled samples. Our method outperforms all
baselines with the quantitative metrics, as shown in Tab. 4.
Figure 4 demonstrates the fidelity of the images generated
by our method. Figure 5 shows consistency with Tab. 4
where our method generates images with high fidelity and
diversity. With our soft curriculum, we observe the perfor-
mance gain over baselines in difficult datasets with limited
labeled samples, as shown in Fig. 6. In particular, our ap-
proach achieves a performance competitive with those of
semi-supervised and supervised cGANs with 1/3 of the la-
beled data in terms of FID and IS (5% vs. 15%) and half of
the labeled data in terms of Fy /g and Fg (5% vs. 10%).

To demonstrate the effectiveness of our method in high
resolution datasets, we conduct experiments on ImageNet
256 x 256 with 200 closed-set classes, 4% labeled samples,
10% label noise, and 10% usage ratio. Table 5 shows that
the proposed method outperforms the baselines consitently.
Evaluation on classifier-based ¢cGANs. Next, we evalu-
ate our method using different cGAN models. In the above
evaluations, we build the compared method by integrating
semi-supervised methods into projection-based cGANs. To
evaluate the applicability of our method to other cGANS,
we conduct experiments on additional base architectures
of classifier-based cGANSs (i.e., ADC-GAN [12] and TAC-
GAN [9]). Table 6 shows that our method outperforms the
baselines in the ADC-GAN and TAC-GAN experiments.
Evaluation on real-world noise. Finally, we test our
method on WebVision [19] to assess the effectiveness on
real-world noise. WebVision is a dataset built via web
queries, and so it contains real-world noise. We use 200
classes as the closed-set classes, drop 98% labels from the
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Figure 5. Class-conditional image synthesis results on ImageNet. Our method constantly produces plausible images while respecting the

given condition.
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Figure 6. Quantitative results for different numbers of labeled samples. We report the results of the experiments on the ImageNet dataset
with 200 classes, 10% label noise ratio, and labeled sample ratios of {4%, 5%, 8%, 10%, 15%, 20%}. Our method outperforms baselines

in difficult datasets (blue line).

closed-set class samples to make unlabeled data, and adopt
the usage ratio of 10%. Table 7 shows the results of the ex-
periments on WebVision. We improve the performance of
DiffAug CR-GAN and achieve an FID of 51.1604 with an
IS of 18.0428 on the dataset with real-world noise.

6. Conclusion

We presented a novel image generation training frame-
work that allows the training dataset to be composed of
noisy labeled and uncurated unlabeled data. We proposed
soft curriculum learning for this new data setting that pro-
vides clean labeled data to the discriminator while elimi-
nating the effects of useless samples by correcting noisy la-
bels and assigning new labels. Concurrently, we use soft
labels and generalized cross-entropy loss to deal with open-
set samples, avoiding overconfidence in samples that do not
belong to known classes. Our comprehensive experiments
show that, even when the number of labeled samples is lim-
ited and noisy, the proposed method consistently outper-
forms baselines in both qualitative and quantitative evalu-

ations. Our method reduces the amount of labeled data re-
quired to achieve equivalent performance in the training of
conditional GANs. Furthermore, when tested with different
GAN architectures, our method demonstrates stable perfor-
mance. We believe that our proposed method expands the
real-world applications of cGANs in a sustainable way by
making it easier to create datasets for training cGANs.

Limitation. Although our method improves baselines in
challenge datasets, no beneficial improvement on datasets
with sufficient labeled samples is observed. A deep analy-
sis of the relationship between labeled data size and cGAN
performance will provide further insight into the effective
use of our soft curriculum method.
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