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Abstract

Dynamic facial expression recognition (DFER) is an im-

portant task in the field of computer vision. To apply auto-

matic DFER in practice, it is necessary to accurately rec-

ognize ambiguous facial expressions, which often appear

in data in the wild. In this paper, we propose MIDAS, a

data augmentation method for DFER, which augments am-

biguous facial expression data with soft labels consisting

of probabilities for multiple emotion classes. In MIDAS, the

training data are augmented by convexly combining pairs of

video frames and their corresponding emotion class labels,

which can also be regarded as an extension of mixup to soft-

labeled video data. This simple extension is remarkably ef-

fective in DFER with ambiguous facial expression data. To

evaluate MIDAS, we conducted experiments on the DFEW

dataset. The results demonstrate that the model trained

on the data augmented by MIDAS outperforms the existing

state-of-the-art method trained on the original dataset.

1. Introduction

Facial expressions play an important role in human com-

munication, and facial expression recognition (FER) has

broad applications in areas such as human-computer inter-

action, driver monitoring, and intelligent tutoring systems

for education. To correctly understand emotions from fa-

cial expressions, the temporal cues of facial expressions are

important for FER because facial expressions are based on

facial muscle movements, as demonstrated in previous re-

search [23, 44, 45]. Accordingly, our study focuses on dy-

namic FER (DFER), which is the task of recognizing an

emotion class from a video clip.

Although deep learning-based techniques have shown

remarkable performance in DFER on lab-controlled data,

DFER on in-the-wild data is still a difficult problem because

such data include ambiguous facial expressions, which can-

not simply be categorized into a single emotion class. There

are several factors that contribute to the ambiguity in facial

expressions, with the coexistence of multiple emotions be-

ing one of the significant factors. Since emotions are not

mutually exclusive but collective, multiple emotions can co-

exist at different intensities in ambiguous facial expressions

captured under natural conditions. This is a significant dif-

ference from lab-controlled data, where the researcher usu-

ally instructs the subject to make facial expressions. In ad-

dition, facial expression varies over time, and multiple emo-

tions can be contained even within a single video clip. For

example, in Fig. 1, the annotators’ evaluations for this video

clip were split between “disgust,” “neutral,” and “fear” with

different probabilities. These features of emotions and fa-

cial expressions are considered to be the main factor of am-

biguity.

Attaching soft labels to training data, instead of hard la-

bels, is an effective way to address the ambiguity in DFER.

Hard labels, that is, one-hot encoded class labels, are mostly

used in general recognition tasks such as object recogni-

tion, where the input sample is clearly categorized into a

single class; however, they cannot appropriately represent

an objective variable composed of a combination of mul-

tiple emotions with different intensities in ambiguous fa-

cial expressions. To correctly learn the ambiguity in DFER,

soft labels consisting of probabilities for multiple emotions

are helpful to maximize the use of information provided by

annotators. One possible method of assigning soft labels

to training data is to have multiple annotators evaluate the

training data and use the ratio of their votes.

The disadvantage of soft labels is that they are more flex-

ible than hard labels, making it difficult to collect a variety

of labels in a uniform manner. There is an enormous amount

of possible combinations of emotion classes and the corre-

sponding probabilities, and therefore it is difficult to prepare

training data that include all of these patterns. Furthermore,

the size of the dataset itself also tends to be limited in DFER
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Figure 1. Example of an ambiguous facial expression. The images

were taken from the DFEW dataset [14]. The bar chart in the

bottom row shows the soft-labeled annotation constructed based

on the proportions of votes by ten annotators. The annotations are

split into four emotion classes.

due to the difficulty of manual annotation and data collec-

tion. To address this problem, it is necessary to augment

data effectively and properly to learn from limited data.

In this paper, we propose a data augmentation method

for DFER with ambiguous facial expressions called MIDAS

(Mixing Ambiguous Data with Soft labels). In MIDAS, the

mixing strategy is expanded to handle soft labels and dy-

namic facial expressions. The method convexly combines

pairs of video frames of facial expressions and the corre-

sponding soft labels that represent the probabilities of emo-

tion classes after aligning the facial position. It then trains

a model on the generated data.

Our contributions are summarized as follows:

• We proposed MIDAS, a data augmentation method for

DFER with ambiguous facial expressions. MIDAS

convexly combines pairs of video frames of facial ex-

pressions in a similar way to mixup. One significant

difference from mixup is that MIDAS is applicable

when the true hard labels are unknown and only soft la-

bels consisting of multiple classes of probabilities are

given.

• We showed that MIDAS corresponds to minimizing

the vicinal risk in a situation where the true hard la-

bel is unknown with a vicinity distribution using a ran-

dom ratio and virtual labels that are different from the

original mixup.

• Through DFER experiments on the DFEW dataset, we

showed that the proposed method outperforms existing

state-of-the-art methods. Through an ablation study,

we also showed that the combination of soft labels

and mixing strategy has a synergistic effect although

the use of each individually is also effective. Addi-

tionally, the effectiveness of MIDAS with hard labels

was demonstrated on both the DFEW and FER39k

datasets.

2. Related Work

2.1. DFER

While many in-the-wild datasets for static FER utilize

images collected from the internet, most datasets for DFER,

including CK+ [25] and Oulu-CASIA [50], are created

under lab-controlled environments. In these datasets, the

changes in facial expression are prompted by researchers’

instructions. Although still relatively few, there has been

a growing trend toward the development of large-scale in-

the-wild datasets for DFER. Notably, AFEW, introduced

by Dhall et al. [8] stands out as the pioneering in-the-

wild DFER dataset, comprising short clips from movies

annotated by a pair of annotators. Similarly, Jiang et

al. [14] collected movie clips for the DFEW datasets.

They assigned ten out of twelve annotators to one video

clip. This dataset uniquely provides both single-labeled and

seven-dimensional emotion class annotations. Furthermore,

FERV39k [40] presents a large in-the-wild dataset tailored

for DFER. This dataset contains video clips in 22 fine-

grained contexts such as business, daily life, and school.

The data are annotated by 20 crowd-sourcing annotators and

10 professional researchers.

Regarding FER in the video, methods based on selecting

peak frames or aggregating features from each frame have

been proposed by [18, 19, 28, 43, 46, 51]. Two- or three-

dimensional convolutional neural networks (2D-CNN or

3D-CNN) combined with a sequential neural network, such

as long short-term memory (LSTM) and gated recurrent

unit (GRU), are commonly used in [1,4,15,17,22,37,42,49].

Several studies have proposed the utilization of a

Transformer-based module for DFER [26,52]. For example,

Zhao et al. [52] proposed Former-DFER, which is based

on the Transformer module, and Ma et al. [26] used fea-

tures processed by a 2D-CNN as input to a spatio-temporal

Transformer (STT). Wang et al. [41] proposed the dual path

multi-excitation collaborative network (DPCNet). DPCNet

consists of two modules, a spatial-frame excitation module

to extract spatial features and a channel-temporal aggrega-

tion module to aggregate channel and temporal aware fea-

tures.

2.2. Ambiguity in FER

Facial expressions are known to contain multiple emo-

tion classes [6, 53]. Ambiguous data are often regarded as

noisy or inconsistent data. There are several kinds of ap-

proaches to deal with ambiguous data such as uncertainty

estimation. She et al. [32] proposed an architecture with

a latent label distribution module and uncertainty estima-

tion module to address the ambiguity. Wang et al. [39] pro-

posed an extra module to suppress harmful instances and

find latent truths by ordering with an estimated confidence

level. Li et al. [20] proposed a global convolution atten-
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tion block and intensity aware loss (GCA+IAL). IAL is de-

signed to have the network pay extra attention to the most

confusing category. While their approach focuses on the un-

certainty of facial expressions through attention blocks and

loss functions, our approach handles ambiguity in DFER

using data augmentation with soft labels. Soft labels are

a simple approach against ambiguous data. Barsoum et

al. [53] investigated whether soft labels annotated by mul-

tiple crowd workers improved the static FER performance

of a deep learning architecture and showed a model trained

with soft labels outperformed that trained with hard labels.

In addition, Gan et al. [10] proposed a framework to gener-

ate pseudo soft labels for static FER. However, to the best

of our knowledge, no prior research has focused on using a

mixing strategy with soft labels for DFER.

2.3. Mixing strategy

The application of mixing strategies in data augmenta-

tion has widely been investigated. Zhang et al. [48] pro-

posed a data augmentation method called mixup, where ad-

ditional training samples are synthesized by convexly com-

bining random pairs of images and their labels. Mixup is

based on the vicinal risk minimization [2] principle, where

the vicinity of each training sample is used to approximate

the true distribution, thereby improving the generalization

capability. Thulasidasan et al. [33] showed that mixup is

also a better training strategy from the viewpoint of confi-

dence calibration.

Inspired by mixup, other methods using mixing strate-

gies have also been proposed. CutMix [47] and CutOut [7]

use regional crop-and-paste techniques. Saliency in-

formation was employed in SaliencyMix [34] and Puz-

zleMix [16]. Some methods, such as Attentive-CutMix [38]

and TransMix [3], employ activation or attention maps to

achieve mixing. The mixing strategy is also applied to fea-

ture space in certain methods such as Manifold-mix [36]

and PatchUp [9]. MixGen [11] enhances vision-language

representation learning, employing multi-modal data aug-

mentation based on image interpolation and text concatena-

tion. Unlike our focus on label-based classification, Mix-

Gen targets tasks such as visual grounding and reasoning.

Most studies focus on image mixing, while few apply

the mixing strategy to video data. Sahoo et al. [31] pro-

posed background mixing for contrastive learning in action

recognition; however, their method was not used for gen-

erating data belonging to a class different from that of the

source data. In addition, existing studies use hard labels

because class information is clearly different from others in

other computer vision tasks such as object and action recog-

nition. However, at the time of writing, there has been no

prior research dedicated to a mixing strategy for DFER and

soft labels.

3. MIDAS: Mixing Ambiguous Data with Soft

Labels

MIDAS generates data in a similar way to mixup, that is,

it convexly combines given training data and labels using

a randomly generated mixing coefficient. It differs from

mixup in that (i) the input data are video clips and (ii) soft

labels representing class probabilities are given instead of

single ground-truth class labels encoded in one-hot format,

i.e., hard labels. The soft labels are assumed to be given

based on the average of the votes by multiple annotators.

This is due to the fact that recognizing ambiguous facial

expressions is difficult even for the human eye, and each

annotator’s judgment is not necessarily correct.

The important point is that the true hard label is un-

known, and the proposed method is designed to minimize

the vicinal risk under this condition. The data mixing pro-

cedure and how it minimizes vicinal risk are described be-

low.

3.1. Data mixing

Let Xi =
(

x
(1)
i , . . . , x

(T )
i

)

be the i-th video clip with a

length of T in the training dataset, where x
(t)
i ∈ R

H×W×3

is an image of height H and width W from the t-th frame in

the video. In addition, let yi ∈ R
C denote the soft-labeled

ground truth for the i-th video clip whose elements are the

probabilities for C emotion classes. MIDAS combines each

frame of two video clips randomly selected from the train-

ing dataset and generates virtual samples, as illustrated in

Fig. 2. The generated video clip X̃ and label ỹ are formu-

lated as

X̃ =
(

x̃(1), . . . , x̃(T )
)

, (1)

x̃(t) = λx
(t)
i + (1− λ)x

(t)
j , (2)

ỹ = λyi + (1− λ)yj , (3)

where λ ∈ [0, 1] ∼ β(α, α) is a random ratio that follows

the beta distribution with α. It should be noted that MI-

DAS does not allow the same video to be selected. After

that, to take annotation noise such as misjudgment into ac-

count [35], a combined soft label ỹ is normalized by using a

softmax operation. By applying our method to the facial ex-

pression data, data that have multiple emotion classes with

different intensities and temporal changes can be generated.

3.2. Vicinal risk minimization

The data augmentation that MIDAS performs is justified

from the viewpoint of vicinal risk minimization [2], as is

done in mixup [48]. The difference with mixup is that the

true hard label of each sample in the training data is un-

known, and a soft label that includes the variation of the

annotators’ evaluation is used instead. Accordingly, it can
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Figure 2. Outline of the data mixing procedure in MIDAS. In MIDAS, the training data are augmented by convexly combining pairs of

video frames and their corresponding emotion class labels. The mixing coefficient λ is randomly generated from a beta distribution. The

key point is that soft labels representing class probabilities are used instead of hard labels.

be explained that MIDAS calculates an empirical risk using

a distribution different from that of mixup.

In supervised learning, we assume a joint probability dis-

tribution P (x, y) over input and output variables and mini-

mize the expectation of a given loss function ℓ.

R(f) =

∫

ℓ(f(x), y)dP (x, y), (4)

where f is a classifier to be trained. However, eq. (4) cannot

directly be computed because the joint distribution P (x, y)
is unknown. In general, we minimize instead the empirical

risk given a training dataset {(xi, yi)}
M
i=1 ∼ P (x, y).

Remp(f) =
1

M

M
∑

i=1

ℓ(f(xi), yi) (5)

The empirical risk is derived by taking an expectation of the

loss function over an empirical distribution Pemp(x, y) =
1
M

∑M

i=1 δ(x = xi, y = yi), where δ is a Dirac measure.

There are other possible choices to approximate the true

distribution, and a different choice of distribution results

in different risk minimization. The empirical vicinal risk

based on the vicinity distribution [2] is one of them. In [48],

it was shown that mixup training minimizes the empirical

vicinal risk:

Rmixup(f) =
1

M

M
∑

i=1

ℓ(f(x̃i), ỹi), (6)

where {(x̃i, ỹi)}
M
i=1 is a set of virtual feature-target pairs

generated from the vicinity distribution defined as

Pmixup(x̃i, ỹi | xi, yi)

=
1

n

n∑

j

E
λ
[δ(x̃i=λxi+(1− λ)xj , ỹi=λyi+(1− λ)yj)]. (7)

In the problem setting of this study, the hard label yi
1

corresponding to the underlying true emotion is unknown,
and instead a soft label qi based on the voting average of
multiple annotators is given. In MIDAS, the training data
are sampled from the following distribution:

PMIDAS(x̃i, ỹi | xi, qi)

=
1

n

n∑

j

E
λ
[δ(x̃i=λxi+(1− λ)xj , ỹi=λqi+(1− λ)qj)]. (8)

Equation (8) can be regarded as a variation of vicinity
distribution. Assuming that S annotators give one-hot la-

bels v
(s)
i (s = 1, . . . , S) to each training sample xi, the

soft label qi is given by the average of the annotators’ votes

as qi = 1
S

∑S

s=1 v
(s)
i . If l out of S votes are correct, qi

is expressed as qi = l
S
yi +

1
S

∑

s∈W
v
(s)
i , where W is a

set of indices for wrong annotations. Using this expression,
Eq. (8) can be written as

PMIDAS(x̃i, ỹi | xi, qi)

=
1

n

n∑

j

E
λ,λ′

[δ(x̃i=λxi+(1−λ)xj , ỹi=λ
′

yi+(1−λ
′)y′

j)], (9)

where we defined λ′ = λl
S

and y′j = λ
S−λl

∑

s∈W
v
(s)
i +

S(1−λ)
S−λl

qj . MIDAS corresponds to minimizing the vicinal

risk in a situation where the true hard label yi is unknown,

by defining the vicinity distribution using a random ratio

and virtual labels that are different from the original mixup.

4. Experiments

The purpose of this experiment is to verify the validity of

MIDAS for DFER using a deep learning-based automatic

1The superscript for the frame number is omitted for simplicity in this

subsection.
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DFER model. We evaluated the performance of MIDAS

using a publicly available DFER dataset, and compared the

results with those of existing methods for DFER including

the state-of-the-art one.

4.1. Evaluation dataset

We used the dynamic facial expression in-the-wild

(DFEW) dataset, a collection of 11,967 video clips sourced

from movies. The DFEW stands as the singular dataset

providing soft labels for each individual video clip. These

video clips contain various challenging interferences in

practical scenarios such as extreme illumination, occlu-

sions, and capricious pose changes. Twelve expert annota-

tors were hired for this dataset, and ten out of twelve anno-

tators were assigned to each video clip. Each annotator was

asked to select one out of seven emotion classes (“happy,”

“sad,” “neutral,” “angry,” “surprise,” “disgust,” and “fear”).

The voting results by the annotators are provided as seven-

dimensional emotion distribution labels, which are used as

soft labels in this experiment. This dataset also stores the

class with the highest number of votes by the annotators for

each sample, and we used them as a hard label in compara-

tive experiments.

Fig. 3 shows examples of facial expression images and

the corresponding emotion labels in the DFEW dataset. In

the figure, the left and right panels show examples of a clear

expression that all annotators judged as “happy” and an am-

biguous facial expression, respectively. In the example of

an ambiguous expression on the right panel, the votes by

the annotators are split into five classes although more than

half of the annotators judged this sample as “sad.”

Fig. 4 shows the distribution of emotion classes. The

DFEW dataset is a class-imbalanced dataset that contains

relatively more “natural” and “happy” and less “disgust”

and “fear.”

4.2. Preprocessing

First, we detected a facial region using Face++ [27].

Face++ is a face recognition-related software that can be

used for face detection, face comparison, and face retrieval,

and we used its face detection function in this experiment.

We then extracted facial landmarks from the detected face

area and applied an affine transformation to landmarks to

align the position of facial landmarks using Seeta [24] by

referring to the method in [14].

4.3. Experimental conditions

We used the temporal shifted module (TSM) with the

ResNet-18 backbone [21], which has been used for facial

emotion recognition from video clips in previous studies.

The ResNet-18 was pre-trained on ImageNet [30]. Since the

length of the videos varied, we divided each video into eight

segments and sampled one frame from each segment. The
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Figure 3. Examples of a clear facial expression (left) and ambigu-

ous facial expression (right) with their soft label annotations in the

DFEW dataset [14]
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Figure 4. Emotion class distribution of the DFEW dataset

hyper-parameter settings for training were fixed. Regarding

optimizers, we used SGD [29] with an initial learning rate

of 0.02 and a momentum value of 0.9. Cosine learning rate

decay was applied in training, and the number of training

epochs was set to 450. We applied random scaling before

inputting the video clip into the model at training time. We

used a batch size of eight and a dropout with a rate of 0.5.

The input image of each frame was resized to 224 × 224.

For the loss function, we used cross-entropy loss. In addi-

tion, α for the beta distribution for MIDAS was set to 0.4.

To evaluate the generalization capability, we performed

five-fold cross-validation using the data split provided in the

DFEW dataset. For the evaluation indexes, we employed

the unweighted average recall (UAR) and weighted average

recall (WAR), which are officially used in [14]. UAR rep-

resents the average prediction accuracy of each class and

WAR represents accuracy. We calculated the averages of

UAR and WAR over five groups of cross-validation. We

compared the results with those of some existing methods

for DFER proposed in [5,12,13,26,52] including the state-

of-the-art method. We also employed the ResNet-18 with

TSM trained simply on soft and hard labels for comparison

methods to evaluate the effectiveness of MIDAS.

4.4. Result

Table 1 summarizes the accuracy for each emotion class,

the WAR, and UAR, with the scores of comparative meth-

ods and our model trained on the original video (i.e., with-

out data augmentation) with soft and hard labels. MIDAS

achieved the best scores in WAR and UAR, thereby show-

ing the effectiveness of the combination of soft labels and

mixing strategy for DFER.

Compared to other methods, MIDAS showed the best
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Table 1. Comparison of the accuracy for each emotion class, UAR, and WAR. Bold and underlined scores denote the best and second best,

respectively.

Method Label
Accuracy for each emotion class (%) Metrics

happy sad neutral angry surprise disgust fear UAR WAR

3D Resnet18 [12, 52] Hard 79.18 49.05 57.85 60.98 46.15 2.76 21.51 46.52 58.27

Resnet18+GRU [5, 13, 52] Hard 82.87 63.83 65.06 68.51 52.00 0.86 30.14 51.68 64.02

Former-DFER [52] Hard 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70

STT [26] Hard 87.36 67.96 64.97 71.24 53.10 3.49 34.04 54.58 66.65

DPCNet [41] Hard 89.59 64.82 66.98 63.14 53.81 14.48 32.34 57.11 66.32

GCA+IAL [20] Hard 87.95 67.21 70.10 76.06 62.22 0.00 26.44 55.71 69.24

Resnet18+TSM (Ours) MIDAS 87.40 67.34 58.64 68.06 59.65 28.69 44.50 57.45 69.16

score in UAR with a 0.34% gap from the second-best

method (DPCNet) and achieved the second-best score in

WAR with only a 0.08% gap from GCA+IAL, which is the

state-of-the-art method for the DFEW dataset. These results

demonstrated the effectiveness of MIDAS in improving the

performance of DFER.

Regarding the accuracy for each class, It should be em-

phasized that MIDAS scored higher than the other methods

in “disgust” and “fear,” whose number of training samples is

much less than that of the other classes (see Fig. 4). In con-

trast, GCA+IAL [20], which represents the state-of-the-art

in WAR and is another approach addressing facial expres-

sion ambiguity based on the intensity-aware loss function,

showed remarkably low accuracy in these categories. These

results indicate that our method improves the accuracy for

emotion classes with smaller data sizes.

5. Analysis and Ablation Studies

5.1. Comparison with the model trained on soft and
hard labels

While our approach has yielded noteworthy outcomes,

it is essential to clarify MIDAS’s effectiveness compared

to models trained solely on hard and soft labels. To evalu-

ate the effectiveness of MIDAS, we employed the ResNet-

18 with TSM trained simply on soft and hard labels. The

results are shown in Table 2. Regarding WAR, MIDAS

achieved 69.16%, which outperforms the score of the mod-

els trained solely on hard labels (64.31%) and soft labels

(67.27%). For UAR, MIDAS (57.45%) marked a better

score than the models with soft labels (54.61%) and hard la-

bels (54.03%). These results demonstrate the effectiveness

of MIDAS in improving the performance of DFER. In ad-

dition, compared with the existing methods in Table 1, our

model with soft labels achieved the third-best in both WAR

and UAR, suggesting the effectiveness of simply using soft

labels even without data augmentation.

5.2. Our method with hard labels

We investigated whether a mixing strategy for dynamic

facial expressions with hard labels could improve perfor-

Table 2. Comparison of the results of our method with the model

trained on soft and hard label

Label UAR WAR

Hard 54.03 64.31

Soft 54.61 67.27

MIDAS 57.45 69.16

Table 3. Comparison of the results of our method with and without

hard label

Label UAR WAR

Hard 54.03 64.31

Soft 54.61 67.27

MIDAS w/ hard label 54.93 65.66

MIDAS 57.45 69.16

mance. Creating soft labels is costly although our method

can improve performance. It would be helpful if training

on the single-labeled annotation that can be obtained more

easily than soft labels also improves performance.

The procedure of this experiment is simple; we applied

our method to video clips with hard labels instead of soft

ones. The model was trained on this generated dataset after

normalizing the combined labels in the same settings de-

scribed above.

The results are shown in Table 3. The model trained on

MIDAS with hard labels improved the WAR of the model

trained on the original dataset with hard labels by 1.35%.

For UAR, the score is 54.93%, which is higher than a model

trained on the original dataset with hard and soft labels.

This result indicates that our strategy can enhance the per-

formance of FER when using hard labels.

Furthermore, we extended our investigation to an-

other large-scale dataset, FERV39k [40]. Unlike the

DFEW dataset, only hard-labeled annotations are given in

FERV39k. The experimental setup remains consistent with

Section 4.3, except for the initial learning rate, set at 0.01.

Table 4 demonstrates that MIDAS with hard labels achieved

a superior UAR score (39.2%) compared to current state-of-
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Figure 5. Ratio of coexisting emotions for each emotion class. The values in the figure were calculated by averaging the soft label values

of the samples that belong to the corresponding emotion class. The higher the value, the more likely the emotion class is to be voted for by

the annotators simultaneously, that is, the more likely it is to coexist.

Table 4. Comparison of the results of our method with hard label

on FER39k [40]

Method Label UAR WAR

Two VGG13-LSTM Hard 31.28 43.2

Former-DFER [52] Hard 37.20 46.85

GCA+ICL [20] Hard 35.82 48.54

Resnet18+TSM (Ours)
MIDAS

w/ hard label
39.2 47.37

the-art methods on the FERV39k dataset, and secured the

second-best score (47.37%) in WAR. These results suggest

that MIDAS possesses the potential for generalization even

in scenarios involving only hard labels.

5.3. Cross-dataset evaluation

Generalization ability is crucial in facial expression

recognition due to the need to accommodate variations such

as lighting conditions, facial orientations, and the diversity

in facial shapes. These factors can significantly influence

the accuracy of recognition models in real-world situations.

We conducted a cross-dataset evaluation to examine

whether our approach improves the model’s generalization

ability to unseen conditions. In this experiment, we trained

the model on the DFEW dataset and tested it on the acted

facial expressions in the wild (AFEW) dataset [8] to assess

the performance on first-time encountered conditions. As in

Section 4, we trained the TSM with ResNet-18 using MI-

DAS and compared its performance with those trained sim-

ply on soft and hard labels. These models were not further

fine-tuned using the AFEW dataset, but simply evaluated

on the AFEW test set. Due to the absence of a method pro-

viding results for models trained on DFEW and tested on

AFEW datasets, our comparison involves simply contrast-

ing the outcomes of MIDAS using models trained with soft

and hard labels.

Table 5 presents the UAR and WAR on the AFEW test

set for each method. MIDAS demonstrated superior per-

formance in both UAR and WAR compared to the models

Table 5. Comparison of our method’s results on the AFEW test set

Label UAR WAR

Hard 38.20 40.72

Soft 36.67 39.61

MIDAS 39.56 43.77

trained on hard and soft labels. These results suggested

that MIDAS potentially improves the model’s generaliza-

tion ability to unseen conditions.

5.4. Analysis of the impact of coexisting emotion

we analyzed the effect of coexisting emotions in DFER.

The soft labels in the DFEW dataset were constructed based

on the votes of ten annotators. During this voting process,

the votes of all annotators do not necessarily coincide; some

minority annotators vote for emotion classes other than the

class that received the most votes. For example, “sad” re-

ceived the most votes with eight votes, but “angry” also re-

ceived two votes. We analyzed how such coexisting emo-

tion classes that are often voted together affect the model

capability.

Fig. 5 shows the average ratio of coexisting emotions for

each emotion class. For example, in the case of the leftmost

emotion class “happy,” “neutral” is also voted for a lot for

the instances where “happy” received the most votes. The

values in the figure were calculated by averaging the soft

label values of the samples that belong to the corresponding

emotion class. From this figure, the following are observed.

• “Neutral” tends to coexist with all other emotion

classes.

• “Happy” does not coexist much with other emotion

classes.

• “Angry” and “disgust” coexist frequently.

• “Sad,” “surprise,” and “fear’ often coexist.

Fig. 6 shows the confusion matrix of the Resnet-18 with

TSM model trained with MIDAS. The impact of emotion
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Figure 6. Confusion matrix of the model trained with MIDAS

class coexistence revealed in Fig. 5 on the classification re-

sults can be observed. “Neutral” coexists with other classes

more than other emotion classes, the model wrongly pre-

dicted many samples of other classes as neutral. In partic-

ular, instances classified as “disgust” are most often recog-

nized as “neutral.” There are few coexisting emotions for

“happy,” and the instances classified as “happy” are almost

always predicted correctly (87.40%). These results indicate

that coexisting emotions affected model performance in the

DFER.

5.5. The effect of ambiguous data on model perfor-
mance

To confirm whether ambiguous data in the DFEW

dataset affect the model performance, we investigated the

effect of ambiguous data by comparing models trained on

datasets with and without ambiguous data. In this compari-

son, we divided the original DFEW dataset into two groups:

clear expression and mixed expression groups. The clear

expression group consists of data with maximum soft label

values of more than 0.9, e.g., the left example in Fig. 3.

The mixed expression group contains data regardless of the

soft labels’ values and includes ambiguous facial expres-

sions such as the right example in Fig. 3. To address the dif-

ference in data distribution, the distribution of each emotion

class was matched to the original dataset by oversampling

and down-sampling. Finally, the sizes of both data groups

were set to an equal number (4275). We trained two models

on these datasets with soft labels and evaluated them using

a validation split of the original dataset.

The results are shown in Table 6. The model with the

mixed expression group obtained higher UAR and WAR

scores than the model trained with the clear expression

group. These results demonstrated that the existence of am-

biguous data can improve the performance of DFER.

Table 6. Comparison of the results of models trained with and

without ambiguous data

Data UAR WAR

Clear expression group 45.42 58.46

Mixed expression group 48.54 60.91

Table 7. Results using the 2DCNN-GRU architecture, which is

different from the architecture used in Table 1

Label UAR WAR

Hard 51.62 64.00

Soft 51.82 65.00

MIDAS 53.70 67.01

5.6. Comparison of different architectures

In our experiments, we used TSM [21], an architecture

for dynamic data, and the results show our method with

TSM improves the performance of DFER. However, we did

not investigate whether our method is effective for different

deep learning architectures.

We, hence, conducted an experiment with different

architectures for DFER. In this experiment, we used a

2DCNN-GRU as a different deep learning architecture. The

2DCNN-GRU was trained using MIDAS and compared

with a model trained on the original dataset with soft and

hard labels. The settings of training were the same as those

in the other experiments.

Table 7 summarizes the results using the 2DCNN-GRU

architecture. The scores of MIDAS with 2DCNN-GRU

(UAR: 53.70% and WAR: 67.01%) are higher than those

of the soft- and hard-label supervised models. In addition,

its WAR is higher than those of the existing works except

for GCA+IAL [20] (see Table 1). These results indicate

that MIDAS has the potential to improve the performance

of DFER regardless of the architecture.

6. Conclusion

In this paper, to handle various ambiguous facial expres-

sions, we proposed a data augmentation method called MI-

DAS, which is based on data mixing with soft labels for

DFER. In our method, we combine two video clips of facial

expressions and their soft labels to generate various com-

binations of emotions and intensities. We conducted ex-

periments to evaluate our method with a dataset for DFER.

The results showed that our method can enhance the perfor-

mance of DFER and outperform the state-of-the-art method.

In future work, we plan to evaluate MIDAS using other

domains of datasets, as it was evaluated using only the

DFEW dataset. Although the MIDAS is developed for

DFER with ambiguous facial expressions, it would be ef-

fective for other tasks that involve ambiguous class catego-

rization soft-labeled annotations.
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