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Abstract

Nuclear power plays a vital role in providing reliable
and clean energy to fulfill increasing demands in electricity
worldwide. It continues to be an essential source of na-
tional power supply as growing concerns about fossil fuel
depletion, global warming, and emissions require utilizing
sustainable energy sources. One area contributing to the
growth of nuclear power is the development of reactors that
have enhanced protection and security, thermal efficiency,
and design. Reactor efficiency can be studied by the bur-
nup that occurs when a TRISO-fueled pebble is inserted
into the nuclear core and subsequently removed. The lev-
els of burnup are measured based on the length of time the
pebble spends within the core. In our design, each peb-
ble is numbered by multiple digits printed in six locations
using Ultra-High Temperature Ceramic paint. Naturally,
computer vision techniques can be used to identify and time
each pebble based on its digits as it enters and exits the
core. We present a deep learning approach that success-
fully tags each pebble by identifying its digits from a video
stream of the entrance and exit of the core. In a multi-step
method, we extract only the clearest and most useful views
of the pebble’s digits to classify as it rolls by. This algorithm
is robust against issues that occur for objects in movement
such as motion blur, rotations, and glare. We outperform
other state-of-the-art optical character recognition (OCR)
models that fail to identify digits that are in motion. Our
approach creates a safer and more efficient way to measure
burnup within a core while contributing to the improvement
of nuclear power produced by reactors.1

1. Introduction
1.1. Pebble Bed Reactors

As one of the six classes of nuclear reactors being stud-
ied in the Generation IV initiative [14], pebble-bed reac-

1Examples of pebble identification videos in supplemental materials.

Figure 1. Pebble bed reactor that allows for continuous recycling
to create energy. ‘XXX’: an arbitrary multi-digit number.

tors (PBRs) [13] have garnered lots of attention due to their
safeness, modularity, and efficiency. They are an attractive
solution to be used in the next generation of nuclear power
production from their minimal environmental impact and
reliability [13]. To power PBRs, tri-isotropic (TRISO) [25]
nuclear fuel particles are mixed with graphite powder to cre-
ate a spherical pebble 6 cm in diameter. About the size of
a pool ball, these pebbles maintain their structural integrity
when exposed to high temperature. This makes them the
ideal candidate to be used for nuclear fission to take place.

The reactor core is filled with thousands of TRISO-
fueled pebbles that are continuously added and recirculated
as they undergo a process known as burnup [3] to fuel the
system. During the refueling process, each pebble is re-
moved one by one from the outlet of the reactor and mea-
sured for their accumulation of burnup. If the level of bur-
nup is below a certain threshold, the pebble is sent back into
the reactor. Otherwise, it is discarded as it cannot provide
further fuel. The pebble recirculation as seen in Fig. 1 al-
lows for more efficient nuclear energy production. It is an
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advantage PBRs have over other nuclear core designs, as
they do not need to be shut down for refueling.

1.2. Pebble Identification

It is crucial that these pebbles are not kept in the nu-
clear reactor core for a prolonged period as excessive bur-
nup accumulation can occur which can have adverse effects
on power production. Preventing this is a difficult task as
a pebble’s burnup can only be measured by the amount of
time it has spent within the core. To accomplish this, each
pebble must be identified as it enters and exits the core so
that it can be properly timed. Appropriate pebble identifica-
tion techniques need to be developed for PBRs to keep their
design safe and efficient for maximal scale-up.

A simple way to uniquely tag each pebble is to give it a
multi-digit number that can be painted on using Ultra-High
Temperature Ceramic paint [24]. The numbers are visible
after the pebble is passed through the reactor as the paint
is resistant to nuclear core conditions such as radiation and
high temperature. To cover all views, this number is placed
in various locations on the pebble. This number can then
be used to identify each pebble while it cycles through the
refueling process for PBRs.

1.3. Problem Definition

As these pebbles are continuously fed in and removed
out of the reactors, they must be identified to inhibit exces-
sive fuel burnup or early stopping of fuel discharge. Sup-
pose we have a pebble that is last seen at time t1 from the
video stream of the inlet of the reactor, as seen in Fig. 2.
This pebble enters the reactor, spends some time within it,
and then exits the reactor and can be seen at time t2 from
the video stream of the outlet of the reactor. The residence
time tr of this pebble can then be calculated as tr = t2− t1.
Since each pebble is marked with a multi-digit number, we
can match the timing of when it entered and exited the reac-
tor. The task is to automatically identify and note the timing
of the pebble twice: as it goes into the inlet and as it exits
the outlet. This removes any need for a human to calculate
the residence times manually. We are interested in utiliz-
ing computer vision techniques to ensure the automation of
pebble identification is as accurate as possible.

1.4. Summary

With this nuclear engineering goal in mind, we present
the following as our contributions:

• A novel approach to TRISO-fueled pebble identifica-
tion that utilizes a new ceramic paint tagging system.

• The first computer vision-based system to accurately
identify nuclear pebbles while they are in motion and
rotating.

Figure 2. Example of pebble identification setup on the left. One
camera is facing the inlet of the reactor (top). Another camera is
facing the outlet of the reactor (bottom). Examples of numbered
pebbles on the right.

• A fast and non-invasive way to calculate the residence
time of TRISO-fueled pebbles, allowing the produc-
tion of safer and more efficient Generation IV reactors.

2. Related Work
Identifying pebbles by X-ray imaging. The automatic

identification and tracking of the pebbles that fuel the power
generation within a nuclear core is a feature of PBRs that
has not been extensively researched. One physical property
of the pebbles that has been used in automatic recognition is
the underlying TRISO particle distribution. Fang and Ful-
vio [4] show that pebbles can be uniquely identified inside
the core by the three dimensional distribution of TRISO par-
ticles. They make use of X-ray CT scans of each pebble
to reconstruct a three-dimensional distribution and match it
to the corresponding pebble by aligning the two using the
Go-ICP algorithm [32]. Similarly, Kwapis et al. [15] use
a combination of X-ray imaging and deep learning to learn
the TRISO particle distribution actively as new pebbles are
introduced to the reactor as a way to identify the pebbles
later on for burnup calculation.

The large amounts of gamma radiation being emitted
from the irradiated fuel after use can have an impact on
the pebble, i.e., X-ray imaging might not always work as
the particle structure is not guaranteed to be intact. In addi-
tion, these methods have been tested on synthetically gener-
ated small-scale pebble sets, and their application in a real-
world scenario might not be practical. It requires the mem-
orization of thousands of particles for thousands of pebbles,
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Figure 3. Overview of pebble identification pipeline.

which would not scale well. Alternatively, painting digits
on the pebble surface using materials resistant to the heat
inside a nuclear core is a promising scale-up solution.

Digit detection and recognition. The broad field of
digit detection and recognition has had many works focused
on solving different problems occurring in the real world.
OCR engines like Tesseract [28], EasyOCR [11], Amazon
Textract [27], Google Cloud Vision API [30], and ABBYY
FineReader [1] have been developed to extract handwrit-
ten, typed, and printed text from documents and images.
These methods act as a way to digitize the information pre-
sented, so that it can be used in a variety of tasks such as
translation, text-to-speech, and summarization. There have
also been multiple widely known and openly available digit
datasets that have been used as another form of developing
digit detection and recognition models. MNIST [16] con-
tains a large amount of hand-written single-digits that can
be predicted on with extremely high accuracy using recent
methodologies [2,9,22]. In addition, the SVHN dataset [23]
contains real-world images of multi-digits that represent the
harder case of recognizing numbers within a natural scene.

Challenges and needs for digit detection and recogni-
tion on pebbles. In literature, there have been very few
works addressing the issue of recognizing digits that are
placed on moving spherical objects. General applications
of this could be used in pool ball tracking or lottery number
drawings, but in our case, it can be used for TRISO-fueled
pebble identification. These spherical objects are subject to
arbitrary rotations that can make the digits appear sideways,
upside down, or diagonal. In addition, the curved surface of
pebbles introduces out-of-plane image warping, which can
cause confusion over digits that appear similar such as 5 and
6 or 1 and 7. Ordinary digit detection and recognition meth-
ods will fail to perform well for classifying digits on spheri-
cal objects as they require completely flat surfaces like doc-
uments or signs. An added complexity of objects in motion
creates more difficulty recognizing digits as they are sub-
ject to blur and fuzziness. This major difference between
previous work for digit detection and recognition and our
TRISO-fueled pebbles problem requires a new methodol-
ogy to tackle these issues and maintain a high performance.

3. Methodology

Our overall goal is to extract the frames from the video
stream that contain the most useful information to detect
each pebble and identify it correctly. To accomplish this,
we forward each frame through a multi-step approach, as
seen in Fig. 3. First, we break down the frame to detect
the digit area. Then, the digit area on the pebble is aligned
horizontally. If at any point we realize a digit area is too
blurry or heavily occluded, we automatically throw it out.
Once we obtain just the aligned digits from the frame, we
can classify using our digit recognition model and save the
most confident digits as the identification results.

3.1. Digit Area Detection

Detecting the digit areas of a pebble in a frame can boost
the identification system’s efficiency and accuracy. First,
it enables rapid processing of ignoring empty frames (with
no pebbles) and continuing on frames with moving pebbles.
Second, it restricts the digit recognition module to perform
only on digit areas rather than wasting computation on ir-
relevant frame regions or introducing false positives.

Each frame of the video stream is processed through this
step to detect if digits are present or not using a Mask R-
CNN [7] (implementation details found in Sec. 5). If digits
are present, they are segmented as a box region from the
frame and saved for later processing. Otherwise, the pro-
cessing of the frame stops and we move on to the next one.
In the case multiple digit areas are detected on a pebble as
seen in Fig. 4, we save and process each separately.

Since the video stream contains hundreds of pebbles
rolling by, we need to be able to associate multiple detec-
tions of the same pebble over time. If there is a pebble
present, we use the center of the digit area detection as its lo-
cation representation to track it in each frame. We link these
related locations by making use of the Euclidean distance
between a new point and each moving pebble’s previous
points. If they are close enough, the points are linked and
the corresponding pebble’s location is continuously tracked.
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Figure 4. Example of digit area detection while the pebble is mov-
ing through the chamber.

3.2. Digit Area Orientation Alignment

Spherical pebbles in motion rotate while they are seen
in each of the inlet/outlet view’s video streams. Since the
numbers for the pebbles are painted on, the digits will ro-
tate as the pebbles rotate. It is difficult to correctly recog-
nize digits that are randomly rotated as the digit’s structural
properties change. For example, digits such as 6 and 9 will
be confused when rotated 180°, which will lead to incorrect
recognitions being saved. Although methods like Spatial
Transformer Networks [10] and Jain et al. [12] exist for ro-
tated digit classification, they are either incapable or unable
to properly perform on digits rotated more than -90° to 90°.
Therefore, we must create our own method to solve this is-
sue by utilizing our patterning method.

The numbers for the TRISO-fueled pebbles were painted
with a bar underneath each digit to signify digit orientation.
To align our digit area to a readable format, we must ro-
tate the image to place the orientation bars in the bottom
of the image. We first detect the three bars underneath
each digit using a Mask R-CNN [7] (implementation de-
tails found in Sec. 5). We calculate the bounding box area’s
midpoint which roughly estimates to the middle digit’s bar
represented as point A. The center of the entire digit area
image is represented as point B. Finally, to easily find the
middle lower part of the image for angle calculations, we
represent C as the point in the negative y direction from B
that is equidistant as B to A. We calculate ∠CBA as seen
in Fig. 5 that represents the offset of the middle digit’s bar
from the middle lower part of the image.

Using the inverse angle, we apply an affine transforma-
tion [31] with a rotation matrix to place the middle bar in
the image’s middle lower region. This correction rotates the
digit area of the pebble horizontally so that the digits are in
the most readable state for recognition. If no bars were de-
tected with confidence, we throw away this digit area crop
and process any others for the frame. If no bars are detected
with confidence for any crop, we move on to the next frame.

3.3. Digit Recognition

With correctly oriented digit areas, we can now recog-
nize the digits present much easier than if we had not. The
digits in the aligned digit area are recognized by a ten-class
digit recognition model using a Mask R-CNN [7] (imple-

Figure 5. Example of digit area orientation alignment. We use the
angle calculation to rotate the images on the left so that the digits
can be horizontally read as seen on the right.

mentation details found in Sec. 5). We enforce the digit
recognition inside the digit area to contain the most con-
fident and distinct digits that have minimal overlap. The
distinction between digits is calculated as the Euclidean dis-
tance between the midpoints of the bounding boxes of the
classifications. Therefore, if one digit has multiple classifi-
cations, only the most confident one will be saved, similar
to the nonmax suppression [26].

Since a pebble is in the video stream for multiple frames,
we can make use of sequential recognition over a period of
time to boost the recognition accuracy. Therefore, when a
new digit area detection has a recognition output, we pro-
pose a voting system where the confidence score of each
individual recognized digit of the pebble is accumulated.
Then, once the pebble obtains a confident number of votes
for every digit of a pebble, we can stop the repeated recog-
nition of that pebble. The effectiveness of this recognition
by sequential voting is validated in Sec. 6.2 and Fig. 7.

4. Datasets

As far as we know, there exists no other dataset of
TRISO-fueled pebbles labeled with numbers. Thus, we cre-
ated a benchmark dataset for this nuclear reactor applica-
tion. In total, 600 pebbles were produced and labeled in
6 different locations with a 3 digit number using ceramic
paint. A stationary photo of each pebble with their numbers
perfectly aligned horizontally was saved. In addition, two
training videos consisting of 14 and 21 pebbles respectively
were captured moving through the outlet chamber. Our test
set consists of one inlet chamber video and one outlet cham-
ber video, each containing 43 and 47 pebbles respectively.
Images and videos were captured using a Panasonic 4K Ul-
tra HD Camcorder HC-VX981K. Video data was recorded
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at a 1920x1080 resolution at 30FPS in a RGB format.

4.1. Datasets for Learning the Three Modules

Digit Area Detection Dataset. In order to complete our
first task of detecting the digit area from the frame, we hand-
labeled 652 frames selected from the two training videos.
We labeled the digit area and saved it as a box. While train-
ing, we treated the box area as the digit area label and ev-
erything else in the frame as non-digit areas.

Bar Detection Dataset. Our second task of bar detec-
tion for digit area alignment also requires an object (bar)
detection dataset. We selected 187 frames from the training
videos and 192 randomly rotated stationary images and pro-
cessed them through the digit area detection model to obtain
the digit areas. These 379 digit areas contain the bars un-
derneath the digits for constructing the bar detection dataset.
The bars underneath the digits were annotated while every-
thing else in the image was considered as non-bar areas.

Digit Recognition Dataset. First, we took the 600 sta-
tionary pebble images and used our model trained on the
digit area detection dataset to obtain just the digit area.
Then, we selected 142 frames from the training videos and
similarly obtained just their digit areas. In both cases, we
selected images that have digits that are nearly or perfectly
horizontally aligned. Finally, we hand-labeled each digit in
each digit area image using bounding boxes. There are 10
classes in total, representing digits from 0-9.

4.2. Data Augmentation

Due to the variations in nuclear reactor setups, we cannot
always guarantee the same lighting and clarity. In order
to account for this in the training of our models, we apply
random data augmentations to each sample in each epoch.

First, we mimic blur associated with objects in motion
by applying a Gaussian blurring [5] filter and then an affine
transformation [31]. For Gaussian blurring, we randomly
sample two positive odd numbers for the width and height
of our kernel size, as a general blurring of the image. The
affine transformation is then applied as a slight remapping
of the image in one direction to act as a motion blur. We use
a kernel size of 10x10 with a randomly sampled angle from
0° to 360° to apply this transformation.

Since we are working with spherical objects, rotations of
the objects and digits are bound to happen while process-
ing video frames. To help our models account for any rota-
tion, we apply random rotations in each epoch to the images
and their labels while training. To accomplish this, we ran-
domly sample an angle from 0° to 360° (-5° to 5° for digit
recognition) and apply an affine transformation [31] using
a rotation matrix. Lastly, we use uniform random sampling
to either decrease or increase the brightness of the image
from 0.2 to 1.5 times the original. This can account for any
changes in lighting for the video set-up.

Using these techniques, we can make use of our smaller
datasets to learn robust models as no image will be exactly
alike in any training iteration. In addition, the representa-
tions learned by the models are the most useful information
rather than any artifact.

5. Implementation Details
For consistency and reproducibility, all three of our mod-

ules were accomplished using a Mask R-CNN [7] with a
ResNet50 [8] backbone pre-trained on COCO [19] with
a feature pyramid network [17]. We finetune the Faster
R-CNN [6] classification head on our respective datasets
and use only the bounding box output during testing. We
found in our experiments, however, that the models within
our methodology can be swapped with any object detection
model and still perform well (comparison to [6, 18, 20, 29]
in supplemental materials). In comparison to other major
networks, the Mask R-CNN was less computationally ex-
pensive, which was attractive to use in a live setting along
with its efficiency and high performance. We trained using
Stochastic Gradient Descent with a momentum of 0.9 and
a weight decay of 0.0005. We use Cosine Annealing Warm
Restarts [21] to keep a varying learning rate while training.
For all modules in both training and testing, we normalize
the data before obtaining a prediction.

In our live implementations of our modules in Sec. 6.2,
we make use of 100% of each respective dataset to train the
three models for 200 epochs. However, to understand our
first two individual model’s performance by experiments
in Sec. 6.1, we randomly sampled 75% of each respective
dataset to act as a training set. After training for 100 epochs
(due to smaller dataset), each model was tested on the rest
of the 25% of their respective datasets. We repeated this
experiment 5 times and obtained the mean and standard de-
viation for each distribution of bounding box scores. We ex-
amined the precision and recall at Intersection over Union
(IoU) values of 0.50 and 0.75. To evaluate the third mod-
ule (digit recognition) in Sec. 6.1, we use 100% of the digit
recognition dataset to train and test on the two test videos.

6. Results
The proposed models are evaluated at two levels: the per-

formance on individual modules and the identification accu-
racy on pebbles in video streams. Then, ablation studies are
performed to evaluate the importance of each module.

6.1. Module Performance

Digit Area Detection. As seen in the first row of Tab. 1,
we are able to obtain high precision and recall at both IoU
levels. The frames of the videos are bound to change based
on camera placement and therefore, could have completely
different backgrounds than what is presented in the train-
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Module @IoU=0.50 @IoU=0.75
Precision Recall F-Score Precision Recall F-Score

DAD 99.36 ± 0.36 99.86 ± 0.22 99.61 ± 0.28 94.30 ± 2.65 96.00 ± 1.74 95.14 ± 2.21
DAOA 97.94 ± 0.46 99.48 ± 0.39 98.70 ± 0.41 93.94 ± 1.75 96.22 ± 1.21 95.07 ± 1.49

Table 1. Results based on bounding box borders for our first two modules: Digit Area Detection (DAD) and Digit Area Orientation
Alignment (DAOA). We calculate the precision, recall, and F-score values with Intersection over Union (IoU) thresholds of 0.50 and 0.75
for 5 trials. Afterwards, we average these values and calculate their standard deviation.

Figure 6. Left: Our method recognizes digits with high confi-
dence. Middle: EasyOCR/Tesseract recognizes nothing on the
pebble digits. Right: Using some image preprocessing, Easy-
OCR/Tesseract can recognize some digits on pebbles. Larger ver-
sion found in supplemental materials.

ing videos. By including the negative areas as a label while
training, this model contains far less false positive and false
negative detections. In addition, glare is usually seen in a
very concentrated area on the pebble, which makes it struc-
turally different from digits. Our model is able to distin-
guish between the two from ample positive and negative la-
beling. The only difficulty that may arise is when the glare
is concentrated on the digits of the pebble, but these in-
stances generally do not have strong predictions in the next
two modules and are therefore discarded.

Digit Area Orientation Alignment. Similar to the first
module, our digit area orientation model is able to achieve
high performance, as seen in the second row of Tab. 1. With
accurate bar detections, we are able to calculate the angle to
orient the digit area much easier.

Digit Recognition. There are many widely known digit
datasets openly available to the public that we can use to
strengthen our digit recognition module. We found the
SVHN dataset to represent multi-digit numbers in the natu-
ral world similar to the digits on our TRISO-fueled pebbles.
Therefore, we pretrained our digit recognition model on a
random selection of 10,000 images from the SVHN training

set for 200 epochs. It was then finetuned on our multiclass
digit dataset from the pebbles as described in Sec. 4.1.

There are a few OCRs, such as Tesseract and EasyOCR,
that have the capability to predict on natural images with
ease. However, we have to preprocess our aligned digit
area detections to the format OCR models perform best by
applying contrast-limited adaptive histogram equalization
(CLAHE) [33] to all images. As seen in Fig. 6, this one
preprocessing step formats the images in a way that appears
similar to how text would be in a regular document. Af-
terwards, we processed these images through Tesseract and
EasyOCR to obtain multi-digit number predictions that are
then split into individual digit recognitions.

As we can see in the “Individual Digit” column of Tab. 2,
our individual digit recognition model greatly outperforms
the Tesseract and EasyOCR models with CLAHE. We be-
lieve the plethora of information learned about digit styles
and shapes from the SVHN dataset helps our model adapt
well to the digits of the pebbles. Figure 6 exemplifies how
our method is robust to issues such as motion blur and cut-
off digits in comparison to EasyOCR and Tesseract. Addi-
tionally, we believe the main issue in classifying on pebble
images with an OCR model is the slight glare on the pebble
that blends with the digits even after CLAHE.

6.2. Pebble Identification Performance

Although single-digit recognition performance was an
important part of our pipeline, we wanted to understand how
well it worked as a whole in pebble identification. As ex-
plained in Sec. 3.3, we can leverage knowledge gained over
multiple frames of a video for a pebble, as seen in Fig. 7, in
order to obtain the most confident digit recognition possible
using a voting system. We tested our complete methodology
on the two test videos. After the pebble has left the frame,
we take the most probable digits for each digit of the multi-
digit number based on our normalized accumulated voting
scores and create the pebble identification classification. If
the final number classification matched the three-digit num-
ber painted on the pebble, we classified it as correct. Other-
wise, even if one digit was off, we classified it as incorrect.

We also compared the effect of using different digit
recognition methods within our pipeline for pebble recog-
nition. As we can see in the “Pebble Identification” col-
umn of Tab. 2, the model pretrained on SVHN and then
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Figure 7. Example of pebbles being detected over a sequence of frames. A collection of predictions allows for slight errors to have little
impact on the overall final classification. In the last column, we show the normalized ten-class scores for each digit of the multi-digit
number. These scores represent the most probable digits that are concatenated and used in our overall pebble identification. We can see
digits that have similar structures are confused the most. ‘F: X’ denotes the Xth frame. ‘1:.88’ means the digit is recognized as ‘1’ with a
0.88 confidence score.

Method Video 1 (47 Pebbles) Video 2 (43 Pebbles)
Pebble Identification Individual Digit Pebble Identification Individual Digit

Tesseract [28] 27/47 (57.45) 294/330 (89.09) 25/43 (58.14) 293/330 (88.79)
EasyOCR [11] 39/47 (82.98) 645/687 (93.89) 39/43 (90.70) 650/679 (95.73)

Ours 42/47 (89.36) 814/849 (95.88) 42/43 (97.67) 744/755 (98.54)
Ours w/o Orientation 3/47 (6.38) 144/331 (43.50) 14/43 (32.56) 286/457 (62.58)

Table 2. Results for two test videos. Pebble Identification accuracy represents the number of pebbles that were correctly identified within the
entire video. Individual Digit accuracy denotes the number of correctly recognized single-digit over all detected digits (e.g., 294/330 means
Tesseract only detects 330 single-digits and correctly recognizes 294 of them). The denominator number of individual digit recognitions is
based on how many each method was able to detect with very high confidence.

finetuned on our multiclass digit dataset (Ours) obtains the
best results for overall pebble classifications, compared to
Tesseract and EasyOCR. We believe the extra knowledge
gained from pretraining on SVHN allowed this model to
make many more high confidence individual digit predic-
tions. In some scenarios, digit recognitions had a weaker
confidence resulting in an incorrect single-digit contribut-

ing to the overall pebble identification voting. However,
by an increased weighting of the most confident individ-
ual digit recognitions, we can amend the small errors that
may occur on some frames. These corrections can be seen
in Fig. 7 contributing to the voting score probabilities and
greatly improving overall pebble identification accuracy.
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Figure 8. Example of digit area orientation alignment with no digit
area detection.

Figure 9. Example of how no digit orientation alignment leads to
poor digit recognition and pebble identification.

6.3. Ablation Study

Our method contains three main parts: digit area detec-
tion, digit area orientation alignment, and digit recognition.
The overall task is to classify the digits on the pebbles so the
last module of digit recognition is a necessity. In the follow-
ing, we evaluate the effectiveness of the other two modules.

The effectiveness of digit area detection. We removed
our digit area detection module while keeping the second
and third modules and attempted to classify the pebbles in
the test videos. Therefore, every new frame skipped the first
module and was instead fed to our second module to attempt
aligning the digit areas. As we can see in Fig. 8, the second
module fails to complete its task as the frame background
and pebble digits are picked up as bars for alignment. With-
out properly aligned frames, we cannot accurately perform
the digit recognition task (0 accuracy). It is therefore neces-
sary for the digit areas to be detected as background noise
will hinder the performance of any further steps.

The effectiveness of digit area alignment. We re-
moved the digit area orientation alignment module from our
pipeline while keeping the first and third modules and once
again attempted to classify the pebbles in the test videos.
Each frame had its digit area detected and cropped but was
not oriented before being classified using our digit recog-
niser. As we can see in Fig. 9, the third module can be used
on the unoriented digit areas, but many errors on individual
digit recognition eventually impact the overall pebble vot-
ing system. First, our digit recogniser is trained to account
for slight rotations, but it is difficult to confidently predict
on completely sideways or upside down digits. Second, the
digit area orientation alignment module works as a method
to remove extremely blurry images as the bars underneath
the digits will not be detected. The removal of this align-

Figure 10. Failure cases. 10a and 10b represent failed digit area
detections. 10c represents a misclassification on similar digits.

ment module leads to an increase in bad digit recognitions
as blurry images are classified by the digit recogniser. These
two effects ultimately result in a much worse pebble identi-
fication accuracy as noted in the last row of Tab. 2.

6.4. Failure Cases

The few errors in overall pebble identification our
methodology has are mainly due to the speed at which the
pebbles roll by in the video data. When the pebbles move
too fast, extreme motion blur makes it difficult to obtain
clear digit areas to orient and classify, as seen in Fig. 10a.
This can be increasingly difficult combined with the severe
glare as seen in Fig. 10b. In addition, digits that are very
similar in shape such as 5 and 6 or 1 and 7 can be confused
and contribute to an incorrect pebble identification as seen
in Fig. 10c. Although our continuous pebble identification
by voting, as illustrated in Fig. 7, can overcome errors in
some frames, the identification pipeline may fail if the mis-
classification or false negative due to extreme blur and glare
dominates the pebble’s entire existence in the video stream.
These issues are not simply resolved as they would require
alterations of the reactor set-up and pebble patterning.

7. Conclusion
We present a holistic approach to TRISO-fueled pebble

identification using a unique ceramic paint digit patterning
system. Utilizing our digit area detection and orientation
alignment methods, our identifications are robust to issues
that would normally happen to pebbles rolling by in a video
stream such as motion blur and rotations. We outperform
widely known OCR models that struggle on digits that may
be warped when placed on spherical objects. In addition,
creating brand new datasets allows us to adapt a model pre-
trained on SVHN to perform well on our pebble data. Even
with smaller amounts of data, our method will scale up well
with hundreds of thousands of pebbles for nuclear energy
production. We also do not require the use of X-rays and
can rely on the surface patterning to remain intact through
the core conditions due to its heat and abrasion resistant
properties. This work aims to lead to a new line of TRISO-
fueled pebble identification methods that can be researched
and implemented in the next generation of nuclear reactors.
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