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Abstract

Drunk driving-related road accidents contribute signif-
icantly to the global burden of road injuries. Addressing
alcohol-related harm, particularly during safety-critical
activities like driving, requires real-time monitoring of an
individual’s blood alcohol concentration (BAC). We devise
an in-vehicle machine learning system that harnesses stan-
dard commercial RGB cameras to predict critical levels of
BAC. Our system can detect instances of alcohol intoxica-
tion impairment as subtle as 0.05 g/dL (WHO recommended
legal limit for driving), with an accuracy of 75%, by lever-
aging the physiological manifestations of alcohol intoxica-
tion on a driver’s face. This system holds great promise
for improving road safety. In tandem, we have compiled a
data set of 60 subjects engaged in simulated driving sce-
narios, spanning three levels of alcohol intoxication. These
scenarios were captured and divided into video segments
labeled “sober”,“low’, and “severe” Alcohol Intoxication
Impairment (AII), constituting the basis for evaluating our
system’s performance. To the best of our knowledge, this
study is the first to create a large-scale real-life dataset of
alcohol intoxication and assess intoxication levels using an
off-the-shelf RGB camera to detect drunk driving.

1. Introduction
Automatic identification of drunk driving presents a crit-

ical challenge in improving road safety. Extensive records
indicate a strong link between increased alcohol consump-
tion and compromised driving performance [5,21], resulting
in an increased risk of fatal traffic accidents as Blood Al-
cohol Concentration (BAC) levels increase. The gravity of
this issue is underscored by statistical evidence, which high-
lights the substantial contribution of alcohol-related crashes
to road fatalities [24, 36, 38], unequivocally establishing in-
toxicated driving as the main cause of road-related fatalities.
However, existing approaches to detect alcohol-impaired
driving, primarily relying on random breath tests, do not
adequately address this pressing problem.

Although efforts are underway to integrate driver alco-

hol detection systems into future vehicle generations [30],
and the advent of autonomous cars is on the horizon [10],
the persistent issue of drunk driving remains an urgent con-
cern. Most of the research in the realm of detecting intoxi-
cated driving predominantly centers around analyzing driv-
ing behavior such as driving and steering patterns, pedal
usage, and vehicle speed [8,11,18,19,25,27,28,39]. Some
other approaches incorporate external sensors like alcohol
detection or touch-based sensors [8,44], however, there has
been very limited exploration into the potential of leverag-
ing computer vision techniques to identify signs of intoxi-
cation based on biobehavioral changes of drivers [23, 25].

One key limitation of using driving behavior to detect
drunk driving is the requirement for the driver to be ac-
tively operating the vehicle for a considerable duration be-
fore their behavior can be assessed and identified as indica-
tive of intoxication. This implies that a potentially impaired
driver is already on the road, posing risks to themselves and
other road users. Swift detection is crucial in identifying
drunk drivers and preventing them from endangering public
safety. In contrast, besides the need for regular calibration
and maintenance in sensor-based approaches, it is impor-
tant to note that sensor-based and behavior-based methods
are confined to vehicles equipped with specific technolo-
gies, rendering them less practical for widespread adoption.
A computer vision-based approach could potentially be in-
tegrated into road cameras in the future, akin to how these
cameras currently detect seatbelt usage or mobile phone ac-
tivity, making it applicable to various vehicle types without
requiring specialized in-cabin installations.

In contrast, the few studies that have explored the use
of computer vision techniques to detect intoxication based
on drivers’ biobehavioral shifts tend to heavily rely on spe-
cialized camera-based sensors such as eye-tracking systems
and in-vehicle monitoring setups [23] or a combination of
camera-based and vehicle-based sensors [25]. This reliance
limits the applicability of these methods to only those vehi-
cles that are already equipped with this technology.

In addition, the insufficiency of suitable datasets ham-
pers progress in this field. A recently collected dataset
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by [23] features data from 30 participants at the highest
intoxication level of 0.05 g/dL. However, to gain greater
relevance to real-world scenarios and account for individ-
ual variations in alcohol response, a larger sample size and
a wider range of intoxication levels encountered in social
contexts are essential. Furthermore, the findings from such
a dataset cannot be readily applied to countries with higher
legal alcohol limits for driving under the influence, such
as the USA with a limit of 0.08 g/dL. On the other hand,
the dataset curated by [25] comprises data from more than
100 participants with intoxication levels that exceed 0.08
g/dL. Nevertheless, this data collection involves sensor-
based cameras and advanced infrared eye tracking systems,
restricting its applicability to vehicles equipped with these
technologies.

Our contributions manifest themselves in two ways.
Firstly, we compile a dataset containing simulated driving
videos involving 60 participants spanning three distinct lev-
els of alcohol intoxication: sober (0.00 g/dL), low intox-
icated (0.05 to 0.07 g/dL), and severe intoxicated (above
0.08 g/dL). Secondly, we present a machine-learning sys-
tem that utilizes discernible cues from standard RGB videos
of drivers’ faces to gauge the degree of alcohol-related im-
pairment. To the best of our knowledge, our system is the
first to employ a standard RGB camera for detecting alcohol
intoxication levels based on signs of impairment in drivers’
faces. Additionally, our dataset is the first to include RGB
video recordings of individuals at various alcohol intoxi-
cation levels while driving (simulated). Although deliber-
ately not exploited in our baseline system, the dataset also
contains 3D and infrared videos of the driver’s face, rear-
view RGB videos showing driver posture and steering in-
teractions, driving simulation event logs, and screen record-
ings of driving behavior. The availability of this dataset not
only enriches our research endeavors, but also provides the
broader scientific community an invaluable resource for fur-
ther exploration and study.

2. Data collection

We developed and assessed a machine learning (ML)
framework designed to detect BAC thresholds in drivers.
To accomplish this, data was collected by MiX Telemat-
ics, from alcohol-impaired drivers within a controlled, yet
realistic, environment. The analysis of this data received
approval from the Edith Cowan University Ethics Commit-
tee (ID: 2021-02805-KESHTKARAN). The data collection
occurred between September 2022 and July 2023. Details
about the data collection methodology, including partici-
pant demographics, simulator configuration, data collection
procedures, and alcohol administration protocols, are out-
lined in the following sections.

Category n

Gender Male 36
Female 24

Age range 19-35 years old 20
36-50 years old 25
51 and above 15

Ethnicity Caucasian 54
Asian 5
Other 1

Drinking habit Moderate 37
Low 21
Heavy 2

Driving skills Experienced 39
Confident 21

Table 1. Summary of the participant’s demographics, driving ex-
perience, and drinking habits.

2.1. Sample size and participants
The study involved 60 healthy men and women aged 19

to 76 (mean age: 43 ± 14.6), who participated in simulated
driving scenarios on an urban roadway while experiencing
three distinct BAC levels: 0.00 g/100ml (sober condition),
0.05 to 0.07 g/100ml (low alcohol intoxication) and above
0.08 g/100ml (severe alcohol intoxication). These thresh-
olds were selected to represent varying levels of alcohol
impairment commonly observed in real-life situations [21].
The choice was also informed by the World Health Orga-
nization’s advised legal limit of 0.05 g/100ml in Australia
(and more than 90 other countries), along with the preva-
lence of fatal accidents occurring at levels of BAC that ex-
ceed this threshold [5, 24]. The recruitment included a di-
verse participant population, with respect to age, gender,
and drinking habits. Inclusion criteria for participation were
as follows: (a) Possession of a valid driver’s license and
having driving experience for at least two years. (b) Ab-
sence of medications and/or health conditions incompatible
with alcohol consumption. (c) Not being pregnant or lac-
tating. (d) No experience of motion sickness when driving
on the simulator. Detailed participant characteristics are re-
ported in Tab. 1.1

2.2. Simulator setup

We developed our research simulator by integrating a
research-grade simulator software, provided by Carnetsoft
(BV, Groningen, The Netherlands), with a commercially
available driving monitoring system by MiX Telematics
(Perth, Western Australia). Carnetsoft’s simulator software
is well-recognized in medical research projects [26,34], and
the selected driver monitoring system is widely used glob-

1Data derived from participants’ self-reported information.
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Figure 1. (a) Integration of the driving simulator with breathalyser
and driver ID tag reader. (b) Top: simulation scenario and driving
performance screen recording. middle right: 3D camera footage.
middle left: driver’s posture recording from the rear view. bottom
right: infrared camera footage. bottom left: RGB camera footage.

ally for driver safety monitoring. The configured research
simulator (depicted in Fig. 1) includes essential compo-
nents: a panoramic 270-degree field of view through three
monitors, an adjustable seat for optimal driving posture, a
realistic force feedback steering wheel, gear shifting mech-
anism, indicator stalk, accelerator, and brake pedals. More-
over, the simulator is equipped with a two-stage ignition and
engine start process that replicates genuine vehicle activa-
tion. We have also integrated an Autowatch 720 Tethered
Alcohol Breathalyser module and driver ID tag reader. The
simulator’s integrated breathalyser uses a blood ratio con-
stant of 2100 to convert alcohol values from mg/l to BAC,
complying with Australian national law [21] as follows:

BAC = mg/l ×
(

Blood Ratio
10000

)
(1)

This means that an alcohol concentration of 0.238 mg/l cor-
responds to a BAC of 0.05 g/100ml. Our simulator also
features an RFID card reader for driver authentication, link-
ing trip data to driver IDs and timestamps. This integration
optimizes data registration, ensuring anonymous and error-
free data recording.

2.3. Recruitment and data collection process

In response to the data collection advertisement, volun-
teers were contacted through phone and email communi-
cation. Comprehensive information outlining the data col-
lection procedure and participant requirements was shared
with potential participants. Their inquiries and concerns
were addressed, and dates were scheduled for their visit to
the data collection site. Participants were advised to avoid
alcohol, caffeine, and nicotine prior to sessions. They were
also advised to eat lightly within 3 to 2 hours before their
appointment. Upon arrival, participants were required to
complete a questionnaire to confirm their adherence to the
stipulated instructions. Prior to data collection, each partic-
ipant provided their informed consent. Unique RFID cards

were issued to participants to verify their identity during the
data collection session. These cards served for both com-
pleting the questionnaire and consenting through a mobile
app. Following this, participants were instructed to tag their
card for identification right after ignition activation, just be-
fore giving a breath sample and beginning the trip.

Data collection commenced with a practice drive to as-
sess motion sickness and the comfort of the participants
with the simulator. For those who did not feel motion sick-
ness and were happy to continue, this was followed by sober
driving tasks and two sessions involving controlled alcohol
intake. The research simulator collected a diverse set of
information, as depicted in Fig. 1. This dataset includes
driver’s ID, timestamps of trips, records of Blood Alco-
hol Concentration (BAC), facial video footage in full-color
(RGB), infrared (IR), and 3D formats, as well as the driver’s
posture, head position, and hand placement from the rear-
view (see supplementary material - section A for more de-
tails). Additionally, the driving behavior of the driver was
captured through recordings of the simulator screen. In-
stances of hazardous driver maneuvers along with their as-
sociated alerts were also documented.

To ensure the accuracy of the Breathalyzer measurement
and minimize the impact of ambient alcohol, the alcohol
administration occurred in a separate room from the data
collection setting. At the start of each driving task, breath
samples were collected using the AlcoQuant 6020 breatha-
lyzer (Envitec GmbH, Wismar, Germany) outside the alco-
hol administration room. Subsequently, within the simula-
tor chamber, the Autowatch 720 Tethered Alcohol Breath-
alyzer (PFK Electronics, South Africa) was employed for
confirmation and validation of readings. These breathalyz-
ers were calibrated according to the standardized Australian
Standard AS3547 and are akin to those utilized by law en-
forcement agencies in Australia, ensuring the reliability of
collected data. At each level of alcohol intoxication, partic-
ipants engaged in a 10-minute drive using the driving sim-
ulator. The simulated scenario involved navigating through
a city environment with moderate to high traffic, including
tasks such as yielding to pedestrians, obeying traffic lights,
and responding to unexpected events like animals entering
the road. Participants followed onboard navigation and ad-
hered to Australian traffic regulations.

2.4. Alcohol administration

After completing a sober run, to attain the initial intox-
ication target level, participants were asked to start with
consuming two standard drinks (Australian measure). To
mitigate the possible residual alcohol in the oral cavity that
could influence breath analysis, participants rinsed their
mouths with water after consuming the drinks. Breath sam-
pling began 7 to 10 minutes after drink consumption. Ad-
ditional drinks were provided based on measured alcohol
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Figure 2. A diagram of our proposed system workflow.

concentration. Following each subsequent drink, a 7 to
10-minute waiting period and mouth rinse were observed
before the next breath test, following the Australian Gov-
ernment standard drinks guidelines [22]. This process was
repeated until target intoxication level was achieved. Af-
ter reaching the second target BAC level (0.05≤BAC≤0.07
g/100ml), participants engaged in a 10-minute driving ses-
sion. Following this, they returned to the alcohol adminis-
tration room, consumed more beverages, and underwent the
same breath sampling procedure, until the final BAC target
(BAC≥ 0.08 g / 100 ml) was reached. Following this, the
last 10-minute driving session was conducted (see supple-
mentary material - section B for more details). Throughout
the alcohol administration, participants were offered light
refreshments and non-caffeinated beverages. After the con-
clusion of the final driving session, participants received a
light meal and were encouraged to consume food and wa-
ter to reduce their levels of intoxication. BAC levels were
measured intermittently to ensure participant safety before
leaving the data collection site. The selection of types of al-
cohol in our study was deliberately diverse. However, dur-
ing the early stages of intoxication, we discouraged the con-
sumption of beer due to its lower alcohol content. This ap-
proach was designed to mirror real-world scenarios, allow-
ing participant-driven choices and avoiding coercion into
unfamiliar substances.

The next section explains how we used the collected data
to train and evaluate our machine learning system to esti-
mate alcohol intoxication using facial features. While our
dataset includes data from multiple sources, this study aims
to detect impaired drivers using standard RGB videos, with-
out utilizing additional data sources.

3. Machine learning framework

We propose a machine learning framework that un-
folds as follows: Initially, the RGB camera captures video
footage from the driver’s face and head position. Following
this, a feature generation step is performed to construct the
essential attributes for training our machine learning model.

Finally, our trained model classifies the data into three la-
bels based on a range of BAC levels. The system workflow
is shown in Fig. 2 and a detailed breakdown of each step is
provided in the following sessions.

3.1. Feature generation

To generate features to train our model, we start by iden-
tifying attributes that have the capacity to reflect pathophys-
iological alterations resulting from alcohol intoxication, as
documented in the existing literature [2, 6, 31, 35, 42]. Sub-
sequently, we extracted the features from our RGB videos
and visualized them across varying degrees of intoxication.
The final features selected based on their strong alignment
with the documented pathophysiological changes associ-
ated with alcohol intoxication, as well as their ability to
exhibit significant variations across different levels of in-
toxication. The four selected features are (1) head move-
ment, (2) gaze movement, (3) eye aspect ratio, and (4) scale
factor of the face PDM (Parameters of a Point Distribution
Model) [20]. This procedure is detailed below.

(a) Feature extraction Previous studies show that alcohol
predominantly influences physiological alterations associ-
ated with ocular characteristics, gaze patterns, and facial
expressions [2, 6, 31, 35, 42]. In light of this understanding,
we extracted facial activity biometrics and landmarks from
RGB videos of individuals across varying levels of intoxica-
tion, using the OpenFace software library [3]. The extracted
features encompassed eye landmarks, eye gaze directions,
PDM (Parameters of a Point Distribution Model) param-
eters, which quantifies the extent of face landmark shape
variations [20], as well as facial Action Units (AUs) [13]
and head pose. These feature values were extracted for each
frame from RGB videos. The entire video length was uti-
lized for this process.

(b) Feature pre-processing and visualization We first
calculate the aspect ratio of the eyes (EAR) using the ex-
tracted landmarks of the eyes for every frame, as defined
in [7]. Subsequently, we project the three-dimensional
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(a) Average p-scale variations. (b) Average gaze-angle variations.

(c) Average head-pos variations. (d) Average EAR variations.

Figure 3. Visualization of selected features across three levels of alcohol intoxication impairment.

spatial representations of head movement into a two-
dimensional polar space. Then to capture meaningful vari-
ations in the selected features, we compute the average fea-
ture values over a window of frames. This approach was
chosen because alcohol impairment detection requires the
observation of behavioral patterns over time, such as grad-
ual shifts in patterns of gaze and head movement. We exam-
ine the average values within different window sizes of con-
secutive video frames. The selected window sizes were 15,
30, 100, 150 and 200 frames. This testing of different win-
dow sizes allows us to encapsulate the temporal character-
istics of these features within specific time frames, ranging
from a few seconds (30 frames) to several seconds (about
7 seconds for 200 frames). We then employ t-test analyses,
to compare the changes in the calculated averages across
different levels of intoxication. Finally, the features that ex-
hibit the most significant variations across various levels of
intoxication are visualized for each participant and collec-
tively for the entire group.

Illustrated in Fig. 3 and aligned with prior research [6,
42], our derived features reveal physiological alterations
caused by alcohol intoxication. In particular, distinct at-
tributes such as gaze movement, p-scale, head movement,
and EAR exhibit noteworthy deviations in behavior across
varying levels of intoxication. These differences are most
pronounced when considering a window size of 150 frames,
indicating its efficacy in capturing significant changes over
a meaningful timeframe.

Fig. 3d shows that as the degree of alcohol intoxication
increases, a corresponding reduction in the EAR can be
observed, accompanied by heightened variability in head
positioning (Fig. 3c) and gaze angle (Fig. 3b). Further-
more, a rise in p-scale variation is evident at a lower level
of intoxication (Fig. 3a). This finding is consistent with
established literature, suggesting that the primary indica-
tion of alcohol-induced intoxication in an impaired indi-
vidual includes heightened emotional expressions (reflected
in increased head movement and p-scale) and a tendency
for their eyes to appear less open, conveying a percep-
tion of weariness due to intoxication (linked to reduced
EAR) [6, 42].

(c) Feature normalization Assessing alcohol intoxica-
tion levels using visual biometric facial features presents a
significant challenge due to the diverse ways alcohol im-
pacts different individuals. Various factors such as drink-
ing habit, age, gender, and ethnicity have been identi-
fied as contributors to this variability in research stud-
ies [12,14,29,33,41]. We first normalize the features across
subjects to jointly train our model on this diverse data. To
do this, we consider an initial one-third of features obtained
from the sober state as a reference. For each individual, we
calculat the mean (µn,m) and standard deviation (σn,m) of
each feature (n) within this sober state subset. We then use
equation 2 to normalize the remaining features of the sober
state, as well as those of the low AII and severe AII stages,
all within the same individual:
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F̂n,m =
(Fn,m − µn,m)

σn,m
(2)

We apply this normalization to both the training and test
data across all subjects and features. Note that the subset
of features acquired from the sober state, which were used
for calculating mean and standard deviation, are reserved
for the normalization process. These features are excluded
from the dataset employed for training and evaluation of
the model. Moreover, we use Z-score normalization to cen-
ter each feature with respect to the training data. Z-score
normalization transforms the values of each feature so that
they have a mean of 0 and a standard deviation of 1. This
normalization method ensures that no single feature unduly
influences the learning process due to its magnitude.

3.2. Model design and model training
We build and tune a Long Short-Term Memory (LSTM)

neural network [37] with Keras tuner from TensorFlow [1].
LSTM was chosen for its capability to process sequential
data, considering the temporal interdependencies in our fea-
tures. For the tuner, we employ Bayesian optimization [15]
to find the combination of hyperparameters that maximize
the validation accuracy of our model. Then we train our
LSTM model using the best hyperparameters found by the
tuner along with the Sparse Categorical Cross-Entropy loss
function. We randomly split our dataset of 60 subjects into
5 equal folds for training. During training, one fold was set
aside for testing, and the remaining 4 folds were utilized
for training and validation. This process was repeated un-
til each fold served as a test set, and the final result was
the average of test outcomes across all 5 folds. Training
was carried out in 100 epochs, and the ReduceLROnPlateau
learning rate scheduler was used to adjust the learning rate
during training. The optimal learning rate was determined
to be 6.9053 × 10−4. The best hyperparameters obtained
from the Bayesian optimizer resulted in a model with two
LSTM layers: the first with 256 units and the second with
128 units, with a dropout rate of 0.1 in the second layer.
Additionally, the model has two batch normalization lay-
ers, a dense layer with ReLU activation function [17], and
L2 regularization [9] with a coefficient of 0.001. Python
3.9.16 [40], and TensorFlow 2.13.0 were used for experi-
ments.

To evaluate the model performance, we employ a cross-
validation approach and utilizes classification metrics in-
cluding accuracy, precision, recall, and F1 score. Addition-
ally, we present a confusion matrix to better understand how
the model handles different classes. Evaluation details are
provided in the following section.

4. Results and evaluation
We now present the results of our machine-learning

framework for detecting BAC levels in drivers. Initially, we

Precision Recall F1-Score

Sober 0.79 0.85 0.82
LowAII 0.71 0.70 0.71
SevereAII 0.73 0.71 0.72

Accuracy 0.75
Macro Avg 0.75 0.75 0.75
Weighted Avg 0.74 0.74 0.74

Table 2. Evaluating our model’s performance via averaged classi-
fication report

discuss its performance across three distinct classification
assignments: sober, low, and severe AII. Next, we analyze
the robustness of our machine learning model by studying
how well it can generalize when subjected to different per-
mutations of training and test sets. Finally, we assess the
significance of each feature towards the model’s predictive
performance by scrutinizing the classification accuracy in
the absence of each feature.

4.1. Performance evaluation
To evaluate the performance of our classifier, we uti-

lize precision, recall, and F1-score evaluation metrics. Ini-
tially, individual evaluation metrics are computed for each
class, and subsequently, the average of these class-specific
metrics is determined. This technique, known as Macro-
averaging [16], treats each class uniformly, regardless of its
frequency or imbalance in the dataset. The macro-average
for each evaluation metric (precision, recall, and F1-score)
is calculated as below:

MAvgm =
mclass1 +mclass2 + . . .+mclassn

N
(3)

where m is the type of evaluation metric (precision, recall,
or F1-score) and N is a number of classes.

Furthermore, we assess the model performance with re-
gards to class distributions by computing a weighted aver-
age [16], given the under-representation of sober instances
within our dataset. As outlined in section 3.1, one-third of
each sober state is allocated to feature normalization per
subject. Subsequently, this segment is excluded from both
the training and testing phases. The Weighted Average ap-
proach takes into account the distribution of classes. It de-
termines the average precision, recall, and F1-score, with
the contribution of each class being weighted by the pro-
portion of samples belonging to that specific class. The cal-
culation for the weighted average is as follows:

WAvgm =
mclass1 × ωclass1 + . . .+ mclassn × ωclassn

T

where m is the type of evaluation metric (precision, recall,
or F1-score). ωclassn is the proportion of samples belonging
to class n, and T is the total number of samples. These met-
rics are computed using the “classification report function”,
from the scikit-learn library [32].
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Figure 4. Confusion matrix showing predicted class distribution
across true classes.

The classification performance for each individual class
is shown in Tab. 2. Our model demonstrates a reasonable
ability to classify alcohol intoxication levels, with notable
strengths in the “sober” classes. Its performance in identi-
fying “low AII” and “severe AII” is slightly lower, as evi-
denced by lower recall values. The balanced F1-scores and
consistent macro and weighted averages suggest a generally
stable and balanced performance across the three classes.
The accuracy of 75% ±0.01 exhibits a reasonable per-
formance in categorizing alcohol intoxication levels solely
based on observable manifestations of intoxication that can
be captured through conventional RGB cameras.

We evaluate the efficacy of the model using a confusion
matrix (Fig 4). Our model has a significant true positive
(TP) rate of 84.52% for correctly identifying instances of
the “sober” driving state. Similarly, the model achieves TP
rates of 70.94% and 71.98% for the “low AII” and “severe
AII” states, respectively. However, it is worth highlighting
that there exists a moderate 21%± 0.5 degree of confusion
between the “low AII” and “severe AII” states.

4.2. Robustness check
We execute a cross-validation strategy through a Strat-

ified KFold cross-validation approach from the scikit-
learn library to assess the robustness of the model perfor-
mance [32]. Given that our dataset classes signify varying
degrees of alcohol intoxication impairments (AII), Stratified
K-Fold cross-validation is selected to ensure that the distri-
bution of classes in the folds closely resembles the distri-
bution in the overall dataset. The average accuracy of 75%
suggests that, on average, the model predictions are accu-
rate for around 75% of instances across the cross-validation
folds. The small standard deviation of 0.01 indicates that
the accuracy did not fluctuate significantly between folds,
highlighting consistent performance. Moreover, we exam-
ine how consistent and dependable our model results are
when exposed to different subsets of the data during the
training and evaluation phases. This process involves exe-

Instance Seed Accuracy (mean±SD)

1 42 0.74±0.01
2 132 0.74±0.00
3 random I 0.75±0.01
4 random II 0.74±0.00

Table 3. Model robustness check when exposed to different data
subsets.

cuting the model multiple times, each instance initiated with
a different random seed. The variability and uniformity of
the results produced by the model across different instances
of dataset partitioning is presented in Tab. 3. This analysis
confirms that the model generalises successfully.

4.3. Analysis of feature significance
To understand the significance of each feature on the pre-

dictive performance of our model, we conduct a feature im-
portance analysis. Through this analysis, we assess the im-
pact of excluding each distinct feature from the dataset on
the accuracy of the model classification. The outcome is
summarized in Tab. 4. In particular, features are ranked in
order of significance, with “p-scale”, “gaze angle”, “EAR”
having pronounced effects on the model accuracy, while
“head pose” exhibits minimal impact, suggesting its lesser
influence.

5. Discussion
5.1. Contribution

Alcohol-related traffic safety concerns remain a press-
ing global issue, with combating drunk driving and al-
cohol intoxication road accidents posing significant chal-
lenges worldwide [24, 36, 38]. There exists an urgent need
for scalable and cost-effective technologies that can effi-
ciently and effectively detect alcohol intoxication impair-
ment in drivers. This necessitates a technique that is not
only low-cost but also adaptable to existing vehicles without
extensive modifications to current technology. We have de-
veloped a machine learning system that harnesses visually
observable cues of alcohol intoxication impairment from
commercial RGB videos of drivers’ faces, without rely-
ing on additional advanced camera-based sensor technolo-
gies. Our system detects varying levels of alcohol intoxi-
cation impairment, with an overall accuracy of 0.75% for
the three-level classification (sober, low, and severe alcohol
intoxication impairment). This not only benefits vehicles
equipped with driver monitoring systems and eye-tracking
technologies but also has the potential to extend to smart-
phones, making alcohol intoxication detection more prac-
tical, accessible, and widely applicable compared to other
costly technologies such as breath-based sensors or sensor-
based camera monitoring systems, which demand regular
maintenance [8, 23, 25, 44]. It is also important to highlight
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Omitted feature Total accuracy Accuracy per class

Gaze angle 0.69 ± 0.00 0.79 Sober
0.64 LowAII
0.68 SevereAII

P-scale 0.61 ± 0.00 0.75 Sober
0.55 LowAII
0.57 SevereAII

Head pose 0.72 ± 0.01 0.84 Sober
0.66 LowAII
0.70 SevereAII

EAR 0.70 ± 0.00 0.84 Sober
0.66 LowAII
0.66 SevereAII

None 0.75 ± 0.01 0.85 Sober
0.71 LowAII
0.72 SevereAII

Table 4. Significance of selected features on model’s predictive
performance.

that our system has the capability to identify intoxication
levels at the beginning of a drive, allowing for the poten-
tial prevention of impaired drivers from being on the road.
This sets it apart from methods reliant on observable driv-
ing behaviors [8,11,18,19,25,27,28,39], which require ex-
tended active vehicle operation to identify impairment (Ad-
ditional information is available in supplementary section
C). Additionally, we have compiled a dataset encompass-
ing over 30 hours of driving videos across three intoxica-
tion levels: sober (0.00 BAC), low (above WHO’s≥0.05
and≤0.07 BAC), and severe alcohol intoxication (≥0.08
BAC). The dataset comprises RGB videos of the driver’s
face. Although deliberately not exploited in our baseline
system, the dataset also contains IR, and 3D facial videos,
rear-view RGB video capturing posture and steering inter-
actions, driving event logs, and screen recordings. This
dataset not only advances our research, but also serves as
a valuable resource for the wider scientific community.

5.2. Limitations and future work
The limitations of this study include the impracticality

of collecting data on individuals driving under the influence
of alcohol due to legal restrictions. However, existing lit-
erature suggests that driver responses in simulators closely
resemble real driving experiences and simulators can effec-
tively replicate changes in driver behavior caused by alcohol
consumption [4,25,43]. However, a constraint of simulator-
based research is that participants can gradually improve
their performance as they use the simulator. To mitigate
this, we introduced an initial practice driving session aimed
at acquainting participants with the simulator’s interface.

Another limitation pertains to the normalization process,

where we normalize the data for each individual using their
corresponding sober-state data. This approach fits well
in certain scenarios, such as when the system is installed
in family vehicles or vehicles owned by organizations or
companies with known drivers. In such cases, a calibra-
tion phase can be executed to establish a baseline repre-
senting the sober condition of the designated driver. Nev-
ertheless, the applicability of our system encounters chal-
lenges when extended to more extensive use cases, such as
rental car services, where the feasibility and assurance of
a successful calibration process might be uncertain. One
potential avenue for further investigation involves normal-
izing data using the average sober state across the entire
population, rather than individualized states. However, de-
termining the amount of population data required for this
normalization and assessing its effectiveness when normal-
izing against a larger dataset are aspects that need to be
investigated in future research. Furthermore, another con-
straint is our reliance on manually designed features. Tran-
sitioning from manually crafted features to an end-to-end
learning approach holds significant potential and will be in-
vestigated in detail in our upcoming research endeavors (see
supplementary section D for more information).

6. Conclusion
To the best of our knowledge, our system is the first to

employ a standard RGB camera for detecting alcohol in-
toxication levels based on signs of impairment in drivers’
faces. This system offers a simple yet effective approach
for identifying intoxicated drivers which aligns with global
need for cost-effective and seamlessly integratable system
for widespread adoption to enhanced road safety and re-
duced incidents of alcohol-related accidents. While endeav-
ors are being made to incorporate driver alcohol detection
systems into upcoming generations of vehicles [44], and the
advent of autonomous cars is on the horizon [10], the persis-
tent issue of drunk driving remains an urgent concern. The
tragic toll of fatal accidents and the resulting trauma for af-
fected families necessitates immediate attention and action.
This is precisely where our system plays a crucial role.

7. Data Availability
The data used in this paper will be made available on re-

quest, provided the use is for non-profit and research. A
transfer agreement will be required and data may not be
available before 2025.
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