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Abstract

Camouflage Object Detection (COD) involves the chal-
lenge of isolating a target object from a visually similar
background, presenting a formidable challenge for learn-
ing algorithms. Drawing inspiration from state-of-the-art
(SOTA) Focal Modulation Networks, our objective is to pro-
ficiently modulate the foreground and background compo-
nents, thereby capturing the distinct features of each. We
introduce a Feature Split and Modulation (FSM) module to
attain this goal. This module efficiently separates the ob-
ject from the background by utilizing foreground and back-
ground modulators guided by a supervisory mask. For en-
hanced feature refinement, we propose a Context Refine-
ment Module (CRM), which considers features acquired
from FSM across various spatial scales, leading to compre-
hensive enrichment and highly accurate prediction maps.
Through extensive experimentation, we showcase the supe-
riority of CamoFocus over recent SOTA COD methods. Our
evaluations encompass diverse benchmark datasets, includ-
ing CAMO, COD10K, CHAMELEON, and NC4K. The find-
ings underscore the potential and significance of the pro-
posed CamoFocus model and establish its efficacy in ad-
dressing the critical challenges of camouflage object detec-
tion.

1. Introduction

The objects characterizing substantial visual similarity
to the background, diminutive sizes, and obscure textures
are generally known as camouflaged objects. These objects
usually pose significant challenges to the Computer Vision
(CV) algorithm or sometimes even humans, thus making
Camouflaged Object Detection (COD) extremely challeng-
ing. COD has become an important area of research in CV
and Machine Learning due to its numerous applications in

Figure 1. Our proposed FSM module modulates background and
foreground features. In (c), the foreground modulator highlights
object-related activations, while (d) emphasizes background fea-
tures, suppressing object-related ones (indicated by the red ar-
row). (e) displays the refined result from our CamoFocus model
much closer to ground truth (b), illustrating the effectiveness of
the CRM.

aquaculture [6], wildlife conservation [23], search, and res-
cue operations. Besides, it also plays an important role in
the medical field for polyp segmentation and other similar
tasks [20].

The lack of discernible differences in color, texture, and
lower object-background contrast makes COD highly chal-
lenging. In addition, smaller objects with a higher resem-
blance to their surroundings even more complicate the de-
tection process. Therefore, numerous task-specific meth-
ods [25,30], auxiliary information-based techniques [35,40]
and bio-inspired approaches [18, 34] are used to solve this
task. Recent advancements have seen non-bio-inspired
techniques exhibit remarkable performance, particularly
Vision-Transformed-Based methods like CamoFormer [33]
and DTINet [16]. However, their reliance on resource-
intensive attention mechanisms has increased computa-
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tional complexity. Diverging from this, our proposed
CamoFocus takes a fresh direction inspired by cutting-edge
Focal Modulation Networks [32]. Compared to 18 other,
state-of-the-art (SOTA) methods, CamoFocus achieves su-
perior performance while utilizing comparatively fewer pa-
rameters and requiring lower computational resources. To
enhance Camouflage Object Detection (COD), our pro-
posed CamoFocus technique introduces two key compo-
nents. Firstly, we present the Feature Split and Modula-
tion (FSM) module, which splits backbone features, en-
abling a better understanding of object-background rela-
tionships. This is achieved through the foreground and
background modulators, which respond differently to input
features shaped by the interplay of the mask and backbone
features. This approach helps recognize background and
foreground features more effectively, as depicted in Fig. 1.
Unlike previous methods, which used attention-based mod-
ules for comprehending object-background relationships in
camouflaged scenarios, our FSM module takes a more fo-
cused approach. It treats background and foreground com-
ponents independently, overcoming limitations of existing
techniques and improving performance in challenging situ-
ations. After learning the features, they are merged to create
more understandable feature maps for subsequent process-
ing by the Context Refinement Module. 2) Context Refine-
ment Module (CRM): While FSM gains significant object-
background comprehension, we employ CRM for further
enhancement. This module facilitates cross-scale seman-
tic understanding of features. CRM accepts two different
scale inputs, employing bilinear upsampling for channel-
wise concatenation. Following this, the concatenated fea-
ture map traverses a sequence of convolutions, succeeded
by a global skip connection. To maintain lower computa-
tional overhead and merely understand the cross-scale mod-
ulated feature maps, CRM is utilized in a streamlined man-
ner, relying solely on various convolutional layers with di-
verse receptive fields and filter sizes. Despite its simplistic
architecture, empirical verification underscores CRM’s effi-
cacy within the proposed network.

To summarize, the contribution of the proposed Camo-
Focus to COD are:

• We introduce a novel Feature Split and Modulation
(FSM) module that aims to excavate a target ob-
ject from the surrounding environment utilizing Fore-
ground and Background Modulators. Guided by a su-
pervisory mask, our FSM effectively segregates fore-
ground and background elements, enabling precise ob-
ject discernment within complex visual contexts.

• To further refine the modulated multi-scale feature rep-
resentation, we employ a simple yet practical Context
Refinement Module (CRM) that enhances the feature
representation by cross-scale interaction of different

feature maps acquired from the preceding FSM.

• We achieve SOTA results on the testing sets of four
benchmark datasets of COD across all evaluation met-
rics. Extensive experimentation and ablation studies
indicate the effectiveness of the proposed technique.

2. Previous Work
Camouflage Objects are intentionally or unintentionally

concealed in the surrounding environment and circumvent
easy detection. Unlike generic and salient objects, which
humans and CV algorithms easily notice, camouflage ob-
jects require significant human perception and sophisticated
algorithms for their identification [5]. In traditional tech-
niques, hand-crafted features are mainly used to excavate
the camouflaged object from the background [8]. These
techniques perform satisfactorily in rudimentary tasks but
exhibit substantial performance degradation when deployed
in intricate scenarios. To circumvent this challenge, data-
driven approaches emerged to be more effective in the
COD. Subsequently, the advent of large-scale COD-related
datasets [5,12,17] and tremendous advancements in the CV
techniques have enabled substantial progress in the COD.

2.1. Camouflage Object Detection

Over the recent years, various sophisticated techniques
have been proposed to tackle the highly challenging COD.
Le et al. [12] proposed an auxiliary classification-based
technique to improve the performance of COD. Another im-
portant work proposed by Fan et al. [6] firstly locates the
concealed objects and then performs segmentation. Other
than these, some studies have attempted to mimic bio-
inspired mechanisms for COD. A study by Mei et al. [18]
uses attention mechanisms to initially locate the object and
then effectively suppress distractors. A comparatively re-
cent technique by Fan et al. [5] refined coarse maps, and
Zhang et al. [37] utilized sensory and cognitive modules.
These methods excel at detecting larger objects. To address
varied object sizes, Pang et al. [21] use zooming in and out
to mimic human vision, and Jia et al. [10] adopt progressive
refinement.

2.2. Vision-Transformer-Based Techniques

Various attention mechanisms and transformer-based
networks are highly utilized to improve the performance
of COD. Sun et al. [25] proposed attention-induced cross-
level fusion and dual-branch global context to improve the
feature representation. Similarly, Yang et al. [31] lever-
aged vision transformers coupled with uncertainty quantifi-
cation and presented a joint framework by combining prob-
abilistic and deterministic techniques. The work proposed
by Liu et al. [16] utilized twin transformers for separate
background and foreground identification coupled with the
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negative mining strategy to improve the COD performance.
Another technique proposed by Zhang et al. [37] utilizes a
progressive refinement technique and enables information
exchange among different image regions in complex ob-
jects. Besides these, Zhai et al. [35] proposed exploiting
the Graph Neural Network to induce object boundary de-
tails into the learning process. The method initially locates
the object and refines it using the object boundary-related
cues.

3. Proposed Method
3.1. Motivation

Our work aims to improve COD using efficient tech-
niques, drawing inspiration from Focal Modulation as a
promising alternative to the conventional attention mech-
anisms used in this domain. In our framework, we
use a more targeted approach for effective foreground-
background modulation with FSM module. To further en-
hance the cross-scale contextual understanding between the
features, we use another module to effectively combine
features and aggregate the context of the camouflaged ob-
ject. These modules enable our proposed CamoFocus to
achieve higher performance with relatively fewer parame-
ters, promising efficiency and effectiveness in COD.

3.2. Overall Architecture

Our proposed CamoFocus, depicted in Fig. 2, comprises
three core components: Backbone, FSM, and CRM. Given
the input image Io ∈ RH×W×3, the backbone extracts dis-
tinct low and high-level features from the given image in-
put image at five stages. The first stage features xo having
a spatial size of H

4 × W
4 contain rudimentary information

and hence are not further utilized, whereas features from
remaining stages, x1, x2, x3, x4, having low to high-level
features with spatial dimensions of H

4 ×
W
4 , H

8 ×
W
8 , H

16×
W
16 ,

H
32 × W

32 respectively, undergo channel-wise reduction fol-
lowed by L2 normalization and ReLU [2] activation. The
mask m is extracted via the Mask function from the con-
catenated features of x2 and x3. Afterward, we utilize four
FSM modules to process the combination of extracted fea-
tures and mask features as illustrated in the mfi of Fig. 2.
Each FSM module yields the processed feature maps in the
form of x′

1, x
′
2, x

′
3, and x′

4, which are subsequently fed to
the CRM for further refinement. Finally, the cumulative loss
is computed across all stages, considering the outputs of the
CRMs denoted as P1, P2, and P3, in addition to the mask
output m and the ground truth So.

3.3. Mask Generation

In our method, masks are obtained by integrating two
distinct features, x2 and x3, chosen for their information-
rich content and reasonable spatial resolution. After spatial

equalization and concatenation of x2 and x3, two successive
convolutional blocks, each consisting of 3×3 convolutions,
L2 normalization and ReLU [2] are applied. The initial
block’s channel count equals the sum of channels from x2

and x3, while the subsequent block’s channel count aligns
with the output of the first block. The resultant mask m
is obtained using Sigmoid activation. This mask m subse-
quently interacts with features from different stages of back-
bone xn, via the mfi function in the FSM module.

3.4. Feature Split and Modulation

In order to achieve a better understanding of the features
and effectively segregate the object from intricate back-
grounds, we build Feature Split and Modulation. Based
on Focal Modulation [32], we use two identical modula-
tors to map foregrounds and backgrounds separately. As
demonstrated in Fig. 3, features from the backbone xn and
mask m and 1 −m undergoes element-wise multiplication
in mfi, thereby resulting in xf and xb for foreground and
background, respectively. After element-wise multiplica-
tion, the foreground and background features are projected
using two separate linear layers with Eq. 1 and Eq. 2.

Z0
f = f(Xf ) ∈ RH×W×C (1)

Z0
b = f(Xb) ∈ RH×W×C (2)

f(Xf ) and f(Xb) are the background and foreground pro-
jection layers. We pass the projected features Z0

f and Z0
b

through a series L of depth-wise convolutions to obtain a
distinct understanding of the context for both foreground
and background objects via Foreground Modulator (FM)
and Background Modulator (BM) as demonstrated in Fig
3. Each block consists of a stack of depthwise convolution
layers l ∈ 1, ..., L. Contrary to the original architecture,
ReLU [2] activates both blocks since it performs better dur-
ing the empirical process. In (FM), we use two levels of
depth having the initial kernel size of 7 and then increasing
by a focal factor of 2. Similarly, in the (BM) block, we use
identical kernel size as in (FM).

Zl
f = f l

af ((Z
l−1
f ) = ReLU(DWConv(Zl−1

f ))) ∈ RH×W×C

(3)

Zl
b = f l

ab((Z
l−1
b ) = ReLU(DWConv(Zl−1

b ))) ∈ RH×W×C

(4)
f l
af and f l

ab in Eq. 3 and Eq. 4 are used as a contextu-
alization function to obtain the contextually aware feature
maps using the (FM) and (BM), respectively. The ker-
nel size k for both (FM) and (BM) is initialized with 7
in the first layer with an increase of 2 in the subsequent
layers, and the final receptive field using the mechanism
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Figure 2. The proposed framework involves a multi-stage process for COD. The input image is first passed through a Backbone network,
which extracts x1, x2, x3, and x4 features. Subsequently, all features xn are passed through (R) for normalization and dimensionality
reduction. The next stage involves the Feature Split and Modulation module, which receives the masks m and features xn and splits them
to obtain a better understanding of the underlying features of the object and background via foreground modulator (FM) and background
modulator (BM). The output of FSM module x′

n is subsequently fed to the Context Refinement Module, which outputs P1, P2, and
P3, representing predictions at different scales. Finally, the total loss is computed between the ground truth So and the mask m and a
combination of P1, P2, and P3.

Figure 3. Illustrates the overall mechanism of the Feature Split and
Modulation Module. As visualized in the figure, (mfi), (FM),
and (BM) are the key components of the FSM module. As in-
dicated by the red and blue arrows, the output of both of these
modulators separately attends to the foreground and background
of the given feature map.

aligned with the [32] is obtained as r = 1 +
∑k

i=1(ki − 1)

and hence the final output obtained by the block is Zl
f
L+1
l=1

for foreground and Zl
b
L+1
l=1 for background respectively.

Both modulators use gated aggregation G to allow spe-
cific and contextually-aware features to the subsequent lay-
ers. We have utilized the gating mechanism at each fo-

cal level, which helps the network in hierarchical con-
text aggregation. For the (BM), we obtain the gating as
Gb = fg, b(Xc) ∈ RH×W×(L+1), whereas for the (FM),
we obtain gating as Gf = fg, f(Xc) ∈ RH×W×(L+1). Af-
terward, the dot product is performed in both (FM) and
(BM) between the feature maps and their respective gates
as given by Eq. 5 and Eq. 6.

Zout
f = (

L+1∑
l=1

Gl ⊙ Zl
f ) (5)

Zout
b = (

L+1∑
l=1

Gl ⊙ Zl
b) (6)

After contextual aggregating the inputs at each focal level l,
we obtain the global output map for (FM) and (BM) via
Eq. 7 and Eq. 8, respectively.

yfi = qf (xi)⊙

(
L∑

ℓ=1

gℓi,f · zℓi,f

)
(7)

ybi = qb(xi)⊙

(
L∑

ℓ=1

gℓi,b · zℓi,b

)
(8)

Finally, Eq. 9 helps to acquire a combined map of x′
n of

(FM) and (BM).

x′
n = yfi + ybi (9)
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After obtaining the modulated feature map x′
n, we pass the

feature map to the subsequent block (CRM) for further re-
finement.

Figure 4. Context Refinement Module: takes two input feature
maps and performs a cross-scale operation to further enhance the
contextual semantic understanding of the proposed technique.

3.5. Context Refinement Module

For further refining and extracting more cross-scale se-
mantics from the modulated features yielded by FSM, we
employ three CRMs in our technique. Each CRM is es-
sentially a combination of several convolution layers, L2

normalization and ReLU [2] activation. Specifically, each
CRM has six convolution layers followed by ReLU and L2

normalization. As illustrated in Fig 4., each convolution
layer has a specific kernel size (f) and dilation rate (d) to
specifically attend to the different levels of features. CRM
takes two inputs with different spatial sizes and processes
them cross-scale. For instance, the first CRM operates on
x′
n and xn + 1′ by applying bilinear operation on xn + 1′

to match the spatial dimension of both inputs. Afterward,
we apply a concatenation operation on the channel dimen-
sion of these inputs. As demonstrated in Fig. 4, the con-
catenated feature map is passed through a 1x1 convolution.
These features are then channel-wise split into four chunks,
as demonstrated in Fig 4. Skip connection is hugely em-
ployed to obtain a solid semantic relationship between dif-
ferent spatial-level features. Each CRM block results in a
prediction map (Pn), which is supervised vis-a-vis ground
truth (So) at each spatial level as visualized in the Fig. 2.

3.6. Loss Function

We employ a combination of loss functions to super-
vise our model: Weighted Intersection Over Union LIOU

w

and weighted Binary Cross-entropy LBCE
w . IOU in image

segmentation is generally responsible for maintaining the
structure of the predicted map following the ground truth.
Adding a weighting factor to the IOU loss enhances its per-
formance by assigning different weights to the class regions
based on their importance in the task. On the other hand,
Binary Cross-entropy is the pixel-wise classification, and

LBCE
w similarly performs better on complex samples. Com-

bining these losses enables the network to focus more on
complex samples, which are expected to rise in the COD.
The LBCE

w and LIOU
w losses are computed on the predic-

tions of three camouflaged object masks (Pi, i ∈ 1, 2, 3) ob-
tained from the CRM module. Similarly, to supervise the
mask (m), we use Dice Loss LDice to improve the mask
quality. Since we are using three CRMs therefore, the total
loss is computed as the sum of the LBCE

w and LIOU
w losses

across the three camouflaged object masks: By incorpo-
rating these supervisory signals at different stages into the
training process, our proposed model can effectively learn
to segment the hidden object in complex scenes. Eq. 10
provides the total loss Ltotal for the network’s supervision.

Ltotal =

3∑
i=1

(LBCE
w (Pi, So)+LIOU

w (Pi, So))+LDice(m,So))

(10)

4. Experimental Results
4.1. Training Settings and Reproducibility

For CamoFocus’ implementation, we use Pytorch DL li-
brary [22] and employ PVTv2 [28] pre-trained on the Ima-
geNet database [11] . Additionally, we also investigate our
technique with other backbones such as Res2Net [7], and
EfficientNet-B1 [26] to ensure fair comparison with SOTA
techniques. Other than the backbone, the rest of the model
is randomly initialized. We resize all images to 416x416
and use Adam optimizer initialized with a learning rate of
1 × 10−4. We train each model in an end-to-end manner
for 90 epochs. Similarly, we maintain a consistent batch
size of 24 throughout the experiments. To avoid overfit-
ting and achieve better training performance, we use the
learning rate scheduler ”poly” [19], gradually decreasing
the learning over time and enhancing the models’ better
convergence. We conducted the experimentation using a
dual NVIDIA A100 GPU with a 40G capacity. Depending
on the selection of hyperparameters, the complete training
time of a single model is recorded to be in the range of 2 to
3 hours.

4.2. Datasets

We conduct experiments on four COD benchmark
datasets, CAMO [12], COD10K [5], NC4K [17], and
CHAMELEON [24]. For training, we follow the same
dataset segregation protocols used in the prior works [18,
21] to ensure an unbiased comparison. Specifically, we train
the network on 1000 images from CAMO and 3040 images
from COD10K. Similarly, we evaluate the proposed method
on the testing sets of all four COD benchmark datasets con-
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Figure 5. The proposed CamoFocus achieves visually better performance than all most of the recent and SOTA methods, including the
recent (d) CamoFormer [33], (e) SegMar [10], (f) ZoomNet [21], and others. The result of CamoFocus on the most challenging image in
the first row highlights the performance of the technique.

taining various challenging images as demonstrated in the
figures.

4.3. Evaluation Metrics

The COD’s widely recognized and most commonly used
evaluation metrics are Structure-Measure [3] (Sm), Mean
Absolute Error (M ), weighted F-measure [1] Fω

β , and
Adaptive E-measure [4] αE. To explain these metrics
briefly, (Sm) is used to measure the similarity between the
structural content of two images, and (M ) is used to deter-
mine the absolute pixel difference between the ground truth
and the predicted image. Similarly, Fω

β is another impor-
tant metric that measures the harmonic mean between the
precision and recall of the binary classification. The weight
factor in this metric is used to address the class imbalance
problem in the dataset. Finally, αE considers the structure
and texture of two images to calculate their difference.

4.4. Comparison with SOTA Techniques

In order to showcase the superiority of the proposed
method, we compare it with 18 SOTA COD methods, i.e.,
SINet [6], MGL-R [35], C2FNet [25], PFNet [18], PreyNet

[36], UGTR [30], BSANet [40], UJSC [13], VST [15],
COS-T [27], DGNet [9], SegMar [10], ZoomNet [21],
MFFN [38], DTINet [16], DGNet [9], PopNet [29] and
CamoFormer [33]. Compared with these methods, we
achieve superior performance in terms of qualitative and
quantitative analysis.

4.5. Qualitative Results

The qualitative analysis of the proposed technique com-
pared to SOTA methods is demonstrated in Fig. 5. The
images demonstrated in Fig. 5, spanning various scales, are
selected from all four testing sets. The findings reveal that
the proposed method surpasses existing ones in terms of
producing superior object structure and more fined details
across all scales of objects. The qualitative results demon-
strate the effectiveness of the proposed technique over the
SOTA alternatives. Similarly, as demonstrated in Fig. 6, the
proposed technique works much better for the most chal-
lenging examples as well.
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Table 1. The table illustrates the comparative analysis of the results obtained on test sets of four widely used benchmark datasets in COD.
Sm, αE, Fω

β ,Fβ and M denote Structure Measure, Adaptive E-measure, Weighted F-measure, F-measure, and Mean Absolute Error
respectively. The higher values of the proposed technique (highlighted in bold) on all datasets across all evaluation metrics indicate the
effectiveness of the proposed method in the COD. Similarly -R indicates ResNet50, -R2 indicates Res2Net50, -E4 EfficientNetB4, -E1
EfficientNetB1, -P4 indicates PVTv4 and -P2 indicated PVTv2

Method NC4K (4121 images) COD10K-Test (2026 images) CHAMELEON (76 images) CAMO-Test (250 images)

Sm ↑ αE ↑ Fω
β ↑ Fβ ↑ M ↓ Sm ↑ αE ↑ Fω

β ↑ Fβ ↑ M ↓ Sm ↑ αE ↑ Fω
β ↑ Fβ ↑ M ↓ Sm ↑ αE ↑ Fω

β ↑ Fβ ↑ M ↓

Convolution Based Methods

SINet-R [6] 0.808 0.883 0.723 0.769 0.058 0.776 0.867 0.631 – 0.043 0.872 0.938 0.806 – 0.034 0.745 0.825 0.644 – 0.092

MGL-R [35] 0.833 0.867 0.740 0.782 0.052 0.814 0.865 0.666 – 0.035 0.893 0.923 0.812 – 0.031 0.775 0.848 0.673 – 0.088

C2FNet-R2 [25] 0.838 0.901 0.762 0.795 0.049 0.813 0.886 0.686 – 0.036 0.888 0.932 0.828 – 0.032 0.796 0.864 0.719 – 0.080

UGTR-R [30] 0.839 0.889 0.747 0.787 0.052 0.818 0.850 0.667 – 0.035 0.888 0.921 0.794 – 0.031 0.784 0.859 0.794 – 0.086

PFNet-R [18] 0.829 0.894 0.745 0.784 0.053 0.800 0.868 0.660 – 0.040 0.882 0.942 0.810 – 0.033 0.782 0.852 0.695 – 0.085

PreyNet-R [36] – – – – – 0.813 0.894 0.697 – 0.034 0.902 0.951 0.856 0.866 0.027 0.790 0.854 0.708 0.763 0.077

BSANet-R2 [40] – – – – – 0.818 0.894 0.699 – 0.034 0.895 0.946 0.841 – 0.027 0.769 0.851 0.717 – 0.079

ZoomNet-R [21] 0.853 0.907 0.784 0.818 0.043 0.838 0.893 0.729 – 0.029 0.902 0.952 0.845 – 0.023 0.820 0.883 0.752 – 0.066

FDNet-R2 [39] 0.834 0.895 0.750 – 0.052 0.837 0.897 0.731 – 0.030 0.894 0.948 0.819 – 0.030 0.844 0.903 0.778 – 0.062

OCENet-R [14] 0.857 0.899 – 0.817 0.044 0.832 0.890 – 0.745 0.032 0.901 0.940 – 0.843 0.028 0.802 0.866 – 0.767 0.075

SegMar-R [10] 0.841 0.905 0.781 – 0.046 0.833 0.895 0.724 – 0.033 0.897 0.950 0.835 – 0.027 0.815 0.872 0.742 – 0.071

MFFN-R2 [38] 0.856 0.915 0.791 0.827 0.042 0.846 0.917 0.745 – 0.028 0.905 0.963 0.852 – 0.021 – – – – –

PopNet [29] 0.852 0.908 0.852 – 0.043 0.851 0.910 0.757 – 0.028 0.910 0.962 0.893 – 0.022 0.808 0.871 0.744 – 0.077

CamoFormer-R [33] 0.857 0.915 0.793 – 0.024 0.838 0.898 0.730 – 0.029 0.900 0.949 0.843 – 0.024 0.817 0.884 0.756 – 0.066

DGNet-E4 [9] 0.857 0.910 0.784 – 0.042 0.822 0.879 0.693 – 0.033 0.890 0.934 0.816 – 0.029 0.839 0.901 0.769 – 0.057

CamoFocus-R 0.847 0.910 0.788 0.812 0.043 0.825 0.903 0.719 0.749 0.033 0.898 0.953 0.849 0.859 0.027 0.812 0.873 0.752 0.794 0.071

CamoFocus-E1 0.855 0.912 0.790 0.820 0.042 0.830 0.899 0.719 0.735 0.030 0.901 0.940 0.846 0.837 0.024 0.830 0.893 0.770 0.806 0.062

Transformer Based Methods

VST-T [15] 0.830 0.887 0.740 – 0.053 0.810 0.866 0.680 – 0.035 0.888 0.936 0.820 – 0.033 0.805 0.863 0.780 – 0.069

COS-T [27] 0.825 0.881 0.730 – 0.055 0.790 0.901 0.693 – 0.035 0.885 0.948 0.854 – 0.025 0.813 0.896 0.776 – 0.060

DTINet-T [16] 0.863 0.915 0.792 – 0.041 0.824 0.893 0.695 – 0.034 0.883 0.928 0.813 – 0.033 0.857 0.912 0.796 – 0.050

CamoFormer-P4 [33] 0.892 0.941 0.847 – 0.030 0.869 0.931 0.786 – 0.023 0.910 0.970 0.865 – 0.022 0.872 0.931 0.831 – 0.046

CamoFocus-P2 0.889 0.936 0.853 0.870 0.030 0.873 0.935 0.802 0.818 0.021 0.912 0.957 0.876 0.884 0.023 0.873 0.926 0.842 0.861 0.043

Figure 6. Visualisation of the performance comparison of the CamoFocus on most challenging small objects with other baseline techniques,
i.e. (b)ZoomNet [21] and (c)SegMaR [10] on instances of tiny objects. The first two rows are from the NC4K dataset, and the last row
represents an instance of the COD10K dataset.
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Table 2. Ablation Study and the impact of FSM and CRM modules on the performance across four benchmark datasets.

Method COD10K-Test (2026 images) CAMO-Test (250 images) CHAMELEON (76 images) NC4K (4121 images)
Sm αE Fω

β M Sm αE Fω
β M Sm αE Fω

β M Sm αE Fω
β M

Baseline (B) 0.831 0.882 0.750 0.057 0.829 0.811 0.693 0.081 0.081 0.893 0.795 0.055 0.742 0.822 0.773 0.061
B + FSM 0.868 0.900 0.790 0.023 0.870 0.920 0.829 0.045 0.905 0.948 0.869 0.024 0.882 0.931 0.849 0.312

B+FSM+CRM 0.873 0.935 0.802 0.021 0.873 0.926 0.842 0.043 0.912 0.957 0.876 0.023 0.889 0.936 0.853 0.030

4.6. Quantitative Results

In terms of quantitative analysis, Table 1 suggests that
the proposed technique outperforms 18 other SOTA tech-
niques across all evaluation metrics. To ensure a fair com-
parison, we use a standard evaluation code snippet on the
prediction results that are either directly provided by the
authors of the other techniques or reproduced by their pro-
vided trained models. Moreover, it is evident in the Fig.
7 that the proposed technique consistently utilizes fewer
parameters as compared to the others with any backbone.
It could be noted that the proposed technique outperforms
even the recently proposed sophisticated techniques, in-
cluding ZoomNet and SegMaR, thereby establishing a new
SOTA in the COD.

Figure 7. Our proposed technique, with distinct backbones, con-
sistently outperforms existing methods while maintaining a leaner
parameter footprint in the majority of scenarios. This compelling
balance between efficiency and efficacy underscores its potential
as a top-performing solution in various COD applications.

4.7. Ablation Study

In order to demonstrate the impact of each module in
the proposed work, we conduct an ablation study by selec-
tively adding and removing modules to the baseline. As a
baseline, we consider the final layers of the backbone fol-
lowed by the 1x1 convolution and passed through a single
CRM block. Then, we systematically add the FSM module

to demonstrate its contribution to the proposed method. Fi-
nally, we add multiple CRM modules to refine the results
obtained by the preceding FSM block. Table 2 highlights
each module’s performance gains in our proposed approach.

4.8. FSM Effectiveness and Discussion

The efficacy of the proposed FSM module is investigated
in this section. The results presented in Table 2 demonstrate
that the inclusion of FSM significantly enhances the perfor-
mance of the baseline model. For instance, a huge perfor-
mance gain in the weighted F-measure Fω

β can be noticed
by adding the FSM module to the baseline, thereby under-
scoring the effectiveness of the module.

4.9. CRM Effectiveness and Discussion

Since the CRM used in the proposed technique is
straightforward consisting of convolution layers with vary-
ing dilation and filter sizes, it is illustrated in Table 2 that
the inclusion of CRM improves the overall results of the
proposed technique across all evaluation metrics. Despite
its simple design, the CRM reasonably elevates the perfor-
mance of our proposed technique across all datasets.

5. Conclusion
In conclusion, our work introduces CamoFocus, a novel

approach inspired by Focal Modulation Networks to en-
hance Camouflaged Object Detection (COD). By efficiently
splitting and modulating features, our two core modules,
Feature Split and Modulation, in collaboration with Con-
text Refinement, refine camouflaged object-related features.
CamoFocus achieves a new COD benchmark, outperform-
ing 18 recent SOTA methods while requiring fewer param-
eters. It embodies our motivation to improve COD through
efficient techniques and promises both effectiveness and ef-
ficiency in this domain.
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