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Abstract

Underwater images often suffer from color distortion,
haze, and limited visibility due to light refraction and ab-
sorption in water. These challenges significantly impact
autonomous underwater vehicle applications, necessitating
efficient image enhancement techniques. To address these
challenges, we propose a Multi-Domain Query Cascaded
Transformer Network for underwater image enhancement.
Our approach includes a novel Multi-Domain Query Cas-
caded Attention mechanism that integrates localized trans-
mission features and global illumination features. To im-
prove feature propagation from the encoder to the decoder,
we propose a Spatio-Spectro Fusion-Based Attention Block.
Additionally, we introduce a Hybrid Fourier-Spatial Up-
sampling Block, which uniquely combines Fourier and spa-
tial upsampling techniques to enhance feature resolution ef-
fectively. We evaluate our method on benchmark synthetic
and real-world underwater image datasets, demonstrating
its superiority through extensive ablation studies and com-
parative analysis. The testing code is available at: https:
//github.com/Mdraqibkhan/Spectroformer.

1. Introduction
Underwater Image Enhancement (UIE) algorithms are

vital for aquatic exploration with wide applications in Au-
tonomous Underwater Vehicles (AUVs), underwater mine
detection [52], submerged robots [17], and among other
fields. However, the major challenges in underwater imag-
ing include poor equipment quality [27], insufficient illu-
mination, and light absorption/scattering [45]. These issues
lead to quality problems like color shifts, haziness, and blur-
riness, reducing image interoperability and thus limiting its

Figure 1. Sample visual results of the proposed network (Spectro-
former) on real-world underwater scenarios.

application in the underwater world [32].
Generally, the existing UIE methods fall into three cat-

egories. The first category employs a physical model-
based approach [8, 16], centered on accurately estimating
the transmission maps to generate enhanced images. How-
ever, the effectiveness of these model-based approaches is
limited to less complex environments. Visual prior-based
UIE approaches [1, 28] in the second category focus on re-
fining the perceptual quality by adjusting the pixel values
for contrast, and brightness. Nevertheless, they are con-
strained by the ignorance of the physical deterioration pro-
cess.

On the other hand, deep learning methods in the third
category [11, 12, 24, 30] exhibit remarkable performance
in UIE task. Particularly, recent attempts [35, 41] have
been made to tailor transformers [49] for this task on ac-
count of their ability to exploit long-range information.
Though these aforementioned transformer approaches have
shown promising results in underwater applications, they
are mainly centered on spatial domains. However, the un-
derwater image acquisition taps into both the frequency
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and spatial domains, extracting valuable insights. The
former (frequency) domain analysis uncovers fine details
[50] (high-frequency components) and overarching patterns
(low-frequency components), while the latter domain fo-
cuses on pixel values and positions for scene understand-
ing. Thus, integrating both domains enhances visibility,
color accuracy, and contrast, enabling effective image en-
hancement in challenging aquatic conditions. Acknowledg-
ing this, we introduce a streamlined architecture in Multi-
Domain for enhancing the underwater images.

In this work, we propose a novel transformer-based net-
work, Spectroformer for underwater image enhancement
that leverages the intrinsic underwater image degradation
factors of transmission and atmospheric light. This includes
localized transmission (pixel-specific) and globally consis-
tent ambient light. The inclusion of frequency-domain char-
acteristics further enables the pixel positions to encapsulate
the overall image properties in the spatial domain. In or-
der to further bridge the gap between spatial and frequency-
domains, capturing complex details and comprehensive fea-
tures, respectively, we design a Multi-Domain Query Cas-
caded Attention (MQCA) mechanism. Our Multi-Domain
Query Cascaded Transformer Network, guided by the in-
novative MQCA mechanism, seamlessly combines spatial
and frequency-domain information to significantly enhance
the underwater image quality. To the best of the authors's
knowledge, this is the first effort that focuses on a multi-
domain query cascaded attention technique in a trans-
former for underwater image enhancement.

Additionally, in order to reinforce the proposed mod-
els's attention to the crucial color channels, we introduced
a Spatio-Spectro Fusion-Based Attention Block by integrat-
ing both domains. It basically replaces the direct skip con-
nections and transmits non-redundant attention-enhanced
features from the encoder to the corresponding decoder.
Further, we observe that the pixel shuffling technique re-
arranges pixels to increase spatial resolution [46], which
improves visual clarity and detail. In contrast, frequency-
domain upsampling draws out small features from vari-
ous frequencies, to improve the overall quality of the im-
age [57]. To boost the merits of upsampling from individual
domains, we propose a Hybrid Fourier-Spatial Upsampling
Block. It effectively mixes Fourier and spatial upsampling
techniques to significantly enhance the feature clarity. In
summary, the main contributions of our work are:

• We propose Spectroformer, a Multi-Domain Query
Cascaded Transformer network for underwater image
enhancement.

• We propose a Multi-Domain Query Cascaded Atten-
tion mechanism that integrates localized transmission
features and global illumination features.

• A Spatio-Spectro Fusion-Based Attention Block is
proposed to transmit attention-enhanced features from

the encoder to the corresponding decoder, effectively
boosting performance and feature enhancement.

• A Hybrid Fourier-Spatial Upsampling Block is intro-
duced that uniquely combines Fourier and spatial up-
sampling techniques to effectively enhance feature res-
olution.

The ablation study is done on different configurations of
the proposed approach. The effectiveness of the proposed
method has been verified through various experiments con-
ducted on both synthetic and real-world images for under-
water image enhancement. Also, the applicability of the
proposed method is verified for depth-estimation tasks.

2. Related Work
2.1. Underwater Image Enhancement

Underwater Image Enhancement (UIE) is an indispens-
able pre-processing step for high-level computer vision
tasks such as object detection, recognition, and track-
ing. The existing UIE methods can be broadly cate-
gorized into four groups: hardware-dependent, physical
model-dependent, non-physical model-dependent, and deep
learning-dependent methods.

Hardware-dependent Methods: Prior underwater image
enhancement efforts have utilized techniques like special-
ized hardware, stereo vision, and polarization filters [44,
47]. However, these methods have drawbacks: hardware-
based ones are costly and complex, polarizers have mov-
ing parts causing image acquisition issues, and underwater
conditions challenge stereo approaches. Methods relying
on multiple images are unsuitable for real-time use [10]. In
contrast, single-image enhancement stands out for challeng-
ing underwater scenes.

Physical Model-dependent Methods: Several studies
have concentrated on enhancing underwater images using
the image formation model. Yang et al. [53] introduced
a modified dark channel prior algorithm, while Chiang et
al. [7] combined it with a wavelength-dependent compen-
sation method. Another approach, the Underwater Dark
Channel Prior (UDCP) [10], addressed red channel unre-
liability. Liu and Chau [33] minimized costs to enhance
contrast based on the dark channel, and Peng et al. [39] im-
proved underwater images using light absorption insights.
Additionally, Peng et al. [38] proposed a Generalized Dark
Channel Prior (GDCP) incorporating adaptive color correc-
tion for image restoration.

Non-Physical Model-dependent Methods: These meth-
ods aim to enhance visual quality by adjusting the pixel
values of an image. Iqbal et al. [19] expanded the pixel
range in RGB and HSV color spaces to enhance contrast
and saturation in underwater images. Ancuti et al. [3]
introduced an enhancement technique blending contrast-
enhanced and color-corrected images using a multi-scale
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fusion approach. Ghani and Isa [15], [14] refined the ap-
proach of Iqbal et al. [19] by shaping the stretching pro-
cess following the Rayleigh distribution to mitigate over-
and under-enhancement. Fu et al. [13] proposed a retinex-
based method for underwater image enhancement involving
color correction, layer decomposition, and enhancement.

Deep Learning-dependent Methods: The rapid progress
in deep learning has significantly accelerated the develop-
ment and performance of computer vision tasks. Li et al.
[25] proposed UWCNN, an end-to-end deep network de-
signed to tackle the underwater image enhancement prob-
lem across various underwater images. In [48], Pritish et al.
improved underwater images by utilizing adversarial learn-
ing of their content features. In a recent development, Li et
al. [26] introduced WaterNet, a gated fusion network that
employs gamma-corrected, contrast-enhanced, and white-
balanced images as inputs to enhance underwater images.
Jiang et al. [20] introduced a target-oriented perceptual ad-
versarial network featuring an adaptive fusion of latent fea-
tures to counter the degradation of underwater images. Li et
al. [30] introduced a WaterGAN that generates underwater-
style images from images taken above water and depth
maps through an unsupervised process to mitigate the re-
quirement for paired underwater training data. The result-
ing dataset is then utilized to train the WaterGAN. Yang et
al. [54] introduced a conditional generative adversarial net-
work (cGAN) to enhance the visual quality of underwater
images.

2.2. Transformers in Computer Vision Applications
Due to the Transformer's capacity to capture global con-

texts and its notable advancements in various high-level vi-
sion tasks such as image classification, semantic segmen-
tation, and object detection, it has been extended to ad-
dress image restoration tasks. Zamir et al. introduced
an efficient transformer network, as outlined in [55], suit-
able for restoration tasks, including image deraining, de-
noising, and deblurring. Peng et al. [36] introduced a U-
shaped transformer for enhancing underwater images, in-
corporating channel-wise and spatial-wise feature fusion
modules within the network. In contrast to existing ap-
proaches, [23] introduced an efficient Transformer-based
method for high-quality image deblurring that leverages
frequency-domain characteristics to simplify scaled dot-
product attention, avoiding complex matrix multiplication.

3. Proposed Method
Our main goal is to combine the insights from both

frequency and spatial domains for revealing fine details
[22,50] and patterns in the degraded underwater images. To
alleviate the color distortion and contrast decline, we incor-
porate several key designs in our proposed network. We first
present the holistic pipeline of Spectroformer as depicted

in Figure 2. Thereafter, we provide a detailed overview
of the proposed components: Multi-Domain Query Cas-
caded Transformer, Spatio-Spectro Fusion-Based Attention
Block, and Hybrid Fourier-Spatial Upsampling.
Overall Pipeline: Given a degraded image (I), Spec-
troformer perform first applies a convolution, resulting
in shallow features denoted as Fo shown in Figure 2.
Next, these shallow features are processed through a se-
ries of Multi-Domain Query Cascaded Transformer Blocks
(MQCT), each incorporating the innovative Multi-Domain
Query Cascaded Attention mechanism. The features ob-
tained from the initial MQCT stage are further refined using
the proposed Spatio-Spectro Fusion-Based Attention Block,
which is strategically integrated into skip connections. On
the decoder side, we employ a Hybrid Fourier-Spatial Up-
sampling Block to effectively enhance feature resolution.
Finally, a convolution layer is applied to the resulting deep
features, labeled as Fd, to obtain the final output. This entire
process culminates in the generation of an enhanced output
image (O).

3.1. Multi-Domain Query Cascaded Transformer

Transformers are adept in modelling the global con-
texts by computing the scaled dot product attention between
queries and keys. However, we observe that as the degraded
underwater images usually contain blur, color, and contrast
distortions, evaluating the scaled dot-product attention only
in the spatial domain does not effectively exploit the global
contents, resulting in unwanted artifacts. In light of this,
we propose a novel Multi-Domain Query Cascaded Trans-
former Block (see Figure 2) where the queries are processed
in the frequency-domain and keys in the spatial domain to
generate a detailed and informative attention map.

Within the transformer block, the process initiates with
the normalized tensor X ∈ RH′×W ′×C′

, which is directed
to the proposed Multi-Domain Query Cascaded Attention
mechanism (MQCA) as depicted in Figure 2. In the MQCA
mechanism, the generation of the final attentive feature map
occurs through two stages. In the first stage, key (K1), query
(Q1), and value (V1) are derived by applying 1 × 1 con-
volutions followed by 3 × 3 depth-wise convolutions. In a
similar fashion, for the second stage, the key (K2) and value
(V2) are obtained from the attentive feature of the first stage.
However, the query (Q2) is a frequency-domain processed
query (Q2) generated through the frequency-domain Fea-
ture Processor (FDFP) as shown in Figure 2. To generate
the attentive feature at each stage, we follow the approach
introduced in the Restormer model [56].

Q1 = Φ3(ψ1(X)); K1 = Φ3(ψ1(X)); V1 = Φ3(ψ1(X))
(1)

X’ = ψ1 (Attention (Q1,K1,V1)) (2)
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Figure 2. Overview of the proposed network (Spectroformer) for underwater image enhancement. The network consists of Multi-
Domain Query Cascaded Transformer, Spatio-Spectro Fusion-Based Attention Block, and Hybrid Fourier-Spatial Upsampling
Block. Multi-Domain Query Cascaded Transformer is proposed to tackle issues with color distortion and contrast reduction and seamlessly
combines spatial and frequency-domain information. Spatio-Spectro Fusion-Based Attention Block is proposed to transmit attention-
enhanced features from the encoder to the corresponding decoder. The Hybrid Fourier-Spatial Upsampling Block is proposed to uniquely
combine Fourier and spatial upsampling techniques to effectively enhance feature resolution.

Q2 = FDFP (X)); K2 = Φ3(ψ1(X’)); V2 = Φ3(ψ1(X’))
(3)

Y = ψ1 (Attention (Q2,K2,V2)) (4)

Attention (Qi,Ki,Vi) = Vi · Softmax
(

Qi · Ki

α

)
(5)

Here, X and Y represent the input and output feature
maps of the MQCA. Φm(·) denotes a depth-wise convo-
lution operator with a kernel size of (m ×m) for channel-
wise spatial context, and ψm(·) denotes a convolution op-
erator with a kernel size of (m ×m) to capture pixel-wise
cross-channel context, where m can take values from the
set {1, 2, 3}. Notably, the convolution layers within the net-
work do not have biases. Matrices Q1,2 ∈ RH′W ′×C′

,
K1,2 ∈ RC′×H′W ′

, and V1,2 ∈ RH′W ′×C′
are ac-

quired after reshaping tensors from their original dimen-
sions RH′×W ′×C′

. The parameter α can be learned to mod-
ulate the dot product of Q1,2 and V1,2 before the application
of the softmax function. This scaling factor enables control
over the magnitude of the dot product, influencing the at-
tention strength.

3.2. Spatio-Spectro Fusion-Based Attention Block
Typically, skip connections are employed to facilitate the

reconstruction process by transferring encoder features to
the corresponding decoder features [43]. However, the di-
rect propagation of these features can sometimes lead to
the transmission of redundant information. By merging in-
sights from both the frequency and spatial domains, where

Figure 3. Overview of the proposed Spatio-Spectro Fusion-Based
Attention Block. The encoder feature (X4−i) is first passed
through the block to generate an attentive feature that captures the
relevant information. It is then concatenated with the correspond-
ing decoder feature (Zi). Lastly, a 1×1 convolution is applied to
compress the channel dimension by half, which helps to refine and
consolidate the combined information before further processing.

the former delves into revealing fine details, and the latter
focuses on the interpretation of the pixel values, underwater
image enhancement can benefit from the exploitation of the
non-redundant features. Hence, to address the shortcom-
ings of direct skip connections, we introduce the concept of
“Spatio-Spectro Fusion-Based Attention Block” as vividly
depicted in Figure 3. This novel block bridges the gap be-
tween the encoder and decoder by transmitting attentive fea-
tures enhanced with spatio-spectral fusion mechanisms. It
serves as an alternative to the traditional direct connections,
contributing to improved performance by generating more
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enhanced features, Z’i as:

Z’i = ψ1(⟨Ω(X4−i)⊗ σ(ωm(GAP (Ω(X4−i)))),Zi⟩)
(6)

where, Xi are the input features of dimension H
2i−1 × W

2i−1 ×
2i−1C, i ∈ (1, 2, 3), ψ1(·) denotes a convolution operator
with a kernel size of 1 × 1,< · > represents a concatenation
operator, and Ω represents the function of spatio-spectro fu-
sion block (see SSFB in Figure 3). Here, ωm is a 1D convo-
lution operator with adaptive kernel size (see AKC in Fig-
ure 3). The proposed SSFB block concurrently processes
the spatial and spectral information for each encoder layer.
To do this, the input features Xi are processed as:

ψ1

〈 ψP
1

(
DCP

3 (Xi)
)
+ ψ1(Xi)

IFFT
(
ψG
1 (ψ1(FFT (Xi)

)
+ ψ1(Xi)

〉 (7)

where, ψP
1 andDCP

3 are 1×1 convolution and 3×3 depth-
wise separable convolution → PReLu activation, respec-
tively. ψG

1 is 1 × 1 convolution → GeLu activation (see
SSFB Figure 3).

Further, in traditional CNNs, the kernel size is fixed and
does not change during the training process. This means
that some features may be over-smoothed (due to large ker-
nel size) or under-smoothed (due to small kernel size) by the
fixed kernel size [2], resulting in loss of important informa-
tion and hence reduced performance. To circumvent this is-
sue, SSFB attention block adaptively selects the kernel size
based on the number of input feature channels. It does this
by applying a learnable 1D convolution layer to the encoder
features, which is then used to weigh the features at each
channel. This allows the network to learn which kernel size
is best suited to capture the features in each channel of the
input. The adaptive kernel size k is determined by:

k = α (C ′) =

∣∣∣∣ log2(C ′)

b
+
a

b

∣∣∣∣
odd

(8)

where, C ′ = 2i−1C is the number of channels after GAP,
|x|odd indicates the nearest odd number of x. In this work,
we set a and b to 1 and 2, respectively.

3.3. Hybrid Fourier-Spatial Upsampling
The essence of upsampling is to retrieve the high-

frequency channel information in the image. The exist-
ing popular upsampling operations (e.g., transposed con-
volutions, un-pooling, interpolation) typically operate in the
spatial domain and the current works [6,34] seldom exploits
the potency of up-sampling in the frequency-domain. Since
these spatial upsamplers are highly reliant on local pixel in-
teractions [57], they may be unsuitable for exploring global
dependency for the task of UIE. Nevertheless, frequency-
domain features may help in the reconstruction of miss-
ing global details in the degraded image, and can substan-
tially improve the reconstruction performance. Taking this

into consideration, we design a “Hybrid Fourier-Spatial Up-
sampling Block” as shown in Figure 2 that intelligently
combines Fourier (Deep Fourier Upsampling) and spatial
up-sampling (Pixel-shuffle) techniques to significantly en-
hance the feature clarity.

3.4. Training Losses

To train our proposed architecture, we have incorporated
the following losses as depicted in the equation below:

LT = λ1LC + λ2LG + λ3LM + λ4LP (9)

where, λ1,2,3,4 ∈ {0.03, 0.02, 0.01, 0.025} weighting
factors. The training involved a total loss function LT

comprising, Charbonnier loss (LC) [5], Gradient loss (LG)
[42], Multiscale Structural Similarity Index (MS-SSIM)
loss (LM ) [51], and Perceptual loss (LP ) [21]. This com-
bined loss function effectively optimized our model, cap-
turing diverse image attributes and producing high-quality
output images. More details about loss functions are given
in the supplementary material.

4. Experimental Discussion
This section covers datasets, training specifics, compara-

tive analysis, and an ablation study of the proposed network.

4.1. Datasets

To conduct a comparative analysis, we have consid-
ered synthetic Underwater Image Enhancement Benchmark
(UIEB) [26] and real-world underwater U45 [29], UCCS
[32], SQUID [4] datasets. The training set is composed of
randomly selected 800 image pairs, while the remaining 90
images are considered for testing purposes. U45 comprises
45 real-world images that showcase characteristics such as
color casts, low contrast, and the degradation effects resem-
bling haze in underwater scenarios. The UCCS dataset [32]
comprises 300 genuine underwater images, providing a di-
verse range of marine organisms and environments for anal-
ysis. The SQUID dataset comprises 57 sets of stereo pairs
captured at various locations within Israel.

4.2. Training Details

For the generation of images in our training set, we
employed data augmentation methods including horizon-
tal and vertical flipping, noise addition, and contrast varia-
tion. Specifically, we used 4800 image pairs from the UIEB
dataset for training. Testing was performed using 90 images
from UIEB. All input images were resized to dimensions of
256 × 256 pixels for consistency. During training, we uti-
lized the ADAM optimizer with an initial learning rate of
3×10−4, adjusting it via the cosine annealing strategy. Our
network was implemented using PyTorch and trained on an
NVIDIA GeForce RTX 2080 GPU.
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Figure 4. Qualitative comparison of the proposed method (Ours) with existing state-of-the-art methods (UIBLA [39], RGHS [18], Water-
Net [26], CLUIE-Net [31], U-shape [37], TWIN [33]) for underwater image enhancement on UIEB dataset.

Figure 5. Qualitative comparison of the proposed method (Ours) with existing state-of-the-art methods (UIBLA [39], RGHS [18], Water-
Net [26], CLUIE-Net [31], U-shape [37], TWIN [33]) for underwater image enhancement on real-world UCCS, U45, and SQUID datasets.

4.3. Analysis on Synthetic Datasets

The proposed method is quantitatively compared against
existing state-of-the-art techniques, using metrics such as
PSNR, SSIM, and UIQM for evaluation. Quantitative re-
sults for the most widely used UIEB dataset are in Table 1.
Qualitative results for UIEB are shown in Figure 4 The pro-
posed method demonstrates competitive performance com-
pared to the state-of-the-art methods.

4.4. Analysis on Real-world Dataset

To assess the effectiveness of our proposed approach
in real-world scenarios, we present results derived from
the U45 dataset. Our quantitative analysis covers vari-

ous metrics, including UIQM (Underwater Image Qual-
ity Measure), UISM (Underwater Image Sharpness Mea-
sure), NIQE (Naturalness Image Quality Evaluator), and
BRISQUE (Blind/Referenceless Image Spatial Quality
Evaluator). Summarized results are available in Table 3.
Furthermore, we provide qualitative insights into the U45,
UCCS, and SQUID datasets via Figure 5. These findings
underscore the significant enhancement in color balance and
visibility within the enhanced images, attributed to the inno-
vative modules introduced in our proposed method. Addi-
tional qualitative outcomes are provided in the supplemen-
tary material.
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Table 1. Quantitative comparison of the proposed method (Ours)
and existing state-of-the-art methods on the UIEB dataset for
underwater image enhancement (↑: higher is better, bold and
underline indicate best and second best values respectively).

Method PSNR ↑ SSIM ↑ UIQM ↑
UDCP [9] 13.81 0.692 1.825
UIBLA [39] 15.78 0.731 2.014
RGHS [18] 14.57 0.791 2.410
WaterNet [26] 19.81 0.864 2.818
CLUIE-Net [31] 20.37 0.890 2.674
U-shape [37] 22.91 0.910 2.725
TWIN [33] 23.72 0.830 3.024
Ours 24.96 0.917 3.075

Table 2. Quantitative comparison of the proposed method and ex-
isting state-of-the-art methods on the real-world U45 dataset for
underwater image enhancement (↑ - higher is better, ↓ - lower is
better).

Method UIQM ↑ UISM ↑ NIQE ↓ BRISQUE ↓
UIBLA [39] 1.710 4.012 4.2263 20.6737
RGHS [18] 2.506 5.558 3.8727 18.5190
WaterNet [26] 3.091 6.187 4.5966 21.1563
CLUIE-Net [31] 2.890 5.988 3.8743 20.6126
U-shape [37] 2.923 5.567 4.3098 21.5656
TWIN [33] 3.135 6.698 3.9929 20.0891
Ours 3.243 7.354 3.8420 19.9573

Table 3. Quantitative comparison of the proposed method and
existing state-of-the-art methods on the real-world UCCS dataset
[29] for underwater image enhancement (↑ - higher is better, ↓ -
lower is better).

Method UIQM ↑ UISM ↑ NIQE ↓ BRISQUE ↓
UIBLA [39] 2.555 5.939 3.927 25.455
RGHS [18] 2.506 5.558 4.209 26.360
Water-Net [26] 3.134 6.187 6.104 24.275
CLUIE-Net [31] 3.066 6.715 4.420 29.524
U-shape [37] 2.874 5.391 4.401 23.549
TWIN [33] 3.119 6.732 4.370 25.755
Ours 3.209 6.563 3.982 23.258

5. Ablation Study
To demonstrate the efficacy of the proposed components,

we undertake the subsequent ablation studies on the UIEB
dataset [26].

5.1. Effectiveness of the Multi-Domain Query Cas-
caded Attention in Transformer

Our Multi-Domain Query Cascaded Transformer Net-
work,” guided by the innovative “Multi-Domain Query Cas-
caded Attention” mechanism, adeptly merges information

Table 4. Quantitative results comparison of various network set-
tings and losses optimization. Note: B- Baseline, C- Multi-
Domain Query Cascaded Attention, D- Spatio-Spectro Fusion
Based Attention, E- Hybrid Fourier-Spatial Upsampling.

Network Setting PSNR SSIM
B 22.51 0.862
B+C 24.24 0.891
B+C+D 24.46 0.901
Ours (B+C+D+E) 24.96 0.917

from spatial and frequency-domains, leading to substantial
enhancements in underwater image quality. To substanti-
ate this claim, we conducted experiments with and without
the Multi-Domain Query Cascaded Attention mechanism
within the transformer. Quantitative validation from Table
4 and qualitative validation in Figure 6 reinforces our asser-
tion that the proposed Multi-Domain Query Cascaded At-
tention mechanism effectively addresses challenges related
to color distortion and contrast reduction, resulting in im-
proved quality of underwater images.

5.2. Effectiveness of the Spatio-Spectro Fusion-
Based Attention Block in feature propagation

The Spatio-Spectro Fusion-Based Attention Block fa-
cilitates the transmission of attention-enhanced features
from the encoder to the corresponding decoder, thereby en-
hancing performance and feature augmentation. To assess
this, we conducted experiments both with and without the
Spatio-Spectro Fusion-Based Attention Block in the pro-
posed network. Observing the results presented in Table
4 and Figure 6, we can validate that the inclusion of the
Spatio-Spectro Fusion-Based Attention Block leads to su-
perior performance.

5.3. Effectiveness of the Hybrid Fourier-Spatial Up-
sampling

Pixel shuffling enhances spatial resolution for clearer
visuals and details [46]. Frequency-domain upsampling
improves overall image quality by extracting fine features
across frequencies [57]. However, when used alone, they
may miss subtle fluctuations. Our “Hybrid Fourier-Spatial
Upsampling Block” combines both methods. Table 4 and
Figure 6 demonstrate that this hybrid approach results in
quality improvement. More ablation studies are given in
the supplementary material.

6. Application of the Proposed Method for
Depth-Estimation

We have seamlessly incorporated our approach with the
method proposed by [40], positioning it as a pre-processing
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Figure 6. Qualitative results comparison of various network settings and losses optimization. Note: I-Degraded, B- Baseline, C- Multi-
Domain Query Cascaded Attention, D- Spatio-Spectro Fusion Based Attention, E- Hybrid Fourier-Spatial Upsampling.

Figure 7. Applicability of the proposed and the existing underwater image restoration approaches (UDCP [9], UIBLA [39], RGHS [18],
Water-Net [26], CLUIE-Net [31], U-shape [37], TWIN [33]) for depth-estimation task (top row: degraded input and restored output by
respective methods; bottom row: the corresponding depth-map).

step to augment the accuracy of depth estimation. This in-
tegration has resulted in significant enhancements in preci-
sion, as illustrated in Figure 7. This adaptation to intricate
challenges in advanced computer vision validates the ver-
satility of our approach and its capacity to elevate differ-
ent aspects of the field. The amalgamation of restoration
and depth estimation effectively corroborates the potential
of our approach to driving advancements in computational
visual analysis.

7. Conclusion

In this paper, we proposed an underwater image en-
hancement model, Spectroformer. The network encom-
passes multiple components, including the Multi-Domain
Query Cascaded Transformer that integrates localized trans-
mission and global illumination features. Additionally, a
Spatio-Spectro Fusion-Based Attention Block is proposed
to transmit attention-enhanced features from the encoder to
the decoder. Moreover, a Hybrid Fourier-Spatial Upsam-
pling Block is introduced, combining Fourier and spatial
upsampling techniques to enhance feature resolution effec-
tively. Extensive analysis is conducted on both synthetic
and real-world datasets, supplemented by comprehensive
ablation studies, to validate the efficacy of the proposed
method for underwater image enhancement. Furthermore,
the versatility of the proposed approach is demonstrated
through its applicability to other widely used application,
depth estimation.
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