
Graph Neural Networks for End-to-End Information Extraction from
Handwritten Documents

Yessine Khanfir 1 Marwa Dhiaf 1,2,3 Emna Ghodhbani 1 Ahmed Cheikh Rouhou 1

Yousri Kessentini 2,3

1InstaDeep
2Digital Research Centre of Sfax, Tunisia

3SM@RTS: Laboratory of Signals, Systems, Artificial Intelligence and Networks
{y.khanfir, m.dhiaf, e.ghodhbani, a.cheikhrouhou}@instadeep.com

yousri.kessentini@crns.rnrt.tn

Abstract

Automating Information Extraction (IE) from handwrit-
ten documents is a challenging task due to the wide vari-
ety of handwriting styles, the presence of noise, and the
lack of labeled data. In this work, we propose an end-to-
end encoder-decoder model, that incorporates transformers
and Graph Convolutional Networks (GCN), to jointly per-
form Handwritten Text Recognition (HTR) and Named En-
tity Recognition (NER). The proposed architecture is mainly
composed of two parts: a Sparse Graph Transformer En-
coder (SGTE), to capture efficient representations of input
text images while controlling the propagation of informa-
tion through the model. The SGTE is followed by a trans-
former decoder enhanced with a GCN that combines the
outputs of the last SGTE layer and the Multi-Head Attention
(MHA) block to reinforce the alignment of visual features to
characters and Named Entity (NE) tags, resulting in more
robust learned representations. The proposed model shows
promising results and achieves state-of-the-art performance
on the IAM dataset, and in the ICDAR 2017 Information Ex-
traction competition using the Esposalles database.

1. Introduction
Paper documents exist in different forms and frequently

hold valuable information. Historical records may be used
to determine ethnic origins or even to glean important
historical information. Business and administrative docu-
ments, in turn, can be used to carry out statistical analyses.
However, the large volume of data makes manual transfor-
mation impractical. Therefore, the adoption of automated
Information Extraction (IE) systems is necessary to process
these documents.

In the literature, information extraction approaches from
document images are either based on a two-stage [17, 18]
or an end-to-end architecture [4, 5, 16]. A two-stage
approach transforms the document image into a textual
representation, and then, Natural Language Processing
(NLP) techniques are applied to parse the output text
and extract the named entity tags. On the other hand,
the end-to-end method, also known as the joint learning
approach, involves the simultaneous recognition of text and
Named Entity (NE) annotations, or the direct identification
of NEs on the image level without requiring an explicit
recognition step at the text level.

The advancements in NLP over the past decade, have
motivated many researchers to tackle IE tasks from scanned
documents using deep learning architectures, showing
higher performance compared to traditional methods.
Recurrent Neural Networks (RNN) have at some point
become the most successful in this context. In [17, 18],
authors have proposed a two-stage model based on a Long
Short-Term Memory (LSTM) architecture, to perform NER
on machine-printed and handwritten documents. Although
these LSTM-based approaches produced competitive
results, their performance depended on the quality of the
text recognition stage. In [5, 19], the authors proposed
an end-to-end model comprising a Convolutional Neural
Network (CNN) and a Bidirectional LSTM (BLSTM)
network, to jointly perform HTR and NE recognition on
handwritten document images avoiding the explicit tran-
scription step. However, using such recurrent architectures
increases the computational cost at the training stage, since
their sequential pipelines prevent parallelization.

With the rise of attention mechanism [1], attention-
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based models have taken over the field of NLP, and have
shown unprecedented capabilities in maximizing their per-
formance in context modeling. In [21] a combination of
an attention-based model with a BLSTM and a Conditional
Random Field (CRF) is introduced to perform NER on
handwritten text images. Despite outperforming previous
works, it still operated at the line-level, and requires an ex-
plicit HTR step, making it sensitive to transcription errors.

In [16] the authors present a transformer model per-
forming joint HTR and NER from historical handwritten
text images. The proposed model works at paragraph level,
surpassing the line segmentation problems, which allows
the model to exploit larger bi-dimensional contextual
information to identify the semantic NE tags.

These previously cited approaches are based on a se-
quential relational inductive bias, that consists in making
relational assumptions to produce a model able to make
correct predictions. Driven by this observation, authors
in [3] propose a method to perform Named Entity Recogni-
tion (NER) and relation prediction in semi structured docu-
ments with Graph Neural Networks (GNN). Their approach
demonstrated a good generalization ability, but still de-
pended on a third-party text recognition tool.

Some works have explored the application of GNNs in
the context of document understanding, including table
detection [14], table structure recognition [12] and visual
question answering [11]. Nevertheless, to the best of
our knowledge, no research applied GNNs to propose an
end-to-end information extraction model from handwritten
documents, where named entities are directly identified on
image level, without the need of an explicit recognition step.

Motivated by the capacity of GNNs in understanding
the semantic correlations between elements in the same in-
put, thanks to the flexibility that graph structures offer, and
the way a GNN represents each element by the context it
belongs to, we propose in this work an encoder-decoder
model, that combines the advantages of transformers and
Graph Convolutional Networks (GCN), for an efficient,
end-to-end NER, with improved context modeling capabil-
ities. The proposed model jointly performs text and named
entity recognition at paragraph-level, allowing it to avoid
unrecoverable early errors due to line segmentation, and
to exploit larger contextual information to identify the se-
mantic relations between the named entities. Our approach
achieves state-of-the-art performance on the IAM database
manually annotated with NE tags and in the ICDAR 2017
IEHHR competition using the Esposalles database. Our
contributions can be stated as follows:

• Sparse Graph Transformer Encoder (SGTE): We pro-
pose a variant of the Graph Transformer [7] to encode
input sequences of visual features, where we leverage

graph structures to flexibly define a dynamic scope of
attention, that changes according to the position of the
indexed feature vector and consequently reduce the
computational cost of the encoding step.

• Cross-GCN-based Decoder: We propose a cross graph
convolutional network (Cross-GCN) to reinforce
the alignment of visual features to characters and
NE tags. The Cross-GCN operates on cross graphs
that combine the outputs of the last SGTE layer and
the Multi-Head Attention (MHA) block, resulting
in a significant improvement in representation learning

• We achieve new state-of-the-art performance in single-
stage HTR-NER on two benchmark datasets.

The rest of this paper is organized as follows. Section 2
provides a review of the related works. In section 3, we de-
scribe in detail our proposed model and contributions. Sec-
tion 4 provides experimental validation of our approach. Fi-
nally, section 5 concludes the work, highlighting its future
scope and benefits.

2. Related works

According to the literature, extracting Named Entities
(NE) from document images can be performed following
two approaches: the first one consists in applying text
recognition on text images, then recognizing NEs as a sep-
arate NLP application [6, 8, 9, 13, 21]. However, the sec-
ond approach combines handwritten text and named entity
recognition in a joint procedure. As our method aims to
jointly recognize text and named entities using graph neural
networks, we introduce a detailed study of the joint recog-
nition approaches, and GNN-based works for document un-
derstanding.

2.1. Joint Learning approaches for HTR and NE
Recognition

Performing information extraction using a joint learning
approach makes it more efficient, as it helps avoid unrecov-
erable early transcription errors [4, 5, 16]. In this case, the
joint learning method simultaneously transcribes the text
image and extracts the entities in a single stage. A CNN
based model is proposed in [20] in order to extract seman-
tically meaningful entities from handwritten word images,
bypassing the recognition step. However, this method fails
to consider the context surrounding the word, which can
lead to incorrect predictions.

In [17], a CNN is combined with an LSTM network to
perform IE tasks directly on visual features, and avoid the
transcription step. The main drawback of this approach is
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that it requires a pre-processing step where the input docu-
ment is segmented into word images.

In [5,19], the authors proposed a CNN-BLSTM architec-
ture that was trained on line-level handwritten text images
to integrate a larger context. Still, in this work, the context
is limited to the line level, which affects the performance of
the extraction of semantic named entity tags. The authors
confirm that by integrating a curriculum learning strategy,
consisting in training the model first on text lines and then
on records, the model reaches a higher final prediction ac-
curacy.

To incorporate a larger context, the authors in [2]
propose an end-to-end model, performing handwriting
text detection, transcription, and named entity recognition
simultaneously at the page level by leveraging shared
features for these tasks. However, this approach requires
a manual annotation of word bounding boxes, which may
be very expensive in real-world applications. In addition,
the performance of the multitask model may be decreased
if one task is particularly challenging and unrelated to the
others.

The transformer architecture [22] came as a better alter-
native in context understanding, and learning robust repre-
sentations, as it mitigates the problems of LSTM models by
avoiding recursion in order to allow parallel computation,
and also to avoid the drops in performance that are due to
long range dependencies. In [16], a sequence-to-sequence
transformer architecture is proposed to jointly perform HTR
and NER from images of handwritten historical marriage
records. First, input images are passed through a CNN,
to extract visual features, then fed to the transformer en-
coder to compute hidden representations. The latter is trans-
lated by the decoder into a sequence of transcribed char-
acters and NE tags. The authors show that the proposed
transformer model outperforms state-of-the-art approaches
on Esposalles dataset. Although self-attention mechanism
has been demonstrated to be a more reliable substitute to
RNNs, it learns the dependencies between all tokens with-
out regard to their distance, and does not offer the option to
define the scope of attention in a flexible way. For this aim,
we believe that combining a transformer with a GNN can
help the model capture the inherent structure in the given
graph and learn good representations for generating the tar-
get transcription and NE tags.

2.2. Graph Neural Network for Document Under-
standing

Graph structures can be used to alleviate self-attention’s
rigidity in defining a model’s information-sharing logic.
In fact, graph neural networks have become ubiquitous
in various fields that deal with graph data, where the
topological structure of the input is highly relevant. In [14],

a graph-based approach was introduced to detect tables in
document images. The proposed model is trained to detect
tables in different types of business documents, predicting
relationships between table elements. Instead of using the
recognized text, they make use of the position, context,
and content type. Carbonell et al. [3] tackled information
extraction from semi structured business documents (i.e.
forms, invoices, ID documents, etc.) using a GNN-based
approach. Each input document is turned into a graph,
where each node is a word connected to its K nearest
neighbors (KNN) where K is a hyperparameter. Words
and their bounding boxes are extracted using a third-party
Optical Character Recognition (OCR) system. These words
were used to compute distances between word pairs in
order to determine each element’s neighborhood. GNNs
are then used for word grouping, entity labeling and entity
linking. In both previous works [3, 14], a prior stage of
OCR was necessary in order to solicit graph structures to
represent and encode document images while preserving
their topological structures.

Previous works in the literature have demonstrated the
ability of deep neural network architectures to model con-
textual information, in order to perform IE tasks on docu-
ment images. In addition, recent studies have shown that
GNNs present a robust alternative in modeling the semantic
relationships within graph structures, and can be very useful
in representation learning. Also, it has been shown that the
transformer self-attention mechanism can indeed be gener-
alized to learn graph representations thanks to the Graph
Transformer [7], offering the flexibility to control the scope
of information propagation. This observation has motivated
us to explore the combination of transformer models and
GNNs to propose an end-to-end model that jointly performs
HTR and NER on paragraph level handwritten document
images.

3. Proposed Approach
In this work, we propose an end-to-end encoder-decoder

model, that combines transformers and Graph Convo-
lutional Networks, to jointly perform handwritten text
and named entity recognition. We simultaneously take
advantage of the self-attention mechanism and GNNs in
representation learning and relation extraction. Further-
more, our method benefits from the flexibility of graph
structures to control the scope of information propagation.

The proposed model is illustrated in Figure 1. We pre-
serve the encoder-decoder form, as it is suitable for our
sequence-to-sequence learning task. Input images are fed
into a pre-trained ResNet-50 [10] for feature extraction, fol-
lowed by a 2D-convolutional layer with a kernel size of 1×1
to match the number of features from the backbone network
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and the encoder input. For the encoding part, the SGTE is
used as described in section 3.1. The decoder of the tra-
ditional transformer model [22] includes a Masked MHA
(MMHA) block to model relationships within the ground
truth, and an MHA block responsible for the alignment of
the visual features to characters and NEs through the self-
attention mechanism. In our proposed model, we extend
this specific operation of alignment by introducing a Cross-
GCN in the decoder part, built from the output of the SGTE
and the decoder MHA block as presented in section 3.2.

3.1. Sparse Graph Transformer Encoder

For the encoding part, we adopt the generalization of
transformers to graph structures proposed in [7]. Knowing
that the Graph Transformer [7] operates on graphs, using it
as an encoder requires a prior graph construction step. Fig-
ure 2 provides a minimized illustration of how the initial
graph is constructed from feature maps relative to each in-
put document. To simplify the illustration, Figure 2 shows
a 4× 3 graph generated from a 4× 3 stack of feature maps
(F ). In practice, the feature extraction step yields 256 fea-
ture maps, each of size 8 × 32, so the real size of the (F )
is 8 × 32 × 256 that we use to create an initial graph of
8 × 32 nodes, each initially represented by a vector of size
256. Indeed, elements that share the same spatial position
in all feature maps are stacked and assigned as a node rep-
resentation in the initial graph.

In step (1) of Figure 1, to reduce the complexity of
fully-connected graphs, we build a sparse graph that cus-
tomizes the scope of attention of each element of the feature
maps. Our strategy is to select each node’s neighborhood
according to its original position in (F ). We categorize
visual features into two types: initially positioned in the
first or last line of (F ), and initially positioned in between.
Elements on the first line, are connected to all neighbors on
the same and the next line. Elements on the last line, are
connected to all neighbors on the same and the previous
line. The remaining feature vectors are connected to
the elements on the same, previous, and following line
(note that self-connections are also included). Edges are
only used to define the attention scope and connections
between nodes, thus it is unnecessary to attribute edge
representations. Representing the feature maps using sparse
graphs instead of sequential structures, allows controlling
the feature propagation process.

After the graph is built, it goes through the SGTE layers
to update the node representations over the attention heads.
For each layer l of the SGTE, the representation hl

i of the
ith node is updated as follows:

ĥl+1
i = Ol

h ∥Hk=1 (
∑
jϵNi

wk,l
ij V k,lhl

j), (1)

where,

wk,l
ij = softmaxj(

Qk,lhl
i ·Kk,lhl

j√
dk

), (2)

and Qk,l,Kk,l, V k,l ∈ Rdk∗d, Ol
h ∈ Rd∗d, k ∈ [1, H] de-

notes the number of attention heads, ∥ denotes concatena-
tion. Ni refers to the set of nodes directly connected with
edges to the ith node.

3.2. Cross-GCN-based Decoder

In the decoding step, first, the MMHA block models
the semantic relations between elements of the ground
truth sequence. The output of this operation is then fed
to the MHA block, to align input elements to the target
sequence. In this part, we explore the effect of reinforcing
the representation learning during the decoding step, with
a two layers GCN, as detailed in step (7) of Figure 1. The
goal is to jointly benefit from the attention mechanism,
and message-passing principles of graph convolutions, to
learn robust representations and align visual features to
characters and NE tags. To this end, as shown in step (6) of
Figure 1, we construct a directed graph of nodes emerging
from the output of the last SGTE layer (N1), and nodes
emerging from the output of the MHA block (N2). In order
not to cancel the masking effect of the MMHA block, N2

nodes are not connected to each other and are only linked
to all the nodes in N1.

The decoder’s initial graph is then fed to a two-layers
GCN, referred to as the Cross-GCN as it operates on nodes
emerging from different components. In this block, each
node coming from the MHA component will be repre-
sented, by the weighted sum over N1 nodes. For each layer
l of the Cross-GCN, the update of the representation hl

i of
the ith node is computed as follows:

ĥl+1
i = σ

w · hl
i +W ·

∑
jϵN1

hl
j√

N(i) +N(j)

 (3)

Where σ is a non-linearity, w is a weight coefficient
multiplied with the initial representation of the ith node
before aggregation, N1 denotes the set of nodes originating
from the last layer of the encoder, and W is a weight
matrix, N(i) and N(j) refer to the degrees of the ith, jth
nodes respectively, hl

j is the representation l of the jth node
and 1√

N(i)+N(j)

is added as a regularization term.

The representations learned by the Cross-GCN are then
combined with the output of the MHA. We apply a direct
sum between both signals for a more robust alignment of
the visual features to characters and NE tags.
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Figure 1. Overview of the proposed architecture: The backbone produces a stack of feature maps from the input image, that will be used
to construct the encoder’s initial graph (1), the initialization of the graph nodes and edges is illustrated in Figure 2. The graph is then fed to
the SGTE to output an updated representation of the feature vectors (2). The ground truth sequence goes into the MMHA block (3). The
updated representations of the visual features are stacked back in a sequential form while preserving their initial order (4), then fed as input
to the MHA block along with the output of the MMHA (5). The output of the MHA (N2) and the output of the last encoder layer (N1) are
used to construct the decoder initial graph (6), which will be fed to the Cross-GCN, to reinforce the alignment operation of visual features
to characters and NEs (7). Both signals emerging from the GCN and the MHA are combined with a direct sum, then passed to a Softmax
layer to perform the predictions.

Figure 2. Minimized illustration of the graph construction method:
The Backbone outputs, for each image, 256 superposed feature
maps, each of size 8 × 32. Feature vectors are retrieved from
the 3rd dimension of the collection of feature maps, to preserve
their original position in the image and their correspondence to
characters. Each feature vector becomes a node representation in
an undirected graph that includes self-connections

The SGTE and the Cross-GCN-based Decoder are
jointly trained and supervised with the categorical cross-
entropy loss computed based on the sequence predicted
by the Decoder and the target sequence. We denote

Ŷ = (ŷ1, ŷ2, ..., ŷT ) as the predicted sequence and Y =
(y1, y2, ..., yT ) as the target sequence, where T represents
the sequence length. The loss function L adopted to train
our model can be formulated as follows:

L
(
Ŷ , Y

)
= − 1

T

T∑
t=1

C∑
i=1

yt,ilog (pt,i) (4)

where,
pt = softmax(ŷt) (5)

Here C refers to the number of unique words in the vocab-
ulary. yt (yt,1, yt,2, ..., yt,C) denotes the one-hot encoded
vector where yt,i is equal to 1 if it corresponds to the true
class at step t, and 0 otherwise. pt,i corresponds to the pre-
dicted probability of the ith word in the vocabulary at step
t. pt (pt,1, pt,2, ..., pt,C) is obtained by applying a softmax
scaling to the model’s predicted logits over the vocabulary
ŷt.

4. Experiments
In this section, we conduct a series of experiments on

the Esposalles and IAM datasets. We first present an abla-
tion study to ascertain the contribution of each component
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within our model. Additionally, we provide a comparison of
the results obtained from our method with those from other
existing methods.

4.1. Datasets

Esposalles:

We experimented with a subset of the Esposalles database
[15], labeled for information extraction. It collects 125
handwritten pages, containing 1221 marriage records. Each
record is composed of several text lines giving information
on the husband, wife, and their parent’s names, occupa-
tions, locations, and civil states. We have used 872 records
for training, 96 records for validation, and 253 records for
the test. For the evaluation, two scenarios are proposed:
the basic track where only 4 named entities are considered
(name, surname, occupation, location). The complete track
is more challenging and comprises 26 named entities (hus-
band, wife, husband’s mother, wife’s father, etc.).

The manually annotated IAM dataset:

The IAM Database serves as a significant benchmark for
IE systems on handwritten documents. It consists of 13353
text lines and 115320 words spread across 1539 scanned
text pages. For our experiments on the IAM dataset, we
follow the evaluation process proposed by Tuselmann et al.
[21], using the traditional RWTH split of the IAM dataset,
which was manually annotated with NE labels in [21], to
avoid the errors caused by automatic taggers. The split
is partitioned into writer-independent training, validation
and test partitions composed respectively of 6161, 966, and
2915 lines. The used tag set comprises 6 categories: Loca-
tion, Time, Cardinal, Nationalities or religious or political
groupings (NORP), Person, and Organization.

4.2. Configuration and hyperparameters

The best performance is achieved using an architecture
taking as input an image of size 256×1024 for the Espos-
alles dataset, and 64×1024 at line level for the IAM dataset.
The architecture consists of a RestNet-50 as a backbone and
a single attention head in the encoding part. The decoder
uses one attention head and two GCN layers. We note that
we have conducted several experiments to optimize the size
of the model (number of layers and heads), and we found
that given the size of the training set of Esposalles dataset,
using a larger model size decreases the performance of the
model as confirmed in [16]. We use Adam optimizer and
the optimal learning rate is set to 0.0001.

4.3. Metrics

A first round of experiments is conducted on the
Esposalles dataset, to perform ablation studies and to
compare with previous approaches that were submitted

Encoder Decoder Complete score

Full Graph Transformer Baseline Decoder 95.12%
SGTE Baseline Decoder 95.05%
Baseline Encoder GCN-based Decoder 92.97%
Ours: SGTE GCN-based Decoder 96.24%
Baseline Encoder Baseline Decoder 95.54%

Table 1. Comparison of different model architectures on the Es-
posalles dataset

in the ICDAR 2017 IEHHR competition. For the evalu-
ation on the Esposalles dataset, we use the competition
evaluation score computed as follows: For each NE, if
the tag is predicted correctly, then the score is given by:
1 − CER where CER is the relative Character Error
Rate for that word, else the score is 0. Note that the
provided evaluation method computes a complete and
basic score, for the complete and basic tasks respectively.
More details about the metrics can be found in [8]. In
the second round of experiments, to fairly compare our
system to the state-of-the-art approaches performing NER
on the IAM database, we evaluate our model using the
same metric adopted in [21] based on the F1-score given by:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(6)

4.4. Results

We start by an ablation study to validate the effective-
ness of the SGTE and the Cross-GCN-based decoder. We
also investigate the effect of graph sparsity on the model’s
performance. We then compare our results to state-of-the-
art systems on both datasets.

Ablation study

The goal of this section is to validate the effectiveness of
the main components of our approach: the SGTE and the
Cross-GCN-based decoder. We compare the performance
of the proposed model (row 4 of Table 1) to the baseline
transformer [16] (row 5 of Table 1), and to two hybrid
encoder-decoder architectures where 1) the SGTE is fol-
lowed by a baseline transformer decoder (row 2 of Table
1), and 2) the Cross-GCN-based decoder is preceded by a
baseline transformer encoder (row 3 of Table 1).

Looking at Table 1, we notice that the combination
of the sparse graph transformer in the encoder and the
Cross-GCN in the decoder achieves the best performance
across all tested architectures, with an improvement of
0.7% compared to the baseline transformer [16]. This
proves that with this setup, graph convolutions are in fact
beneficial in representation learning, and combining their
output with that of the MHA, produces a better alignment
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Figure 3. Joint HTR-NER inference example on a paragraph sample from Esposalles dataset

Figure 4. Joint HTR-NER inference example on a line sample from IAM dataset

of visual features to characters and NEs, thanks to the
effectiveness of message passing iterations in semantic
modeling.

However, preserving the transformer encoder and incor-
porating the Cross-GCN in the decoder, leads to a drop
of 2.57% in the complete score. This indicates that when
full-attention is employed to encode input visual features,
the addition of graph convolutions becomes an excessive
learning step that leads to the early overfitting of the model.
Besides, replacing the transformer encoder with the Graph
Transformer, and using a fully-connected graph, instead of
a sparse graph, results in a drop of 0.42% compared to the
baseline transformer. We believe that both encoders are
theoretically equivalent, thus we assume this slight differ-
ence to be due to the use of different implementation frame-
works. Furthermore, we observe that the absolute gap be-
tween the scores reached in the complete and basic tasks
(column 4 of Table 2) varies between 0.02% and 26.45%
across the methods, suggesting that some approaches are
more sensitive to the length of the inputted context, and the
number of classes among which the model has to predict.
Our method scores the lowest gap, with a higher perfor-
mance on the complete task, meaning that in our case, the
added classes serve as additional information that the model
was able to use to its advantage to make more precise pre-
dictions.

Comparison with state-of-the-art approaches

We compare our proposed approach with other methods that
participated in the IEHHR, with the same experimental pro-
tocol used in the competition. As reported in table 2, our
model achieves the best performance in the complete track,
which is the most challenging and comprises 26 named en-
tities. We notice an improvement of 4.27% compared to
the best system. Against the baseline transformer [16], we
notice improvements of 3.14% and 0.7% at line and block
levels respectively. We note that for the basic track, which is
an easier NER task, our model and the baseline transformer
have approximately equal performance. This proves that the
combination of transformer and GNNs has a more signifi-
cant impact for information extraction tasks with increased
complexity.

Besides testing our approach on historical handwritten
records, we also want to investigate its versatility on another
dataset including different NE tags. Hence, we evaluate our
model on the IAM dataset, following the same evaluation
protocol used by Tuselmann et al. [21]. As presented in Ta-
ble 3, our model achieves new state-of-the-art performance,
with an improvement of 5.6% in terms of F1-score com-
pared to the two-stage NER approach presented in [21]. We
also compare our results to the performance of the baseline
transformer [16], and an improvement of 3.1% in terms of
F1-score is achieved, which confirms the capacity of our
model to successfully solve the linking of entities thanks to
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Figure 5. Comparing the inference quality of the baseline transformer and our GNN-based transformer on samples from IAM dataset

System Basic Complete Gap Level

Hitsz-ICRC-2∗ 94.16 91.97 2.19 Word
Baseline-CNN∗ 79.40 70.18 9.22 Word
CITLab-Argus-1∗ 89.53 63.08 26.45 Line
CITLab-Argus-2∗ 91.93 91.56 0.37 Line
CITLab-Argus-3∗ 91.61 91.17 0.44 Line
Carbonell et al. [4] 90.58 89.39 1.19 Line
HMM-MGGI∗ 80.28 63.11 17.17 Line
Transformer [16] 95.16 93.3 1.86 Line
Transformer [16] 96.25 95.54 0.71 Record
Ours 96.22 96.24 0.02 Record

∗ System mentioned in [8]

Table 2. Comparison with IEHHR Competition systems.

System Precision Recall F1-score

Toledo et al. [19] 45.3 28.8 34.0
Rowtula et al. [17] 58.8 41.3 47.4
HTR-NER∗ 77.3 65.9 70.7
HTR-D-NER∗ 78.6 73.0 75.4
Annotation-NER [21] 83.8 77.5 80.1
Transformer [16] 98.1 71.4 82.6
Ours 98.2 76.1 85.7

∗ System mentioned in [21]

Table 3. Results on the IAM dataset

the integration of GNNs.

4.5. Results analysis

This section presents a concrete application of our pro-
posed model on samples from the Esposalles and IAM
datasets. Figure 3 shows how the model jointly predicts a
sequence of characters and tags from an input paragraph of
the Esposalles dataset. Even though the handwriting style
is historical and barely human-readable, the model succeeds
in almost flawlessly recognizing the characters, and assign-
ing the correct categories to the words.

Figure 4 illustrates two examples of the model’s predic-
tions on samples from IAM dataset. It is shown that despite
reaching new state-of-the-art performance, the model’s

accuracy still varies with respect to the difficulty level of
the input, and that some flaws are noticed.

In order to examine the impact of substituting the trans-
former encoder with the SGTE, and incorporating graph
convolutions in the decoding step, we compare the perfor-
mance of our retained model to the standard transformer
model. In Figure 5, it is shown that using the combination
of the SGTE and Cross-GCN-based decoder, leads to less
transcription errors, and results in an enhanced context un-
derstanding capabilities. The presented examples demon-
strate that our model has successfully recognized NE tags
that were overlooked by the baseline transformer. Never-
theless, we notice the occurrence of a few errors, for exam-
ple, the model sometimes tends to annotate words starting
with upper-case characters even if they are not true named
entities.

5. Conclusion

In this paper, we introduced an end-to-end encoder-
decoder architecture, to take part in the contentious debate
comparing multi-stage versus single-stage NER from hand-
written documents. It achieves new state-of-the-art perfor-
mance on the Esposalles dataset and the manually anno-
tated IAM dataset. These results were achieved thanks to
two main contributions: in the first place, the combination
of two powerful representation learning components, GNNs
and attention mechanism, led to an improved adaptation of
textual to visual information. In the second place, the use
of a sparse version of the Graph Transformer as encoder, al-
lowed the definition of a dynamic attention scope, to avoid
unnecessary attention computations. Through this research,
we are proposing a widely applicable approach, that could
potentially be extended to other sequence-to-sequence ap-
plications. We believe that the combination of the Sparse
Graph Transformer Encoder with the Cross-GCN-based de-
coder, can be generalized to other domains, to offer an en-
hanced alignment of elements of the input to those of the
ground truth, regardless of the nature of the task or data.
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