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Abstract

Generative modeling has seen significant advancements
in recent years, especially in the realm of text-to-image syn-
thesis. Despite this progress, the medical field has yet to
fully leverage the capabilities of large-scale foundational
models for synthetic data generation. This paper introduces
a framework for text-conditional magnetic resonance (MR)
imaging generation, addressing the complexities associ-
ated with multi-modality considerations. The framework
comprises a pre-trained large language model, a diffusion-
based prompt-conditional image generation architecture,
and an additional denoising network for input structural bi-
nary masks. Experimental results demonstrate that the pro-
posed framework is capable of generating realistic, high-
resolution, and high-fidelity multi-modal MR images that
align with medical language text prompts. Further, the
study interprets the cross-attention maps of the generated
results based on text-conditional statements. The contri-
butions of this research lay a robust foundation for future
studies in text-conditional medical image generation and
hold significant promise for accelerating advancements in
medical imaging research.

1. Introduction

In recent years, generative modeling has made rapid
progress in the field of image synthesis. The latest method
based on diffusion models has solved the problems preva-
lent in generative adversarial networks (GANs) [3], such
as unstable learning, mode collapse, and gradient vanish-
ing, enabling the generation of more realistic images [23].
These developments prompted various derived models such
as denoising diffusion probabilistic models and score-based
models. Models learn the process of gradually transforming
data into noise and gradually removing this noise to return
to the original data. This incremental process yields a train-

ing dynamic where, in contrast to GANs, the loss function
tends to offer more stable gradients. In particular, diffu-
sion models are easy to accommodate conditional genera-
tion during the training process, allowing users to have more
detailed control over the image to be created. This control
ability can guide the model to generate images with specific
properties.

Practical methodologies show that controllable image
generation techniques empowers the production of images
that align with the intended tasks. The image manipula-
tion method of latent space through inversion, which was
first utilized in GAN-based models, has been extended and
applied to diffusion models [24]. Recent methodologies
involve manipulating local information in the image by
extracting or transforming specific information based on
words to serve as additional in-context guidance for the
model or injecting it into a transformer layer [7]. In partic-
ular, the cross-attention mechanism of the transformer re-
ports that multi head attention can associate a word with a
specific region of the generated image, reporting the scal-
ability of interpretability in large-scale text-to-image gen-
eration models. The controllability of these models estab-
lish the diffusion model as a large-scale basic generative
model and form the basis for reporting its potential for ex-
tended interpretability in large-scale text-image generative
models [19, 21, 22].

Along with these developments, the diversity of under-
lying models for data modalities has led to the emergence
of multi-modal learning methods. The foundational model
allows to composite images using a variety of data types,
including text, video, audio, depth, and thermal. In medical
imaging research, the use of diagnostic data containing di-
verse clinical information represents a promising direction,
especially for text-based medical image generation [35,37].
Pairing clinical diagnostic reports with medical images is
especially helpful in maximizing synergy between modali-
ties [14]. Clinical diagnostic reports facilitate the effective
explanation of medical images. Consequently, the exploita-
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Figure 1. Application results of the framework. Suggested framework allows to synthesis multi-modal medical images control via prompt
or structure mask guidance in diffusion models.

tion of multi-modal data, such as the integration of med-
ical images and diagnostic reports, has attracted consider-
able interest in the area of text-to-image generation [18,25].
Nonetheless, research on generating medical imagery, such
as computer tomography (CT) or magnetic resonance imag-
ing (MRI) scans from medical prompts is scant. Challenges
arise from the scarcity of matched diagnostic reports and
medical images, which are essential for training. Moreover,
the complexity of published reports, often containing a mix-
ture of diagnostic information incomprehensible to general
public, complicates their use as training data. Addition-
ally, processing this data requires significant computing re-
sources.

Building on these ideas, the present study introduces a
framework for generating MR images using text prompts
and structural masks as conditions. This framework com-
prises a pre-trained large language model, a diffusion-based
prompt-conditional image generation architecture, and an
additional induced noise removal network for input struc-
tural binary masks. Experimental results demonstrate the
framework’s ability to generate realistic, high-resolution,
and high-fidelity multi-modal MR images that align with
medical language text prompts. Additionally, the study
aims to interpret the generated results through pixel-level
cross-attention maps for attribution. This approach sepa-
rates medical imaging data into structure and style, trans-
forming relatively simple structural information into a guid-
ing structural mask while enabling the inclusion of detailed
texture information through text. The main contributions of
the study can be summarized as follows:

• A controllable text-to-MR image framework is intro-
duced, capable of generating medical images adapted
to diverse conditions.

• A strategy based on medical prompts and structural
mask for generating multi-modal MR images, confirm-
ing the ability to produce sequences of different modal-
ities.

• Analysis of activation areas through the visualization
of attention maps corresponding to text-conditional
statements in the synthesized results.

This study purpose the generation of a synthetic dataset,
specifically focusing on brain tumors, by leveraging medi-
cal images and corresponding clinical information. The aim
is to facilitate learning in the realm of text-conditional medi-
cal image generation—a field that has not yet seen extensive
research. Through this approach, the study establishes a
critical foundation for future research into text-driven med-
ical image generation.

2. Related Work
Diffusion-based Generative Models. The diffusion

probabilistic model, initially unveiled in [26], marked a
transformative moment in the field of image generation
techniques. Since its introduction, the architecture has un-
dergone significant enhancements, notably through pioneer-
ing training and sampling methodologies like the denois-
ing diffusion probabilistic model (DDPM) [9], the denois-
ing diffusion implicit model (DDIM) [27], and score-based
diffusion [28]. The U-net architecture serves as the foun-
dational neural network for these methods [5]. However,
the evaluation and optimization of these models in pixel
space come with inherent challenges, such as slow infer-
ence speeds and elevated computational costs. To address
these issues, the latent diffusion model (LDM) [22] was pro-
posed, inspired by the concept of latent images [6]. This
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methodology was later extended to include Stable Diffu-
sion, and ongoing research is delving into advanced sam-
pling strategies [17] as well as hierarchical approaches [10].

To augment the control over the image synthesis pro-
cess, a range of mechanisms have been introduced. Con-
temporary image diffusion models frequently incorporate
additional conditions, often employing text-to-image meth-
ods [2]. These methods typically encode text inputs into
latent vectors using pretrained language models like con-
trastive language-image pre-Training (CLIP) [20]. Alterna-
tive conditioning methods, such as edge masks, semantic
maps, and depth maps, are also in use [38]. Concurrently,
research is being conducted on the exploration and editing
of diffusion models, including techniques for model inver-
sion [24] and attention map manipulation [7]. These meth-
ods offer users an intuitive editing experience by allowing
them to alter both local and global image details through
simple text prompt modifications.

Multimodal training in Medical artificial intelli-
gence(AI).

As the need for medical artificial intelligence continues
to grow, acquiring high-quality medical data has become an
important area of research. This includes not only tradi-
tional diagnostic imaging, but also various data types such
as audio recordings, signal data, and text reports [1, 11, 34,
39]. The emergence of high-performance, large-scale text-
based models has sparked interest in leveraging diagnostic
reports, especially for machine learning applications. Pub-
licly available clinical report datasets, such as MIMIC [12],
often serve as the foundation for this research and are incor-
porated into studies of genomics [29] or multi-view imag-
ing [40]. These various forms of data are also increasingly
being used to generate synthetic data [32, 36].

However, there are challenges associated with develop-
ing models that can generate medical images from text.
These challenges include extensive data sets encompassing
imaging data and corresponding radiological reports, spe-
cialized skill sets required for accurate image annotation,
and strict regulations regarding data sharing. Additionally,
with publicly available datasets such as MIMIC, most stud-
ies are often limited to chest X-rays (CXRs) [11,30,34,40].
In particular, reports within these datasets are standardized
with repeated use of specific terminology and often use am-
biguous language that can apply to both normal and abnor-
mal findings, making it difficult to capture the essence of the
disease. To tackle these challenges, our approach involves
constructing a paired dataset of images and prompts, selec-
tively incorporating essential information specific to brain
MR images. We then synthesize multi-modal sequences
that are crucial for diagnosis. Our method employs multi-
ple guidance mechanisms for the synthesis process and op-
timizes the model without the need for constructing parallel
layers.

3. Methods
The proposed framework is designed to execute image

generation based on text prompts while incorporating struc-
tural instructions to ensure fidelity to given conditions and
realism of the generated output. The subsequent sections
provide a detailed analysis of this framework. The dis-
cussion begins with an introduction to the diffusion mod-
els in Section 3.1. This is followed by an exploration of
how structural guidance is applied to multi-modal MR im-
age generation in Section 3.2. Section 3.3 provides an
overview of the overall framework, and Section 3.4 de-
scribes the interpretation of the guidance conditions using
cross-attention.

3.1. Preliminaries

In a diffusion model, two distinct processes are at play:
(1) a forward process that incrementally introduces minor
Gaussian noise to the sample over a series of T steps, and (2)
a complementary backward process equipped with learn-
able parameters designed to restore the original input im-
ages by identifying and removing the added noise. This
study employs the LDM as its foundational framework to
demonstrate the capability of generating multi-modal med-
ical images with controllable features. The LDM integrates
a U-Net architecture for its denoising component, which is
structured into three main parts: an encoder, a middle block,
and a decoder. Each of these main parts contains tweleve
corresponding blocks. The implementation of skip connec-
tions enables the decoder to directly leverage features from
the encoder, thereby reducing information loss.

In the LDM, the cross-attention layers perform a dual
role. These layers are essential for capturing the semantic
information of the input text descriptions, and play a pivotal
role in aligning the visual content with the textual context at
the stage where noise are predicted. This process is facili-
tated by the cross-attention layers, which integrates the em-
beddings of visual and textual information corresponding to
each text token. Formally, let ϕ(zt) represent the incoming
noise features and ψ(p) denote the text token embeddings
generated by the language encoder. The query (Q), key (K),
and value (V) in the cross-attention mechanism can be for-
mulated as follows:

Q =Wq(ϕ(zt)),

K =Wk(ψ(p)),

V =Wv(ψ(p)),

(1)

where Wq , Wk, and Wv are linear projection matrices.

3.2. Adding Structural Guidance for Multi-Modal
generation

To incorporate structural guidance into the model, aux-
iliary neural networks are employed, with the weights for
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Figure 2. Overall pipeline of the suggested framework. (a) Model training involves inputs such as a medical image, a text prompt, and a
structural mask provided by an annotator. These elements are integrated in the reverse diffusion process of the U-Net for guidance. (b) For
multi-modal image synthesis, the model is capable of generating images based on the structural mask and text corresponding for each MR
modality.

the encoder and middle block copied from the LDM. This
approach allows for the integration of structural guidance
information during the decoding phase, thereby influenc-
ing the overall behavior of the neural network. In prac-
tical terms, the guidance network clones the parameters θ
from the primary U-Net stream, resulting in a copied set θc.
These cloned parameters can then be updated with a struc-
tural mask condition cm. The encoders and middle layers of
the replicated guidance networks are activated, allowing for
model parameter updates. Features extracted from the con-
volution blocks are then channeled into the decoder, which
includes a zero convolution z(·, ·) and a 1x1 convolution
layer initialized to zero. The input feature map I is updated
via the zero convolution as follows:

z(I, (W,B)) = B +
∑

I ·W, (2)

where W and B represent the weight and bias, respectively.
Among the various input conditions that the model re-

ceives, the convolution layer—predominantly influenced by
local information and structural patterns—is particularly
sensitive to the input binary mask. To prioritize global con-
text learning, a zero convolution is inserted before and after
θc. Gradient updates are selectively applied only to the first
middle block of θ, rather than to every block in the decoder.
To focus on global context learning, a zero convolution is
inserted before and after θc, with gradient updates applied
only to the first middle block of θ, rather than every block

of the decoder. The structure can be formulated as:

ycond = f(x, θ) + z(f(x, z(x, θz1), θc), θz2), (3)

where ycond returns the conditioned latent variable, serving
as the output of the denoising network.

3.3. Overall Framework

By enhancing the capabilities of the LDM, the proposed
framework is designed to facilitate the synthesis of multi-
modal medical images. Through the use of user-friendly
prompts, it is capable of generating images that capture the
specific modality and attributes required, while maintain-
ing a uniform organ structure. The framework integrates
CLIP for a pre-trained large language model along with a
diffusion-based, prompt-conditional image generation ar-
chitecture and a auto encoder (AE) [15]. Additionally,
the diffusion architecture incorporates a guidance denoising
network specifically for input structure binary masks.

In practical terms, the model is trained to progressively
denoise images for synthesis within the perceptual latent
space. The final objective L for the entire model is defined
as:

L = Ez0,t,ct,cm,ϵ∼N(0,1)

[
∥ϵ− ϵθ(zt, t, ct, cm)∥22

]
, (4)

where t is the time step, zt is the noisy image, ct is the text
condition, cm is the structure mask, and ϵθ is the training
network.
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During the sampling process, latent vectors are initial-
ized to random noise and fed a text prompt. These vectors
are then iteratively denoised using the U-Net and finally de-
coded into an image using the decoder of the AE. By fix-
ing the structural input conditions, random noise and the
model’s initial seed while adjusting the prompt conditions,
the model can generate a variety of conditional latent vari-
ables. This enables the creation of the sequence of multi-
modal images. The overall pipeline is illustrated in Figure
2.

3.4. Interpretation of guidance conditions using
cross attention

As previously outlined in Section 3.1, the input prompt
undergoes a denoising process facilitated by a cross-
attention layer. In this configuration, each text token from
the input prompt generates a spatial attention map within
the cross-attention layer, serving to fuse visual and textual
embeddings. Building upon prior research [7], an in-depth
analysis is conducted to explore the relationship between
the spatial layout of images and individual words in the
prompt. The focus is specifically on the cross-attention
layer within the text-conditioned model. A proposal is made
to generate two-dimensional attention maps based on text
tokens, aiming to identify which attributes should be em-
phasized during the synthesis process. The attention map
M is obtained as follows:

M = Softmax
(
QKT

√
d

)
, (5)

where d represents the dimensions of the latent projection.
Intuitively, this equation captures the similarity between Q
and K.

Attention maps generated from both the U-Net architec-
ture and guidance networks exhibit varying scales across
different layers. To address this issue, the attention score ar-
rays are upscaled to a fixed input image size (h,w) through
linear interpolation. These arrays are then aggregated across
layers, denoising time steps, and heads, as given by:

Hk[h,w] =
∑
i,j,l

Mup
tj ,k,l

[h,w] +Mdown
tj ,k,l [h,w] (6)

where k is the kth word from the prompt, ith represents the
up and down sampling layers, and lth head. The aggregated
feature maps are subsequently normalized and visualized as
heat maps Hk, each corresponding to individual words in
the prompt.

4. Experiments
In this section, we assess the performance of the pro-

posed approach on generating synthetic multi-modal medi-
cal images.

4.1. Dataset

To evaluate the performance of the proposed method, a
brain MR imaging dataset of glioma patients was sourced
from Seoul Asan Medical Center. This dataset features
four distinct imaging modalities—FLAIR, T1, T1Gd, and
T2—and comprises a cohort of 484 patients (n=2k). During
the preprocessing stage, each MR image slice was normal-
ized to fit a value range between 0 and 1. Additionally, both
the MR images and their corresponding annotated tumor
masks were resized from an original resolution of 224×224
pixels to a more standardized 256×256-pixel format. Only
slices displaying visible tumors were selected for inclusion
in the research experiments.

Accompanying each slice in the dataset is a diagnostic
report that specifies the presence or absence of isocitrate
dehydrogenase (IDH) mutations. These mutations are clas-
sified as either mutant or wild type, a categorization con-
firmed by two certified radiologists. For the text prompts
used in the study, a standardized sentence structure was
adopted: ”A modality MR image, type of glioma.” The
placeholders in this sentence were filled with specific de-
tails related to the MR modality and IDH type for each in-
dividual slice.

4.2. Implementation Details

The network underwent training with a batch size of 8
and a learning rate of 1E-6. During the inference phase,
DDIM was adopted for the sampling process, employing a
sequence of 100 time steps. As delineated in Section 3.3,
a binary mask was generated using the Canny Edge detec-
tor, where the threshold hyperparameters were configured
to a minimum of 100 and a maximum of 200. For the text
prompts, guidance was provided via the CLIP model.

4.3. Quantitative Results

Image quality and diversity. The quality of the gen-
erated images is evaluated using the frechet inception dis-
tance (FID) metric [8]. Table 1 presents quantitative re-
sults derived from the synthetic MR dataset. These results
show improved performance when employing a combina-
tion of guidance techniques, in contrast to the results using
alternative approaches such as StyleGAN2 [13] and vanilla
LDM. Both models compared were trained from scratch
while LDM utilized the same pre-trained CLIP. Figure 3
provides qualitative evidence, illustrating the results gener-
ated based on prompt and structural mask instructions in
the input. The higher FID scores recorded across variety
MR imaging modalities are reflected in the qualitative anal-
ysis, demonstrating that the generated images are precisely
customized to the specific MR modality and tumor type.

Correspondence to multi-modality slice sequence.
Maintaining a correlation among various medical image
modalities—such as FLAIR, T1, T1CE, and T2—is crucial
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Figure 3. Synthetic results of multi-modal MR images generated based on both input prompt and structural mask guidance. The asterisk
{*} in the prompt serves as a placeholder for various MR modality input text, which include FLAIR, T1, T1CE, and T2.

Modality

Method FLAIR T1 T1CE T2 Average

StyeGAN2 56.20 75.85 34.63 33.03 49.18
LDM 56.86 77.15 61.57 37.27 58.21
Ours 43.23 46.58 45.47 30.15 41.35

Table 1. Quantitative comparison of different models using FID.
The best results are shown in bold.

for the fidelity of the synthesized outcomes. However, tu-
mor features often display different characteristics across
these modalities. To address this, multiple metrics have
been selected for medical image registration [4], including
the structural similarity index measure (SSIM) [33], nor-
malized mutual information (NMI) [16], and normalized
cross correlation (NCC). To define an acceptable range for
these quantitative metrics, upper and lower bounds were
established based on true MR multi-modality sequences.
The upper bound was determined using actual sequences
to measure the correlation between images across different
modalities, while the lower bound was set using randomly
sampled images from each MR modality. This approach en-

SSIM NMI NCC

GT 0.757 ± 0.08 0.487 ± 0.06 0.910 ± 0.02
Prediction 0.743 ± 0.17 0.457 ± 0.06 0.909 ± 0.03
Random 0.659 ± 0.04 0.271 ± 0.04 0.735 ± 0.09

Table 2. Quantitatively comparing the correlations of multimodal
sequences.

sures that the upper bound not only measures inter-modality
correlation but also accommodates the unique tumor mor-
phology that may vary between modalities. The computa-
tional results for a total of 500 sequences—comprising 250
IDH mutant types and 250 wild types—are presented in Ta-
ble 2. The findings confirm that all sequences fall within the
calculated category and closely approach the upper limit.
This suggests that a multi-modal set, conditioned on both
modality and tumor type, has been successfully generated.

Correspondence to prompt guidance. The CLIP
score [20], defined as the correlation between CLIP text
and image embeddings, serves as a metric to evaluate the
similarity of synthetic results under given prompt guidance.
Specifically, to account for minimum object similarity, the
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FLAIR T1 T1CE T2

Text Mutant Wild Mutant Wild Mutant Wild Mutant Wild Average

Full-Prompt 30.8779 31.0675 31.3073 30.3258 31.6367 31.2587 31.2019 30.9289 31.0755
Modality Type Subset 24.4757 24.4810 28.7178 28.8115 26.1714 26.1978 29.1843 29.3515 27.1738
IDH Type Subset 30.0574 29.9842 30.0087 29.2547 30.0681 30.1175 29.8715 29.8513 29.9016

Table 3. Average image-text similarities measured by CLIP score between the text prompt and the generated images.

Figure 4. Visualization of the attention map displays text elements corresponding to synthetic outcomes. Along the y-axis, the map displays
results for various MR modalities, including FLAIR, T1, T1CE, and T2. Meanwhile, the x-axis arranges the words derived from the input
prompt in order.

Figure 5. Comparison between the t-SNE dimensional reduction
results for MR images (on the left) and the average activation maps
categorized by tumor type (on the right).

entire prompt was segmented into two subsets: modality
and IDH type, which are key elements of the sentences. The
”Full-Prompt” category measures the image-text similarity
based on complete sentences, while the subsets for modality
type and IDH type employ the phrases ”a specified modal-
ity type modality MR image” and ”type of specified IDH
type glioma,” respectively. The specific CLIP model uti-
lized for this evaluation is ViT-B/16. Upon reviewing the
CLIP scores summarized in Table 3, it was found that the
degree of agreement was highest across all prompts. Ad-

ditionally, the similarity was marginally higher in the IDH
type subset compared to the modality type subset.

4.4. Cross-Attention Map Visualization

By incorporating both prompt and structural conditions,
the cross-attention maps aim to offer comprehensive control
over the image generation process. The aggregated results
of these maps are displayed in Figure 4, which highlights
text elements corresponding to synthetic outcomes across
various imaging modalities. A recurring pattern observed
in the attention maps is the global activation of image areas
when words like ”FLAIR”, ”modality”, ”MR”, and ”image”
are used. In contrast, localized areas are emphasized when
terms such as ”wild”, and ”glioma” are present. Notably,
these maps highlight regions where a tumor’s presence can
be inferred, even without the use of specific tumor location
information like a tumor mask. Such insights open up pos-
sibilities for future research, particularly in exploring the
correlation between gene displacement and the specific lo-
cations of different IDH tumors.

Based on critical observations and visualization results,
the cross-attention layer emerges as a key factor in de-
termining the attribution between text and image for each
word. This finding suggests the potential for feature separa-
tion, particularly in the context of complex and difficult-to-
interpret medical images like tumors. Representative tumor
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activation maps for each sequence were obtained by averag-
ing the activation maps associated with the words ”glioma”
or ”wild” across the four imaging modalities. Subsequently,
dimension reduction was performed using t-SNE [31], fo-
cusing on the average attention map associated with the rep-
resentative IDH type. Initially, both sets of images, with di-
mensions of 256×256 pixels, were downsized to a feature
size of 1000 using ResNet-18, further reduced to a two-
dimensional space using t-SNE.

Compared to MR images—which often require expert
evaluation, intricate medical information, and frequently
exhibit overlapping features—the selectively activated map
demonstrates significant separation in the 2D reduction re-
sults as in Figure 5. This occurs even when the map dimen-
sions are identical. The distinct results in the reduced di-
mension not only validate that the synthesis process yielded
condition-appropriate outcomes, but also indicate that this
is an effective approach for extracting and utilizing desired
feature information.

4.5. Qualitative Evaluation

The Turing Test was employed to display synthetic medi-
cal imagery for clinical expert evaluation. Two distinct eval-
uations were conducted: (1) a comparative review where
clinicians chose synthetic MR images over a randomly
paired real and synthetic image set from the same modal-
ity, and (2) a qualitative review in which experts rated
a sequence of generated MR images on a scale ranging
from 0 to 5. Additionally, the latter evaluation involved
determining whether the sequence included a tumor with
an IDH mutant-like or wild-like phenotype. Figure 3 in
the supplementary material provides an example of the
test interface. Two expert clinicians from Yonsei Univer-
sity Severance hospital and Asan Medical Center were par-
ticipated, evaluating 20 questions within 30 minutes time
constraint for each test. The average accuracy rates for
the test types—identification of Synthetic in comparison
to Real and differentiation between Mutant and Wild-type
tumors—were 47.5% and 67.5%, respectively. The image
scoring averaged 4.375 (± 0.7403) out of a maximum of 5.
The qualitative evaluation suggests that the synthesized im-
ages are clinically comparable to actual MR images of brain
tumors. The quantitative findings confirm that the generated
images conformed to the specified IDH type in the input
prompt, with the majority consistent with the clinical judg-
ments. The results were affirmed by clinical reviewers to
be of high quality, reflecting the advanced level of synthetic
output achieved.

5. Conclusion
The framework proposed in this study has exhibited ex-

ceptional performance in generating synthetic multi-modal
MR sequences, guided by specific input conditions. By

leveraging a diffusion-based denoising network, enhanced
with an additional guidance layer, the model adeptly inte-
grates both structural masks and text prompts as conditional
inputs. This approach to multimodal image generation not
only eliminates the need for parallelizing large parametric
models for each mode, but also promotes greater synergy
by integrating diverse medical information. Furthermore,
the interpretation of cross-attention maps, based on text-
conditional statements, facilitates the disentanglement of
intricate features in the generated images. Future research
should address the incorporation of more intricate sentence
structures and the utilization of diverse information forms.
Consequently, this research provides a solid foundation for
future work in the field of text-conditional medical image
generation and offers potential to promote advances in the
field of medical imaging.
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