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Abstract

Recent studies show that leveraging the match-wise re-
lationships within the 4D correlation map yields significant
improvements in establishing semantic correspondences -
but at the cost of increased computation and latency. In this
work, we focus on the aspect that the performance improve-
ments of recent methods can also largely be attributed to
the usage of multi-scale correlation maps, which hold var-
ious information ranging from low-level geometric cues to
high-level semantic contexts. To this end, we propose HC-
CNet, an efficient yet effective semantic matching method
which exploits the full potential of multi-scale correlation
maps, while eschewing the reliance on expensive match-
wise relationship mining on the 4D correlation map. Specif-
ically, HCCNet performs feature slicing on the bottleneck
features to yield a richer set of intermediate features, which
are used to construct a hypercolumn correlation. HCCNet
can consequently establish semantic correspondences in an
effective manner by reducing the volume of conventional
high-dimensional convolution or self-attention operations
to efficient point-wise convolutions. HCCNet demonstrates
state-of-the-art or competitive performances on the stan-
dard benchmarks of semantic matching, while incurring a
notably lower latency and computation overhead compared
to the existing SoTA methods.

1. Introduction

Semantic correspondence is the task of establishing cor-
respondences between two images depicting different in-
stances of the same semantic category. While visual corre-
spondence itself is a fundamental computer vision task used
for 3D reconstruction, visual localization and object recog-
nition [10], semantic correspondence has enabled further
diverse applications, including semantic label/edit trans-
fer [37,40], unsupervised object discovery/localization [3],
and few-shot classification/segmentation [14, 19, 20, 32].
While the recent success of deep neural networks in key-
point detection [ !, 6] and feature descriptor extraction [4 1,
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Figure 1. PCK performance (y-axis) vs. inference time (x-axis)
on SPair-71k dataset. The area of each bubble is proportional
to FLOPs of a model. We demonstrate that the proposed HCCNet
outperforms existing state-of-the-art methods in terms of accuracy,
efficiency, and scalability while being much simpler design than
previous work [4, 14,21,29,31,36].

] have shown significant improvements, the task of se-
mantic correspondence remains challenging due to the pres-
ence of intra-class variations [4, 18,21,29,31,36,44].

Among many effective learning-based methods that have
been proposed by building on the efficacy of convolu-
tional neural networks [17, 18, 34, 36, 42], a representa-
tive branch was largely inspired by the idea of learn-
ing geometric matching with high-dimensional convolu-
tion [25,27,31,43], where convolutional layers are applied
to the correlation map such that the certain unique matches
would support the neighboring ambiguous matches. Noting
that the convolution may suffer from inherent limitations
of static and local transformations of the correlation map,
current state-of-the-art methods propose to leverage self-
attention to learn the global match-wise relations [4, 14,21].

While leveraging the global interactions within a correla-
tion map has shown to be highly effective, we suggest that
the superior performance of today’s state-of-the-art meth-
ods can also be attributed to the usage of multi-scale corre-
lation maps (Section 4, Table 3). This is because semantic
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correspondences between images having large intra-class
variations may occur at different feature levels, from lo-
cal patterns and geometries (shallow) to invariant semantics
and context (deep). It has also been demonstrated in other
areas such as few-shot segmentation [14, 32] that leverag-
ing multi-layer correlation maps shows improvements over
using just a single correlation map.

In this work, we shift our focus away from mining global
match-wise relations, to better leveraging the multi-scale
correlation maps holding various semantics. To this end,
we introduce an efficient yet effective semantic matching
method, HCCNet, which carries out feature slicing to yield
a richer set of equi-channel intermediate features from the
backbone network, for constructing amplified multi-scale
correlation maps. These multi-scale correlation maps are
concatenated along the channel dimension to obtain a hy-
percolumn correlation. We finally perform a fast and ef-
ficient point-wise channel aggregation to output a refined
correlation map for semantic keypoint transfer. The results
demonstrate that our method surpasses existing state of the
arts in terms of accuracy and efficiency despite its simple,
straightforward design, as illustrated in Fig. 1.

The contributions of our work is threefold:

* We introduce HCCNet, a novel semantic matching
learner that leverages various semantics of multi-scale
correlations to establish reliable correspondences,

* We propose feature slicing, a method to yield rich fea-
ture slices from intermediate features to construct an
informative hypercolumn correlation,

* The rich hypercolumn correlation enables HCCNet to
reduce the volume of high-dimensional convolution or
self-attention operations to point-wise channel aggre-
gation, incurring notably lower computation and la-
tency overhead while exhibiting SoTA or competitive
performance on semantic correspondence.

2. Related Work

Leveraging multi-layer features and correlations for
correspondence. For CNNs trained on the task of object
recognition, the shallower layers learn geometric cues such
as edge or color, and the deeper layers learn semantic cues
of the object [ 1 1,12]. This characteristic of hierarchical fea-
tures of CNNs have been applied to the task of establishing
correspondences between images. Specifically, HPF [34]
and its follow-up work, DHPF [36], propose to represent
images using hyperpixels by leveraging a number of layers
selected among early to late layers of the feature extractor.
COLD [22] performs weighted summation on the interme-
diate feature maps to yield a distilled feature map pair. More
recently, TransforMatcher [21] proposed to use multi-layer

correlation maps, but only as features of each match posi-
tion to be processed by match-to-match attention, without
explicitly leveraging their consensus.

We focus on the aspect that semantic correspondences
between images may occur at different feature levels de-
pending on the image pair. To this end, we propose fea-
ture slicing to yield amplified multi-scale correlation maps
to maximize the potential of the constructed hypercolumn
correlation, on which we perform point-wise channel ag-
gregation to exploit the various semantics of the correlation
maps. We empirically demonstrate the superiority of our
approach over concatenating or summing multi-level fea-
tures to construct a single correlation map.

Consensus-based semantic correspondence. The task of
semantic correspondence aims to establish correspondences
between images of the same category but of different in-
stances. While various CNN-based methods have been
introduced to tackle this challenging problem [18, 25,31,

], with the recent advent of transformer-based architec-
tures for visual tasks [7], transformer-based methods have
demonstrated superior abilities to establish accurate seman-
tic correspondences [4, 14,21].

Among these approaches, NCNet [44] coined the idea
of exploiting the local neighborhood consensus within the
correlation map using high-dimensional convolutional net-
works. The efficacy of this approach motivated follow-up
work to better exploit the neighborhood consensus to ob-
tain reliable correspondences [25, 27, 31, 43] using high-
dimensional CNNs. However, these methods suffer from
the inherent limitations of CNNSs i.e., local and static fea-
ture transformation. To alleviate these issues, the cur-
rent SOTA methods on semantic correspondence exploit the
dynamic global match-wise consensus in the correlation
map [4, 14,21] by building on self-attention mechanisms.

Albeit its efficacy, the endeavor to mine local or global
match-wise relationships in the correlation map incurs high
computation overhead. In this work, we propose to lever-
age hypercolumn correlation built from multi-scale corre-
lation maps instead. As the multi-scale correlation maps
are derived from feature maps of largely varying receptive
fields, HCCNet implicitly considers the neighborhood con-
sensus when performing feature matching after the point-
wise channel aggregation despite its efficiency.

Attention for feature aggregation. Attention mechanisms
enable neural networks to concentrate on the most rel-
evant features, which has shown to be effective across
many visual tasks such as object recognition and seman-
tic segmentation [2, 15,47-49]. SENet [15] exploits the
channel-wise relationships by introducing the Squeeze-and-
Excitation module. CBAM [48] combines the spatial and
channel attention in a compact block. Bisenet [49] sug-
gests a lightweight module for channel-wise attention. Not-
ing the effectiveness of employing attention-based mech-
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Figure 2. Overview of HCCNet. The intermediate feature maps extracted from an image pair are first sliced, and are used to compute a
consequently amplified multi-channel correlation map. We then identify and exploit the position-specific inter-correlation consensuses to
provide the refined single-channel correlation map. We construct a dense flow field from the refined correlation map, which can be used to
transfer given source keypoints to the target image to supervise HCCNet using ground-truth keypoint pair annotation.

anisms, more recent work propose to leverage attention to
aggregate features. GFF [28] selectively fuses features from
multiple levels using a gating mechanism in a fully con-
nected manner. BPNet [38] uses an add-multiply-add fusion
block to first add and multiply features from different levels
separately, and then adds these two output features together.
The weighted addition of features proposed in COLD [22]
is also a form of attentive feature aggregation.

In this work, instead of fusing features extracted across
the feature extractor, we propose to aggregate the channels
of the hypercolumn correlation in a point-wise manner to
obtain a refined correlation map for efficient and effective
correspondence establishment.

3. HCCNet for semantic correspondence

We first provide an overview of how HCCNet establishes
semantic correspondences. Given an image pair to match,
we yield a set of intermediate feature maps using the back-
bone feature extractor network. These intermediate feature
maps are bilinearly interpolated to the same spatial size, on
which we perform feature slicing to yield a larger number
of equi-channel feature maps. Each corresponding feature
slice pair is used to calculate a single-channel correlation
map, collectively yielding a set of multi-scale correlation
maps. The multi-scale correlation maps are concatenated
along the channel dimension to construct a hypercolumn
correlation, on which we perform efficient point-wise con-
volution to aggregate the channels to output a refined cor-
relation map. This refined correlation map is used to con-
struct a dense flow field, which is used to transfer the given
keypoints from the source images to the target image to es-
tablish correspondences between the image pair. Figure 2
illustrates the overall architecture of our method.

3.1. Feature slicing

We utilize an ImageNet-pretrained ResNet-101 [5, 13] as
our feature extractor. To maximize the number of correla-
tion maps and thus the visual cues to consider, we extract
features from all bottleneck layers of conv3_x, conv4_x,
and conv5_x blocks for a given pair of images (Zx,Zy ).
The multiple intermediate features are bilinearly interpo-
lated to achieve the same (flattened) spatial dimension of
HW:; this dimension is %6 of the input image resolution,
thereby creating a set of features {(X(l) , Y(l))}le[ 1] Where

X(l), YO ¢ REHWxC® represent the feature pair at layer
I, [L] == {i}L_, represents a set of bottleneck layer indices,
and C'¥) indicates the channel size at layer I.

Previous related studies [4, 3 1] directly compute cosine
similarity on extracted intermediate backbone feature pairs
to form correlations, i.e., X - YT However, such an
approach could overlook rich channel-wise information of
high-dimensional backbone feature vectors which poten-
tially helps form richer correlation maps for the model to
analyze. To address this issue, we introduce feature slicing,
which slices each intermediate feature map, XD or Y(l),
into multiple slices to provide a larger number of feature
pairs by increasing the number of features to match. Specif-
ically, we view each feature map at every layer as a compo-
sition of multiple sub-features concatenated along the chan-
nel dimension: X() := concat g [X(g)] forall € [L],
where G() is the number of slices used to divide feature
map X ). This interpretation provides us with a more di-
verse set of visual features for the subsequent matching
network to establish reliable matches, which we denote as
{(X(g),Y(g))}ge[G} where L < G.

3.2. Hypercolumn correlation construction

To establish dense input pair-wise matches, we first cal-
culate the cosine similarity between every possible position
pairs between the feature maps. Specifically, for each group
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g € [G], we compute the dense, richer (L < G) correlation
matrix C. . , € REW>XHW a5 follows:

(9) T
X V)

=, (1)
XY 1

CX,y,g

where x, y € R? refer to the 2-dimensional spatial positions
of the feature maps corresponding to the image pair of Zx
and Zy respectively. While some existing methods [21,31]
apply ReLU on top of correlation maps for non-negativity,
we propose that the negative correlation scores also pro-
vide important cues for reliable correspondences, as empir-
ically evidenced by better performance. After calculating
the correlation maps for G feature slice pairs, we stack them
along the channel dimension to produce the final hypercol-
umn correlation, denoted by C € RIWXHWXG ' Thjg ap-
proach enables us to consider a diverse set of intermediate
feature pairs and provides richer information for the subse-
quent matching network to establish reliable matches.

3.3. Point-wise channel aggregation

When convolutional neural networks are trained on the
task of object recognition, the feature representations be-
come increasingly explicit about the object information
along the processing hierarchy [11, 12]. Specifically, low-
layer features contain more detailed information such as
edge or colour, while higher-layer features contain more se-
mantic information with higher invariance [8, 50]. Pertain-
ing to the task of semantic matching, it is unsure at which
feature layer the correlation is likely to be the most accu-
rate, as the images depict different instances of the same
class. Therefore, depending on the content of the given im-
age pair, it may be beneficial to rely more on the lower-layer
features, or rather on the higher-layer features. Now that we
have a hypercolumn correlation C which holds the correla-
tion information obtained from different layers of the back-
bone feature extractor, we aim to analyze the channels in
a point-wise manner to aggregate the channels in order to
yield the final refined correlation matrix.

It is crucial to ensure that a flow field has reliable and
consistent information after analyzing different visual cues
to establish reliable correspondences. To facilitate this, we
aim to analyze the channels of the hypercolumn correlation
for each spatial position (x,y) € R* in C to focus on or
to downweight certain visual cues in aggregating the chan-
nels. Therefore, we collect match scores from different vi-
sual aspects of geometric and semantic cues and perform
point-wise convolution as follows:

®(C; Whid)xy.: = Cx.y,. Whig € R, ()

where Wyq € RE*Dhid i a learnable weight matrix. To en-
hance the correlation consensus with better representational

power, we process the correlation map C using two cor-
relation consensus networks together with an intermediate
hyperbolic tangent non-linearity (:

(Ccon)x,y = (D(C((D(Cy Whid))); Woul)x,y (3)
= C(Cx,y,:Whid))Wout S R, (4)

where Wy, € RPnex1 g Jearnable matrix that squeezes
multiple channels to provide a single, refined correlation
map for the subsequent flow field formation.

Note that we employ a simple yet effective approach
that leverages hypercolumn correlation, striking a bal-
ance between efficacy and efficiency without resorting
to overly complex methodologies e.g. match-wise rela-
tion mining, for visual correspondence. In Section 4,
we present empirical evidence that highlights the effi-
cacy of our method despite its straightforward nature,
showing that it surpasses existing methods without rely-
ing on computationally-demanding techniques, e.g., high-
dimensional convolutions [3 1, 33], cost aggregations [4], or
Hough matching [34, 36]. By avoiding such complicated
methodologies and instead relying on straightforward, sim-
ple design by leveraging pretrained backbone features, we
pave the way for more accessible, scalable, and practical
solutions to the problem of visual correspondence.

3.4. Flow field formation and keypoint transfer

For fine-grained flow field formation, the aggregated cor-
relation matrix C°" is then upsampled via a 4-dimensional
upsampling function that provides C% ¢ RHWXHW
where H = 4H and W = 4W, which corresponds to §
the size of the original image. We use the output corre-
lation tensor C°" to form a dense flow field between the
source and target image for keypoint transfer. First, we nor-
malize the the output correlation map by applying kernel
soft-argmax [23] as follows:

exp(GPCRY)
Pomei)x (] XP(GICy)

cp = ER O
where GP € RE*W js a 2D Gaussian kernel centered on
p = arg maxycg’:‘y, to suppress noisy correlation values
in the correlation map. The normalized correlation ten-
sor C"™ encodes a set of probability simplexes from each
source feature position to the target feature positions. We
then transfer all the coordinates on the dense regular grid
Px € RHW*2 of source image Zx to obtain their corre-
sponding coordinates Py € R¥W>2 on target image Ty :

(?Y)x7: = Z

() €EH]=[W]

C?:;n(PX)yg S R27 (6)

forming a dense flow field. Using this dense flow field, we
can perform keypoint transfer as follows. Given a keypoint
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kX = (1, y1), we define a soft sampler W*) ¢ RFXW:

max(0,7 — /(zx — §)% + (yx — ©)?)
Sy max(0,7 — /(z — )2+ (e — )?)
(7

(k) _
wi =

where 7 is a distance threshold, and ), ; ijk) = 1. The
above equation shows that the soft sampler samples each
transferred keypoint (Py)ij by assigning weights which are
inversely proportional to the distance to k. Using this soft
sampler, we assign a match to the keypoint kX as k¥ =
2 (i) e[ X [W] (f’y)ij;Wg-c), being able to establish sub-
pixel-wise accurate correspondences.

3.5. Training objective

For each training image pair with ground-truth corre-
spondences M = {(kX kY )}M_. we apply the afore-
mentioned keypoint transfer method on the given source

keypoints to obtain predicted target keypoints. This results
- X
in a set of predicted correspondences {(k,,, k% )}_, by

m? Tm
assigning a match k},: to each keypoint ﬁm in the source
image. We formulate our training objective to minimize
the average Euclidean distance between the predicted target
keypoints and the ground-truth target keypoints as follows:

1 M
_ Y LY (12
L= [k~ ki3 ®)

m=1
4. Experiments

In this section, we evaluate HCCNet against the state-
of-the-art methods on the task of semantic matching and
discuss the results with in-depth analysis.

4.1. Evaluation settings

Implementation details. We use the ImageNet [5]-
pretrained ResNet-101 model [13] as our feature extrac-
tor. The conv3_x, conv4_x and conv5_x layers have
4, 23 and 3 bottleneck layers, respectively; we utilize all
these bottleneck layers, and use feature slices with chan-
nel dimension of 256 to finally yield G = 124 feature
slice pairs to construct a 124-layer correlation map for an
input image pair (G = 30). We use an image size of
240 x 240 for both training and inference, where the fea-
ture map dimensions used for correlation computation is
H = W = 15, and the upsampled C°" has spatial di-
mensions of H = W = 60. Both the number of groups
and channel size of linear layers in correlation consensus
network are set to 124, i.e., G = Dpq = 124. HCCNet
is implemented using PyTorch [39], and our network is op-
timized using the AdamW [30] optimizer with a learning
rate of le-3 for the correlation network, and le-5 for the
ResNet-101 feature extractor.

Datasets. We evaluate our method on the standard bench-
mark datasets of semantic matching: PF-PASCAL, PF-
WILLOW [9] and SPair-71k [35] with keypoint-annotated
image pairs. PF-PASCAL consists of image pairs from the
PASCAL VOC 2007 dataset, having the same viewpoint
and small scale variations. PF-PASCAL contains 2,940 /
308 / 299 image pairs for training, validation and testing,
respectively. PF-WILLOW is comprised of four categories
of the PASCAL VOC 2007 and Caltech-256 datasets, hav-
ing center-aligned image pairs with the same viewpoint and
small scale variations. PF-WILLOW contains 900 image
pairs for testing only. SPair-71k consists of image pairs
from PASCAL3D+, and PASCAL VOC 2012 datasets, with
diverse variations in viewpoint and scale. SPair-71k has
53,340 /5,384 / 12,234 image pairs for training, validation,
and testing, respectively. The results on SPair-71k are much
less saturated in comparison to other benchmarks due to its
large scale and challenging variations.

Evaluation metric. We use the percentage of correct key-
points (PCK) as the evaluation metric. Given a pair of
ground-truth keypoints and our predicted target keypoints,
the PCK can be computed as follows:

M

PCK(K) = —

= 37 2 1~ KL < ar - mas(ur, o),

1

€))

where w;, and h, denotes the width and height thresholds,
which are the width and height of either the entire image or
the object bounding box, i.e., 7 € {img, bbox-kp, bbox},
and o is a tolerance factor.

4.2. Quantitative results on semantic matching

Table 1 illustrates the quantitative results of HCCNet
in comparison to existing methods on the standard bench-
marks of semantic matching. To directly demonstrate the
efficacy of our method, we report finetuned (F) results,
which are trained on the train set of the corresponding
dataset. To evaluate the cross-dataset generalizability, we
report transferred (T) results, where we use a model trained
on the train set of PF-PASCAL for evaluation. It can be seen
that HCCNet sets a new state of the art on the finetuned (F)
setting of the SPair-71k dataset, which is the most challeng-
ing semantic matching benchmark, while being competi-
tive on the finetuned (F) setting of the PF-PASCAL dataset,
just 0.2%p below CATst [4]. It is noteworthy that HC-
CNet achieves this while incurring notably lower latency
and FLOPs compared to existing methods. On the contrary,
HCCNet yields subpar outcomes on the transferred (T) set-
tings, which we conjecture is due to HCCNet’s brittleness to
the domain gap between datasets, resulting in inconsistent
point-wise channel aggregation. The classwise PCK results
on SPair-71k is shown in Table 2, and Figure 3 visualizes
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SPair-71k PF-PASCAL PE-WILLOW ime  memory FLOPs
Method @ Qlpbox @ Qimg @ Qlpbox-kp @ Qlpbox (ms) (GB) (G)
0.1 (F) 0.1 (T) 0.05 (F) 0.1 (F) 0.1 (T) 0.1 (T)

HPF [34] 28.2 - 60.1 84.8 74.4 - 63 - -

SCOT [29] 35.6 - 63.1 85.4 76.0 - 151 4.6 6.2
DHPF [36] 37.3 27.4 75.7 90.7 71.0 77.6 58 1.6 2.0
DHPF{ [30] 394 - - - - - 58 1.6 2.0
NC-Net" [44] - - - 81.9 - - 222 1.2 44.9
DCC-Net" [16] - - - 83.7 - - 567 2.7 47.1
ANC-Net [25] - 28.7 - 86.1 - - 216 0.9 44.9
PMD [26] 37.4 - - 90.7 75.6 - - - -

CHMNet [31] 46.4 30.1 80.1 91.6 69.6 79.4 54 1.6 19.6
PMNC [24] 50.4 - 824 90.6 - - - - -

MMNet [51] 40.9 - 77.6 89.1 - - 86 - -

CATs [4] 43.5 - - - - - 45 1.6 28.4
CATsT [4] 49.9 27.1 75.4 92.6 69.0 79.2 45 1.6 28.4
PWarpC-NC-Net [46] 52.0 37.1 67.8 82.3 - 76.2 - - -

TransforMatcher [21]  50.2 30.5 78.9 90.5 66.7 75.1 54 1.6 33.5
TransforMatchert [21] 53.7 30.1 80.8 91.8 65.3 76.0 54 1.6 33.5
VATT [14] 54.2 - 78.2 92.3 - 81.6 127 3.6 68.0
HCCNet (ours) 53.9 29.6 80.2 92.4 65.3 74.5 30 2.0 1.7
HCCNet T (ours) 54.8 29.7 80.2 924 65.5 74.5 30 2.0 1.7

Table 1. Performance on standard benchmarks of semantic matching. All the methods reported in the above table uses a pretrained
ResNet-101 model as the feature extractor. The first group of methods were trained with weak supervision (image pair annotations), and
the second group of methods were trained using strong supervision (keypoint pair annotations). Models with * are retrained using keypoint

annotations from ANC-Net [
followed by the underlined numbers.

]. T indicates the use of data augmentation during training. Numbers in bold indicate the best performance,

Methods aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all

NC-Net [44] 234 167 402 143 364 277 260 327 127 274 228 137 20.9 21.0 175 102 308 34.1 206
HPF [34] 252 189 521 157 380 228 19.1 529 179 330 328 206 244 27.9 21.1 149 315 356 282
SCOT [29] 349 207 638 21.1 435 273 213 631 200 429 425 311 29.8 350 277 244 484 408 356
DHPF [30] 384 238 683 189 426 279 20.1 61.6 220 469 46.1 335 27.6 40.1 27.6  28.1 495 465 373
CHMNet [31] 49.6 293 687 29.7 453 484 395 649 203 60.5 56.1 46.0 33.8 442 389 313 722 556 464
PMNC [24] 541 359 749 365 421 488 40.0 726 21.1 676 58.1 505 40.1 54.1 433 357 745 599 504
MMNet [51] 435 270 624 273 40.1 50.1 375 600 21.0 563 503 413 30.9 19.2 30.1 332 642 436 409
CATs [4] 465 269 69.1 243 443 385 302 657 159 537 522 467 32.7 352 322 312 68.0 49.1 435
CATst [4] 520 347 722 343 499 575 436 665 244 632 565 520 426 41.7 430 336 726 580 499
TransforMatcher [21] 545 339 722 385 477 553 456 657 252 62,6 580 470 407 442 431 353 719 616 502
TransforMatcher [21]7  59.2 393 73.0 412 525 663 554 67.1 26.1 671 56.6 532 450 39.9 42.1 353 752 68.6 537
VAT [14] 56.5 37.8 73.0 387 509 582 409 705 203 721 61.1 577 456 482 524 400 777 714 542
HCCNet 599 39.1 710 421 516 634 570 630 268 638 594 547 494 410 430 376 831 648 539
HCCNet 599 40.6 705 39.8 559 651 568 666 256 692 59.6 58.7 @ 46.7 40.3 43.6 39.6 822 654 54.8

Table 2. Classwise PCK on SPair-71k. All the methods reported in the above table uses a pretrained ResNet-101 model as the feature
extractor. T indicates the use of data augmentation during training. We take results from the methods whose classwise PCK results were
provided. Numbers in bold indicate the best performance, followed by the underlined numbers.

example qualitative results on the test set of SPair-71K in
comparison to TransforMatcher [21].

4.3. Ablation study and analysis

Effect of using multiple correlation maps in existing
methods. Table 3 illustrates the performance of existing
methods when using a single correlation map in compar-

ison to using multiple correlation maps. It is visible that
the significant gain in performance is consistent across dif-
ferent methods, substantiating our claim that the efficacy of
today’s SOTA methods can be largely attributed to the usage
of muliple correlation maps'.

I'While TransforMatchermean or TransforMatcherconcar use multi-level
features, they yield a single correlation map as a result of mean or concate-
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Figure 3. Qualitative comparison of HCCNet against TransforMatcher [21]. Green lines represent ground truth correspondences, and
blue lines represent predicted correspondences. Best viewed on electronics.

SPair-71K (Cimg)
Method 0.05 0.1
CHMNet on3x [31] - 47.0
CHMNet i [33] - 51.3
*CATSconv3x [4] 26.2 48.3
CATSmulti [4] 27.7 499
TransforMatcherconeas [21] 20.9 41.7
TransforMatcherpean [21] 24.1 45.1
TransforMatcher i [21] 32.4 53.7

Table 3. PCK performance of existing methods when using a
single correlation map v.s. multiple correlation maps on the
SPair-71k dataset. The results are taken from their reported re-
sults, except for *CATsconv3x Which was implemented by us.

Ablation study on the backbone convolutional blocks
used. We compare the results of HCCNet when extract-
ing bottleneck features from varying convolutional blocks
of the backbone network. The results in Table 4 shows that
our current setting of using conv3_x to conv5_x strikes
the best balance between performance and efficiency.

Analysis on the feature slice size. We compare the results

nation of the multi-level features to yield a single feature map pair.

conv used PF‘(};‘ZSCAL r(nGegl) FLOPs
img G
2X 33X 4X 5X 05 04 ©

72.1  90.1 1.9 0.9
79.5 916 1.9 1.3
80.2 91.8 1.9 1.6
802 924 2.0 1.7
79.9 921 2.0 1.7

N X X X X
NN X X X
RN
NN

Table 4. Ablation study on the backbone bottleneck features
used. The results show that our current setting of using conv3_x
to conv5_x yields the best results.

of HCCNet when using varying sizes of feature slices, or
when directly using the bottleneck features for correlation
computation. The results in Table 5 show that our current
setting of using a slice size of 256 yields a favorable balance
between performance and efficiency, and the latency and
FLOPs increases dramatically with decreasing slice size.

Analysis on the non-linear activation function used. Ta-
ble 6 shows that using the hyperbolic tangent (Tanh) non-
linear activation function yields favorable results in compar-
ison to ReLU or Sigmoid functions. We conjecture this is
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PF-PASCAL

time mem. FLOPs

Slice size @ i, (ms)  (GB) (G)
0.05 0.1

- 77.3 92.2 20 2.0 0.9

512 770 91.9 24 2.0 1.1
256 802 924 30 2.0 1.7
128  80.2 92.2 43 22 4.0
64 795 92.5 70 2.2 13.3
32 804 924 127 2.7 50.7

16 799 91.5 290 3.8 200

8 65.0 82.5 580 5.0 798

Table 5. Ablation study on the slice size used. The results show
that our current setting of using the chunk size of 256 yields the
best trade-off between performance and efficiency.

PF-PASCAL
Activation function @iy
0.05 0.1
RelLU 79.5 91.9
Sigmoid 79.6 91.8
Tanh 80.2 924

Table 6. Ablation study on the non-linear activation function
used. Using the Tanh activation function yields the best results,
over ReLU or Sigmoid activation functions.

because unlike ReLLU or Sigmoid, Tanh is capable of repre-
senting unlikely matches using negative correlation scores.

Feature slicing analysis. To investigate the impact of chan-
nel aggregation on the hypercolumn correlation, we visual-
ize learned weight matrices Wyg and W, with four dif-
ferent groups denoted by G € {30, 62, 124, 248}” in Fig. 4.
We observe that the weight magnitudes are notably higher
(in yellow) at deeper layers, particularly at conv4_x and
conv5_x, as opposed to shallower layers. As we increase
the number of groups utilized for feature slicing, we find
that the network carries out fine-grained channel selection,
as evidenced by the weight visualization of Wyq, verifying
the efficacy of performing position-wise channel aggrega-
tion on hypercolumn correlation using diverse visual cues.
Compared to the weight magnitudes of Wy that are fo-
cused on specific groups, those of W, are relatively evenly
dispersed in order to effectively aggregate the information
from the first channel aggregation to provide a reliable re-
fined correlation map.

We guide the readers to the supplementary for more anal-
yses and experiments of HCCNet.

2Note that using G = 30 means that feature slicing is not performed,
as the total number of intermediate features extracted across the bottleneck
layers is already 30.

G = 30 (Previous work)

80

100

120
0 20 40 60 80 100 120 0 50 100 150 200
NN TN TN T T T

G =124

G =248

Figure 4. Visualization of learned weight matrices of Whiq €
RE*Dhid (top) and Wy € RPMe*1 (bottom) under varying G =
Dhia € {30,62, 124, 248}.

5. Conclusion

In this work, we introduced HCCNet, an efficient yet ef-
fective method to establish semantic correspondences be-
tween images. Noting that the current trend of mining
inter-match relations within the correlation map is compu-
tationally demanding, we shifted our focus to better lever-
aging the multi-level correlation maps computed from fea-
ture maps of varying receptive fields and visual cues. Our
technical edge lies in the synergistic integration of our pro-
posed feature slicing and point-wise convolution; by lever-
aging feature slicing to yield a richer set of intermediate
features, HCCNet can effectively establish semantic cor-
respondences while reducing the volume of conventional
high-dimensional convolution operations to point-wise con-
volutions. Attributing to the eschewal of match-wise rela-
tion mining on the correlation map, HCCNet incurs notably
lower latency and computation overhead while achieving
state-of-the-art or competitive performance on the standard
benchmarks of semantic correspondence.
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