
Enhancing Diverse Intra-identity Representation
for Visible-Infrared Person Re-Identification

Sejun Kim*, Soonyong Gwon*, Kisung Seo†

Seokyeong University, Seoul, Korea
{kimsejun5,gwonsy2,ksseo}@skuniv.ac.kr

Abstract

Visible-Infrared person Re-Identification (VI-ReID) is a
challenging task due to modality discrepancy. To reduce
modality-gap, existing methods primarily focus on sam-
ple diversity, such as data augmentation or generating in-
termediate modality between Visible and Infrared. How-
ever, these methods do not consider the increase in intra-
instance variance caused by sample diversity, and they
focus on dominant features, which results in a remain-
ing modality gap for hard samples. This limitation hin-
ders performance improvement. We propose Intra-identity
Representation Diversification (IRD) based metric learn-
ing to handle the intra-instance variance. Specifically IRD
method enlarge the Intra-modality Intra-identity Represen-
tation Space (IIRS) for each modality within the same iden-
tity to learn diverse feature representation abilities. This
enables the formation of a shared space capable of rep-
resenting common features across hetero-modality, thereby
reducing the modality gap more effectively. In addition,
we introduce a HueGray (HG) data augmentation method,
which increases sample diversity simply and effectively.
Finally, we propose the Diversity Enhancement Network
(DEN) for robustly handling intra-instance variance. The
proposed method demonstrates superior performance com-
pared to the state-of-the-art methods on the SYSU-MM01
and RegDB datasets. Notably, on the challenging SYSU-
MM01 dataset, our approach achieves remarkable results
with a Rank-1 accuracy of 76.36% and a mean Average Pre-
cision (mAP) of 71.30%.

1. Introduction
Person Re-identification (ReID) [1, 16, 41, 44] is a re-

trieval task of matching the same person across multiple
camera views. While most existing ReID methods focus

*Co-first Author, equally contribute
†Corresponding Author
This work was supported by National Research Foundation of Korea

Grant RS-2023-00244355 funded by the Korea government.

on matching visible images captured during daylight, these
methods may not perform well when poor conditions, such
as at night or low-light environments. In order to im-
prove video surveillance in poor conditions, infrared cam-
eras are used in combination with visible cameras. How-
ever, matching visible and infrared is challenging due to the
large gap of cross modality. To solve this problem, some
visible-infrared person re-identification (VI-ReID) methods
[10, 25, 29, 30, 34, 38] emerged for matching visible images
with their corresponding infrared images, and vice versa.

Various augmentation methods for VI-ReID have been
used, such as gray transform [3, 7, 42] and generative based
methods [4–6, 28] to make the Visible image similar to the
Infrared image. However, these methods often result in
damage to the visible texture due to artificial manipulation.
Additionally, some studies have explored 3-modality learn-
ing methods [8, 13, 17, 31, 35, 37, 40] that generate middle-
modality images to assist VI-ReID learning.

Nevertheless, previous studies did not consider the intra-
instance variance caused by sample diversity. As a result,
the trained model exhibits robust performance for easy sam-
ples, but still struggles with hard samples due to a signif-
icant modality gap, leading to decreased performance as
shown in Figure 1a. To reduce the modality gap for hard
samples, it is necessary to have metric learning that allows
for diverse feature representation. This can be achieved by
expanding the Intra-modality Intra-identity Representation
Space (IIRS). Here, IIRS refers to the diversity of represen-
tations within the Intra-modality Intra-identity space. We
propose Intra-identity Representation Diversification based
metric learning, which effectively reduces the modality gap
by training diverse feature representations that can handle
all samples regardless of their difficulty level. Our ap-
proach, as shown in Figure 1b, achieves this by expand-
ing the IIRS during train to learn various shared represen-
tations across opposite modalities, leading to an increased
shared space at test and thus reducing the modality gap.
Importantly, our method effectively solved the challenge of
matching hard samples caused by intra-instance variance.

Only a few studies have focused on expanding the repre-
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(a) Example of intra-instance variance. (b) Comparison of IIRS utilization.

Figure 1. Intra-instance variance and Intra-modality Intra-identity Representation Space (IIRS). (a) shows an example of the intra-instance
variance problem by random erasing [43] in VI-ReID. It illustrates three visible and infrared sample images pairs for the same identity in
both the train and test with the distribution of features in the embedding space. Note that different identities are used for train and test,
data augmentation such as Random Erasing (RE) is not applied in the test. fV and fI and denote Visible and Infrared features. Due to
the increased intra-instance variance during train, the model tends to focus on dominant features, which results in a stable performance
for easy samples during test. However, the modality gap remains large, for hard samples. (b) illustrates the difference in the utilization
of the Intra-modality Intra-identity Representation Space (IIRS) between the existing and the proposed method during train and test. The
proposed method utilizes a broader IIRS during train compared to the existing method, enabling the learning of diverse representation
abilities. As a result, in the test, the shared space between different modality is wider, effectively reducing the modality gap.

sentation space. For instance, [14] proposed Margin MMD-
ReID to bring inter-modality features closer together while
maintaining a small margin to prevent overfitting. However,
despite achieving certain performance, this method has a
limitation: if the distance between features is smaller than
the margin, no backpropagation occurs, resulting in an in-
ability to separate features that are too close to each other
using a small margin. In contrast, our proposed method
not only addresses this limitation but also expands the IIRS
while considering intra-instance variance. In [9], the pro-
posed Identity-aware marginal Center Aggregation (ICA) is
conceptually similar to our proposed metric learning. ICA
is designed to separate the center feature and sample feature
by a small margin in order to maintain diversity. However,
even with this diversity preservation, the modality gap still
exists as it integrates visible and infrared features without
specifying the corresponding modality, assuming modality-
invariant features. In contrast, our method not only main-
tains diversity but also expands the IIRS to enable more
discriminative representations.

In this paper, we highlight the significance of well-
designed metric learning and enlarging the IIRS in address-
ing intra-instance variance in VI-ReID. Enlarging the IIRS
enables diverse representations and reduces the modality
gap. To achieve this, we introduce the Intra-identity Rep-
resentation Diversification (IRD) strategy for discrimina-
tive representation learning. Furthermore, to enhance sam-
ple diversity, we employ a sophisticated Hue transform and
Gray transform (HG) to generate infrared-like images from

visible images, ensuring the variety of samples simultane-
ously. This preserves the image structure while providing
diverse color patterns that enhance distinctive feature learn-
ing. Finally, we propose the Diversity Enhancement Net-
work (DEN) for robustly handling intra-instance variance.

In summary, the main contributions are as follows: First,
to the best of our knowledge, this is the first attempt to in-
vestigate the necessary to enlarge IIRS considering intra-
instance variance by sample diversity for VI-ReID. Sec-
ond, we propose Intra-identity Representation Diversifica-
tion (IRD) to expand the IIRS for discriminative learning on
intra-instance variance. This enlargement of IIRS enables
diverse representations of intra-instances while effectively
reduces the modality gap by providing a learnable space
for counterpart modality learning. Third, we propose Di-
versity Enhancement Network (DEN) to solve the problem
of intra-instance variance by sample diversity and flexibly
learn diverse discriminative representations for VI-ReID.

2. Related Work

Metric learning. Metric learning aims to find similarity
between the compressed two representation vectors. Person
Re-identification requires distinguishing different individu-
als, Cross-Entropy loss is not effective for separating each
person. The task resembles zero-shot learning because the
identity label does not overlap in the train and test. There-
fore, the model requires the ability to learn discriminative
feature representations rather than learning the characteris-
tics of each individual identity. To achieve this, the Hard-
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est Triplet loss (HT) [12] was introduced, which had a sig-
nificant impact on learning discriminative feature represen-
tations by pulling hard positive samples to become more
similar and pushing hard negative samples to become less
similar. Unlike conventional HT, Weighted Regularization
Triplet loss (WRT) [36], which is usually used as a base-
line in VI-ReID, gives a relative distance to each of posi-
tive pairs and negative pairs as a normalized softmax-based
weight. This is effective for single modality because mul-
tiple samples can be handled simultaneously without addi-
tional hyperparameters. However, there is a limit to rep-
resenting various and distinctive features in cross modal-
ity than HT. In particular, the increase in sample diversity
by data augmentation constrains various representations be-
cause it pulls all samples belonging to intra-identity. We
conduct a comparative analysis supported by the numerical
evidence, and show that learning to enlarge the IIRS, as the
sample varies, can effectively reduce the modality gap.

An inter-modality center loss [3, 19, 20, 26] is proposed
to narrow the modality gap. These methods utilize a loss
function that calculates the center feature for each modality
and identity by average, aiming to bring the positive sam-
ples closer together while pushing the negative samples fur-
ther apart. Although it is effective to group intra-identity
samples to reduce the inter-modality gap, this approach still
does not address intra-instance variance. As a result, the
representation space of intra-identity becomes too confined,
while the modality gap remains. This leads to the reinforce-
ment of only dominant feature representations and makes it
difficult to achieve discriminative representation for diverse
features.

3. Methodology
3.1. Exploring Intra-modality Intra-identity Rep-

resentation Space

In order to solve intra-instance variance problem, Intra-
identity Representation Diversification (IRD) method is
proposed to enlarge the Intra-modality Intra-identity Rep-
resentation Space (IIRS). IIRS refers to the feature distribu-
tion space of samples for the same identity. We define the
size of IIRS as follows.

IIRS(V, V ) =
1

P ×K

P∑
i=1

K∑
k=1

d(fV
i , fV

k ) (1)

Where, P is the number of identity, K is the number of sam-
ples in each identity, d(·) is the euclidean distance value be-
tween features of intra-identity samples, and fV denotes the
visible feature. That is, the average distance among features
of all samples from the same identity depicts the diversity
that the corresponding identity can represent.

We analyze the necessity of enlarging IIRS for diverse
samples in VI-ReID. In order to do that, we compare the

variations in representation space size when employing
Triplet Loss (WRT [36] and HT [12] that mentioned in Sec-
tion 2) and Sample Diversity (Random Erasing(RE) [43]).
WRT can be formulated as follows:
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∑
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∑
j

wn
ijd

n
ij)) (2)
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exp(dpik)
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exp(−dnij)∑
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ij∈Ni

exp(−dnij)

(3)

Where, (i, k and j) denotes the anchor, positive, and nega-
tive samples, dpi,k/dni,j represents the pairwise distance of a
positive/negative sample pair. In contrast to this approach,
HT does not involve all samples. Instead, it selectively op-
erates on the hardest samples and is performed as follows:

LHT = max([max(dpik)−min(dnij) +mHT ], 0) (4)

The notation max(value, 0) indicates that no backpropaga-
tion occurs if the value is below zero. The margin mHT is
a hyper-parameter that ensures a certain distance between
positive and negative samples.

Our observation reveals that the IIRS is increased as the
feature representations become more diverse. During the
test, the same person is matched using both visible and
infrared modalities, retrieval performance improves when
the feature representations within the intra-modality intra-
identity exhibit greater diversity than similarity. We calcu-
late the IIRS for intra-modality (V,V) and (I,I), and compare
the results for WRT, HT with or without RE, as presented
in Table 1.

idx Loss
Sample

Diversity
IIRS
(V,V)

IIRS
(I,I)

R1 mAP

1 WRT - 0.441 0.472 47.75 47.79
2 HT - 0.442 0.478 53.12 52.09
3 WRT RE 0.449 0.459 63.4 60.78
4 HT RE 0.462 0.476 64.95 62.47

Table 1. IIRS size for (V,V) and (I,I) using all test data from the
SYSU-MM01 dataset. We use AGW [36] as a base model without
the triplet loss. The largest value, indicated in bold, corresponds
to the Sample Diversity.

In Table 1, WRT, which is primarily used in VI-ReID,
exhibits lower performance than HT while also demonstrat-
ing smaller IIRS values for both (V,V) and (I,I). When com-
paring the variations in IIRS between idx 1 and 2, there is
no significant gap between WRT and HT when sample di-
versity is not employed. However, in idx 3 and 4, the use
of sample diversity widens the gap even further. Unlike HT,
which learns only the hardest sample pair, WRT can not
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Figure 2. Proposed Diversity Enhancement Network (DEN). The Visible(V), Infrared(I) and HueGray(HG) images are fed into the feature
extractor. The modality-specific module uses only one conv-layer at the front of ResNet-50 [11] without weight sharing, on the other hand,
the modality-shared module employs the remaining stages 1 to 4, with weight sharing.

⊙
is concatenation.fV , fHG and fI are learned

by using Identity Loss (LID), Hardest Triplet Loss (LHT ) and Intra-identity Representation Diversification Loss (LIRD).

learn sufficient feature representation of increased samples
through sample diversity because WRT tends to learns the
dominant feature of all samples with the same identity, as
shown in Figure 1a. Consequently, WRT has limitations
in achieving discriminative representations for diverse sam-
ples compared to HT. Therefore, in order to cope with intra-
instance variance by sample diversity, the metric learning
capable of diverse feature representation for intra-identity
is necessary. In the experimental section, we examine the
variations in IIRS according to diverse samples (Hue Trans-
form, Gray Transform) and analyze the results.

3.2. Intra-identity Representation Diversification

Based on Section 3.1, we propose an Intra-identity Rep-
resentation Diversification (IRD) method that effectively
narrows the modality gap while expanding the IIRS. The
IRD loss consists of Positive Enhancement loss (PE) and
Negative Enhancement loss (NE), formulated as follows:

LV,I
IRD = LV,I

PE + LV,I
NE (5)

LV,I
PE =

1

P

P∑
i=1

max([d(fcV,Ii , fcI,Vi )

−min(d(fcV,Ii , fV,I
i )) +mV,I

PE ], 0)

(6)

LV,I
NE =

1

P

P∑
i=1

max([d(fcV,Ii , fcI,Vi )

−min(d(fcV,Ii , fcI,Vj )) +mV,I
NE ], 0)

(7)

Where fcV,Ii represents the feature center, which is the
average of the i-th identity features in the Visible or In-
frared modality, fV,I

i is i-th identity sample feature. The
function d(·) denotes the Euclidean distance, and margin
mV,I is a hyper-parameter. The notation (i, j) signifies dif-
ferent identities. The Positive Enhancement loss (PE) aims
to expand the IIRS, while the Negative Enhancement loss
(NE) aims to enlarge the inter-identity representation space.
In equation 6, the first term, d(fcV,Ii , fcI,Vi ), promotes the
inter-modality center features of the i-th identity to be closer
for learning the similarity of inter-modality intra-identity.
The middle term, −min(d(fcV,Ii , fV,I

i )), aims to widen the
small distance between the center feature and the nearest
sample feature within the intra-modality for learning the
diversity of intra-modality intra-identity. These mean that
the representation space of the same identity from differ-
ent modality becomes closer, leading to an expansion of the
IIRS.

Since the center feature is derived from aggregating
intra-modality features, it tends to capture the dominant fea-
tures. However, in order to obtain discriminative feature
representations that differ from these dominant features, we
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push the nearest sample features from the center feature by a
small margin. Note that this process prevents concentration
on dominant features and learns various feature representa-
tions. By performing this process for both visible and in-
frared modality, the features eventually get pushed towards
the hetero-modality space within the same identity, as illus-
trated in Figure 2. Therefore, it is possible to effectively
reduce the modality gap while learning diverse representa-
tions within the intra-identity.

However, in the process of pushing the intra-identity fea-
ture, there is a risk of it becoming closer to the representa-
tion space of other identities. To address this, Equation 7 is
designed to ensure the separation of the intra-identity center
feature from those of other identities, as depicted by green
bidirectional arrows in the middle-right of Figure 2. Ulti-
mately, the proposed Intra-identity Representation Diversi-
fication (IRD) approach, expands the representation space
of each modality individually and is based on HT, rather
than comparing all samples. This approach effectively re-
duces the modality gap while maintaining diverse represen-
tations.

3.3. Diversity Enhancement Network

Our proposed structure aims to learn diverse and dis-
criminative representations while enlarging the representa-
tion space for VI-ReID, as depicted in Figure 2. In order
to effectively learn from diverse samples, HueGray (HG) is
generated using hue transform and gray transform on the
Visible image. HG serves as a visually similar image to
the Infrared (IR) modality, aiding in reducing the modality
gap and significantly enhancing the diversity of the samples,
enabling the model to learn diverse representations. Specif-
ically, the hue transform randomly adjusts the hue degree
within the range of 360 degrees, altering the color of the
Visible image. This transformation allows the model to fo-
cus on extracting color-invariant modality-shared features,
such as body shape. The gray transform applies a gray scale
factor [0.299, 0.587, 0.114] to the R,G and B channels, re-
sulting in a hue-transformed infrared-like image. In con-
trast to the channel exchange method used in the existing
CAJ [35] approach, which replaced only one of the three
channels (R, G, or B), our proposed HG can choose one
among 360 different gray images by randomly varying the
hue degree of a single image to ensure the variety of sam-
ples. This approach ensures that the shape of the image
is maintained while improving the learning of discrimina-
tive feature representations. The ablation study conducted
in the experiment section demonstrates a significant impact
on performance by simply increasing the diversity of the
generated HG images. To achieve effective discriminative
learning on diverse samples, we utilize the IRD proposed in
Section 3.2.

However, considering HG provide an intermediate

modality between visible and infrared, applying equation
5 to the between HG and I(Infrared) may cause the learning
direction of the model to be influenced by color differences.
Hence, we introduce a Color Invariant loss (CI) between
HueGray and Visible for emphasize shape-related features
that are independent of color, formulated as follows:

LHG,V
CI =

1

P ×K

P×K∑
i=1

d(fHG
i , fV

i ) (8)

Equation 8 represents an auxiliary loss function aimed
at further reducing the modality gap between Visible and
Infrared. Therefore, IRD (HG,I) is as follows:

LHG,I
IRD = LHG,I

PE + LHG,I
NE + LHG,V

CI (9)

By learning the differences in features between HueGray
and Infrared, which are closer to Infrared than Visible, the
model can more effectively facilitate discriminative learn-
ing. The total Intra-identity Representation Diversification
loss (LIRD), is defined as follows:

LIRD = LV,I
IRD + LHG,I

IRD (10)

Finally, entire loss function consists of identity loss
(LID) which using cross-entropy loss to each person iden-
tity, Hardest Triplet loss (LHT ) and Intra-identity Repre-
sentation Diversification loss (LIRD), as follows:

L = λID · LID + λHT · LHT + λIRD · LIRD (11)

where λID,λHT and λIRD are hyperparameters to bal-
ance the contributions of individual loss terms.

4. Experiments
4.1. Datasets and Implementation details

Datasets. The two public VI-ReID datasets known by
the name of SYSU-MM01 [32] and RegDB [23] are used
to evaluate our method. SYSU-MM01 dataset contains 491
identities captured by 4 Visible cameras and 2 Infrared cam-
eras in both indoor and outdoor environments. We uti-
lize 395 identities consisting of 22,285 Visible images and
11,909 Infrared images for training. In test, 96 identities in-
cluding 3,803 infrared query images and 301 Visible gallery
images are used. Compared to RegDB, SYSU-MM01 is
more difficult due to large variations. RegDB dataset in-
cludes 412 identities collected by one visible camera and
one infrared camera. Each identity consist of 20 images in-
volving 10 Visible images and 10 Infrared images. Half of
the dataset including 206 identities is used for training and
remaining 206 identities for test phase. Evaluation met-
rics. The public evaluation metrics, cumulative matching
characteristics (CMC) at Rank-1 and mean average preci-
sion (mAP), are adopted to evaluate our method. Query and
gallery images are from different modality. Implementa-
tion details. Please refer to the supplementary.
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SYSU-MM01 RegDB
All-search Indoor-search Visible to Infrared Infrared to VisibleMethod

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
cm-SSFT [22] 61.6 63.2 70.5 72.6 72.3 72.9 71 71.7

Hc-Tri [26] 61.68 57.51 63.41 68.17 91.05 83.28 89.3 81.46
MCLNet [9] 65.4 61.98 72.56 76.58 80.31 73.07 75.93 69.49
FMCNet [38] 66.34 62.51 68.15 74.09 89.12 84.43 88.38 83.86

MMD-ReID [14] 66.75 62.25 71.64 75.95 95.06 88.95 93.65 87.3
SMCL [31] 67.39 61.78 68.84 75.56 83.93 79.83 83.05 78.57
CAJ [35] 69.88 66.89 76.26 80.37 85.03 79.14 84.75 77.82

MPANet [33] 70.58 68.24 76.74 80.95 83.7 80.9 82.8 80.7
MMN [39] 70.6 66.9 76.2 79.6 91.6 84.1 87.5 80.5

DCLNet [24] 70.8 65.3 73.5 76.8 81.2 74.3 78 70.6
MAUM [21] 71.68 68.79 76.97 81.94 87.87 85.09 86.95 84.34

CMT [15] 71.88 68.57 76.9 79.91 95.17 87.3 91.97 84.46
CM-EMD [18] 73.39 68.56 80.53 82.71 94.37 88.23 92.77 86.85

SEFL [8] 75.18 70.12 78.4 81.2 92.18 86.59 91.07 85.23
Ours (DEN) 76.36 71.3 83.56 84.65 95.34 90.21 94.98 90.24

Table 2. Comparisons of our method with state-of-the-art methods on SYSU-MM01 [32] and RegDB [23] datasets. Rank-1 accuracy (%)
and mAP (%) are reported. The best results and the second are in Red and Blue, respectively.

4.2. Comparison with State-of-the-Art Methods

We compare the proposed DEN with state-of-the-art
methods. Table 2 illustrates DEN achieves superior per-
formance compared to the existing methods on the SYSU-
MM01 and RegDB datasets. On the SYSU-MM01 dataset,
DEN outperforms existing methods in both indoor-search
and all-search, particularly achieving the Rank-1 accuracy
of 83.56% and mAP of 84.65% in the indoor-search. The
results presents 3.03% and 1.94% improvement over the
performance of the previous best CM-EMD [18]. On
the RegDB dataset, DEN achieves the Rank-1 accuracy
of 94.98% and mAP of 90.24% in the infrared-to-visible,
higher than the previous best MMD-ReID [14] by 1.33%
and 2.94%. It’s worth noting that MCLNet [9] and MMD-
ReID [14] are methods that also consider the intra-identity
representation space, similar to ours. Despite having a sim-
ilar concept compared to the former methods, our method
successfully reduces the modality gap and outperforms
them. Particularly, DEN achieves higher performance than
MMD-ReID by Rank-1 accuracy of 9.61% and mAP of
9.05% in the challenging All-search of the SYSU-MM01
dataset.

4.3. Ablation Study

In this section, we conduct ablation study to evaluate the
effectiveness of each component of our model. As shown
as Table 3, We analyze the key components of equation 5
and equation 9. Intra-identity Representation Diversifica-
tion (IRD) consists of Positive Enhancement (PE) and Neg-
ative Enhancement (NE).

idx
IRD(V,I)

HG
IRD(HG,I)

R-1 mAP
NE PE NE PE CI

1 64.95 62.47
2 ✓ 66.29 63.72
3 ✓ 67.87 64.36
4 ✓ ✓ 69.13 64.79
5 ✓ 71.02 67.46
6 ✓ ✓ ✓ 72.73 69.38
7 ✓ ✓ ✓ ✓ ✓ 73.92 69.68
8 ✓ ✓ ✓ ✓ 73.15 69.21
9 ✓ ✓ ✓ ✓ ✓ ✓ 76.36 71.30

Table 3. Performance comparison of each component of our model
on the SYSU-MM01 dataset (All-search). Index 1 represents the
baseline, which employs two-stream networks [36], Random Eras-
ing [43], Identity loss and Hardest Triplet loss.

Visible-Infrared Intra-identity Representation Diver-
sification Loss. Index 2 and 3 present the results obtained
by adding NE(V,I) and PE(V,I) to the baseline, respectively.
Index 2 shows less performance improvement than index
3. This is because NE(V,I) does not consider intra-instance
variance, focus on dominant features. On the other hand,
index 3, which considers intra-instance variance, achieves
greater performance enhancement. In index 4, the inclusion
of NE(V, I) and PE(V, I) enables the model to learn var-
ious discriminative representations effectively and reduce
the modality gap. Consequently, Rank-1 accuracy increased
by 4.18%, and mAP by 2.32% than baseline.

HueGray Transform. Index 5 and 6 represent the re-
sults obtained by adding HG to the baseline and index 4,
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respectively. These results demonstrate that performance is
improved by increasing intra-instance variance through the
application of HG. Specifically, in index 6, the achieved per-
formance is 3.60% higher for Rank-1 accuracy and 4.59%
higher for mAP compared to index 4. This highlights
that IRD expands the representation space and enables the
model to effectively learn the increased intra-instance vari-
ance.

HueGray-Infrared Intra-identity Representation Di-
versification Loss. Index 7 incorporates NE(HG, I) and
PE(HG, I) on augmented samples using HG, resulting in an
improvement of 1.19% for Rank-1 accuracy and 0.30% for
mAP compared to index 6. Index 8 and 9 represent the re-
sults obtained by adding CI(HG,V) to index 6 and 7, respec-
tively. Index 8, there is marginal improvement. However,
index 9, both Rank-1 accuracy and mAP show notable im-
provements, with an increase of 3.63% for Rank-1 accuracy
and 1.92% for mAP compared to index 6. This is because
CI is designed to capture the missing relationships between
Visible-HueGray samples, suppressing color-dominant fea-
tures and enforcing shape-related features.

Summary. The Intra-identity Representation Diversifi-
cation method expands the representation space to effec-
tively learn the increased intra-instance variance. Addi-
tionally, it enables the model to learn the relationships be-
tween hetero-modality and successfully reduces the modal-
ity gap. Finally, compared to the baseline, our model in-
creases Rank-1 accuracy by 11.41% and mAP by 8.83%,
achieving 76.36% and 71.30%, respectively.

4.4. comparison of Intra Representation space size

In this section, we compare the variations in the size
of the IIRS. We use all test data from the SYSU-MM01
dataset.

idx Loss
Sample

Diversity
IIRS
(V,V)

IIRS
(I,I)

R1 mAP

1 WRT RE,Gray 0.411 0.431 59.93 59.2
2 HT RE,Gray 0.421 0.450 64.37 63.14
3 WRT RE,Hue 0.455 0.462 64.79 62.18
4 HT RE,Hue 0.458 0.467 67.29 65.34
5 WRT RE,HG 0.449 0.450 66.34 62.58
6 HT RE,HG 0.468 0.467 71.02 67.46

Table 4. Comparison of IIRS with Sample Diversity consists
of Random Erasing (RE) [43], Hue Transform (Hue), and Gray
Transform (Gray). The bold mark indicates larger value between
WRT and HT. We use AGW [36] as a base without the triplet loss.

Table 4 illustrates the differences when applying Sam-
ple Diversity to WRT and HT, as discussed in Section 3.1.
Overall, HT exhibits a larger IIRS than WRT and achieves
higher performance in both Rank-1 accuracy and mAP.
Specifically, as the input samples become more diverse,

the performance improvement is relatively small with WRT
in from idx 3 to idx 5 (R-1: +1.55%, mAP: +0.4%), and
the IIRS decreases. However, with HT in from idx 4 to
idx 6, there is a significant performance improvement (R-1:
+3.73%, mAP: +2.12%), and the IIRS is either increased or
maintained. Therefore, to effectively reduce the modality
gap for diverse samples, HT shows better results.

idx Loss SD
IIRS
(V,V)

IIRS
(I,I)

R1 mAP

1 HT RE 0.462 0.476 64.95 62.47
2 HT,NE RE 0.447 0.458 66.29 63.78
3 HT,PE RE 0.504 0.505 67.87 64.38
4 HT,IRD RE 0.520 0.523 69.13 64.79
5 HT,IRD RE,HG 0.531 0.528 72.73 69.38

Table 5. Comparison of IIRS with Intra-identity Representation
Diversification Loss (IRD), consisting of Negative Enhancement
Loss (NE) and Positive Enhancement Loss (PE). SD denote the
Sample Diversity.

Table 5 shows the variations in the IIRS when using
the proposed Intra-identity Representation Diversification
(IRD) loss described in Section 3.2. Compared to idx 1,
which is the base model, idx 3 with PE shows greater perfor-
mance improvement than idx 2 with NE. The reason for this
is that NE alone is not as effective in reducing the modal-
ity gap compared to PE, as it only pulls the inter-modality
intra-identity resulting in a smaller representation space and
limited diversity in representations. However, when PE and
NE are used together, such as in idx 4, NE plays an aux-
iliary role to PE, resulting in a larger IIRS and a boost in
performance. As a result, it can be observed that both the
performance and IIRS have increased. Specifically, when
increasing Sample Diversity in idx 5, the IIRS expands, en-
abling the learning of diverse representations.

Method
IIRS
(V,V)

IIRS
(I,I)

HIMD
(V,I)

R1 mAP

Base 0.462 0.476 0.849 64.95 62.47
CAJ 0.498 0.501 0.849 69.88 66.89

MMD-ReID 0.508 0.51 0.837 66.75 62.25
IRD(V,I) 0.531 0.528 0.802 72.73 69.38

Table 6. Comparison of IIRS and HIMD with existing methods of
Base, CAJ [35] and MMD-ReID [14]. HIMD is Hetero-modality
Intra-identity Max Distance. Base is AGW [36] method, which
replaces WRT with HT.

As shown in Table 6, the proposed method effectively
utilizes IIRS compared to existing methods while also
achieving superior performance. Additionally, the proposed
method exhibits the smallest HIMD, which calculates the
average distance between hard features of hetero-modality
intra-identities. This shows that the proposed method en-
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ables diverse representation with the expansion of IIRS,
while also being robust to hard samples and effectively re-
ducing modality-gap. CAJ, which employs channel aug-
mentation, increases both IIRS and performance compared
to Base. However, the HIMD remains the same, indicating
its effectiveness for easy samples while not performing well
for hard samples. Metric learning-based MMD-ReID shows
a larger IIRS than Base and CAJ, but exhibits a smaller
HIMD, leading to lower performance, especially. While this
approach can cope with certain hard samples, its effective-
ness is limited because it does not account for intra-instance
variance. In contrast, our proposed method employs a care-
fully crafted metric that not only tackles intra-instance vari-
ance robustly but also performs well in handling hard sam-
ples and significantly reducing the modality gap.

4.5. Qualitative Visualization Comparison

In this section, we visualize the top-10 retrieval results,
the feature distributions via t-SNE [27] and the activation
maps using GradCAM++ [2] on SYSU-MM01 dataset.

Figure 3. Comparison of the top-10 retrieval results of CAJ [35],
MMD-ReID [14] and Ours. The green boxes denote correct
matches, and the red boxes denote incorrect matches.

Retrieval results. Figure 3 illustrates that the proposed
method outperforms existing methods in retrieval results
for hard samples. Data augmentation based CAJ focuses
only on dominant features due to metric learning without
consider intra-instance variance, this retrievals a incorrect
person scene (front appearance) similar to Query. While
MMD-ReID proposes metric learning to promote the ro-
bustness of features, it cannot learn discrimination between
features that have become too close. As a result, as shown
in Figure 3, incorrect matches are placed at the front rank-
ings. In contrast, the proposed method shows varied feature
representation capabilities through metric learning, enabled
by the flexible expansion of IIRS to address intra-instance
variance. As a result, various correct scenes (front, back,
and side appearances) are matched at the top of the retrieval
rankings. Additional retrieval results are outlined in the sup-
plementary section.

Feature distributions. In Figure 4, DEN exhibits a rela-

Figure 4. The feature distributions using t-SNE are displayed,
where • and X represent different modalities, and colors denote
the same identity.

tively reduced modality gap compared to MMD-ReID. No-
tably, the green circle of ours shows a complete overlap of
cross-modalities within the same space, as opposed to dis-
tinct clustering based on their modalities.

Figure 5. The activation maps using Grad-CAM++. Row 1 and 2
are images of visible and infrared, respectively.

Activation maps. In Figure 5, CAJ and MMD-ReID
indicate activation primarily in specific body parts, while
DEN shows activation across the entire body. Thus, our
metric learning for enlarging IIRS can effectively represent
diverse intra-identities.

5. Conclusion
Our study addresses the challenges of visible-infrared

person re-identification (VI-ReID) by focusing on the ex-
pansion of the Intra-modality Intra-identity Representation
Space (IIRS) and the learning of discriminative features for
intra-instance variance. Our proposed Intra-identity Repre-
sentation Diversification (IRD) loss and Diversity Enhance-
ment Network (DEN) contribute to the enlargement of the
IIRS and the efficient learning of diverse and discrimina-
tive representations. Experimental results on the SYSU-
MM01 and RegDB datasets demonstrate the superiority
of our method, achieving remarkable Rank-1 accuracy of
76.36% and mAP of 71.30% on the challenging SYSU-
MM01 dataset. This highlights the significance of our ap-
proach in advancing the field of VI-ReID and provides a
valuable foundation for future cross-modality research.
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