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Abstract

The Vision Transformer has emerged as a powerful tool
for image classification tasks, surpassing the performance
of convolutional neural networks (CNNs). Recently, many
researchers have attempted to understand the robustness of
Transformers against adversarial attacks. However, previ-
ous researches have focused solely on perturbations in the
spatial domain. This paper proposes an additional perspec-
tive that explores the adversarial robustness of Transform-
ers against frequency-selective perturbations in the spectral
domain. To facilitate comparison between these two do-
mains, an attack framework is formulated as a flexible tool
for implementing attacks on images in the spatial and spec-
tral domains. The experiments reveal that Transformers rely
more on phase and low frequency information, which can
render them more vulnerable to frequency-selective attacks
than CNNs. This work offers new insights into the proper-
ties and adversarial robustness of Transformers.

1. Introduction

Convolution neural networks (CNNs) have served as
the dominant architecture for computer vision for a long
time. However, Transformer-based structures have recently
emerged as another promising architecture [11], achieving
even better performance than CNNs especially in image
classification.

CNNs are known to be vulnerable to adversarial attacks,
i.e., an imperceptible perturbation added to an image can
fool a trained CNN so that it misclassifies the attacked im-
age [2]. Investigating the robustness of a model against ad-
versarial attacks is important because not only the vulner-
ability issue is critical in security-sensitive applications but
also such investigation can lead to a better understanding of
the operating mechanism of the model. Then, a naturally
arising question is: how vulnerable are Transformers com-
pared to CNNs?

The researches comparing adversarial robustness of

CNNs and Transformers do not reach consistent conclu-
sions. One group of studies claims that Transformers are
more robust to adversarial attacks than CNNs [3, 6, 27, 32].
However, another group of studies claims that the two ar-
chitectures have similar levels of robustness [5, 7, 25].

This paper aims to explore the adversarial robustness of
Transformers from a previously unexplored perspective. It
has been noted in previous studies that Transformers rely
more on low frequency features [6, 28] while CNNs focus
more on high frequency features [18, 35]. From this point
of view, popular gradient-based attack methods, which is
mostly used in the existing studies comparing adversarial
robustness of CNNs and Transformers, tend to perturb high
frequency features in images through spatial domain pertur-
bations and this might cause CNNs to be fooled more easily
than Transformers. To alleviate such bias, we formulate an
attack framework that allows flexible perturbations in both
spatial and spectral domains, with the hope to find certain
types of adversarial perturbations for which Transformers
become more vulnerable than CNNs. Note that we do not
intend to develop a new stronger attack in the frequency do-
main, but aim to formulate a unified attack framework that
can directly perturb the pixel values, magnitude spectrum,
and phase spectrum of an image.

Figure 1 shows an example, where each of the magni-
tude, phase, and pixel components is perturbed using our at-
tack framework for ResNet50 and ViT-B. It can be observed
that attacking different components induces different distor-
tion patterns in the image. The distortion pattern also varies
depending on the target model. Thus, a standardized scale is
required to make proper comparison among different target
models and attack domains. We choose to utilize an image
quality metric to measure the attack strength across various
models and attack methods. In addition, we consider a wide
range of attack strength because the superiority in terms of
robustness between models may change depending on the
amount of perturbation.

We conduct extensive experiments to compare the ad-
versarial robustness of off-the-shelf pre-trained CNN and
Transformer models. The results demonstrate that Trans-
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formers are not necessarily more robust than CNNs, and in
particular, Transformers tend to be more vulnerable to per-
turbations inserted to the magnitude and phase components
in the frequency domain. Our contributions can be summa-
rized as follows.

• To explore adversarial robustness in both the spa-
tial domain and spectral domain, we formulate an at-
tack framework that can perturb the magnitude and
phase spectra in the spectral domain and the pixel val-
ues in the spatial domain. In particular, examining
frequency-selective perturbations by the attacks is one
of the key factors to a deeper understanding of the ad-
versarial robustness of Transformers.

• Using the attack framework, we evaluate various mod-
els of CNN and Transformer over a wide range of im-
age quality of attacked images. Relative vulnerability
among the models is analyzed in various viewpoints
such as attack type, attack strength, model size, and
training data. As a main result, it is found that Trans-
formers are particularly vulnerable to phase perturba-
tions concentrated in the low frequency region.

• We conduct in-depth analyses to investigate the
frequency-dependent behaviors and importance of
spectral information in Transformers. Additionally, we
explain the vulnerability of Transformers to the phase
attack from the viewpoint of linearity of models and
attacks.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the related works. In Section 3, we
present our method to explore the robustness of Transform-
ers. The results are presented in Section 4 with rich analy-
sis. Finally, conclusion is made in Section 5.

2. Related Works
2.1. Vision Transformers

The vision Transformer (ViT) has appeared as a powerful
neural architecture using the self-attention mechanism [11].
Several variants of ViT have been also proposed. The Swin
Transformer [23] improves the efficiency over ViT using a
shifted window scheme for self-attention. To resolve the
issue that Transformers require a large dataset for training,
the data-efficient image Transformer (DeiT) [34] is trained
through distillation from a CNN teacher. Other variants in-
clude token-to-token ViT [41], pyramid ViT [36], Trans-
former in Transformer [17], cross-covariance image Trans-
former [4], etc.

2.2. Adversarial Attack Methods

The goal of a typical adversarial attack is to change the
classification result of a model by injecting a noise-like per-
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Phase
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Phase
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Magntude
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Figure 1. Example case of our attack perturbing the magnitude,
phase, and pixel values, respectively, for ResNet50 and ViT-B. The
attacked image, the difference between the original and attacked
images (after amplification for visualization), and an enlarged area
of the attacked image are shown in each case.

turbation to the image while the perturbation is kept imper-
ceptible in order not to be detected easily. The perturbation
is usually found via gradient-based optimization. The fast
gradient sign method (FGSM) [14] uses the sign of gradi-
ent of the classification loss. The projected gradient descent
(PGD) method [24] implements a stronger attack by itera-
tively optimizing the perturbation. These attacks limit the
Lp norm of the perturbation to control the attack strength.
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(c) C&W

Figure 2. Example of evaluations showing that the adversarial vulnerability is dependent on the attack strength (represented as PSNR)

The C&W attack [8] optimizes the weighted sum of the
amount of perturbation and the classification loss, which is
known to be one of the strongest attacks. Note that our at-
tack formulation (Section 3.2) is inspired by the C&W.

Frequency-domain filtering can be used to constrain per-
turbations only in certain frequency regions [16, 21, 33],
which are still based on image-domain attacks. The work
in [12] suggests an attack in the DCT domain for CNNs,
which only drops certain frequency components via quanti-
zation. In [1], an attacked image is generated by swapping
a frequency component (among four single-level wavelet
components) of the original image with that of another im-
age, which considers only a limited type of spectral per-
turbation and, furthermore, is agnostic to the target model
and thus is not suitable for direct comparison of the robust-
ness of CNNs and ViTs. Recently, direct perturbation in the
frequency domain is also tried on CNNs [38], which is dif-
ferent from our method that can perturb the magnitude and
phase components separately.

2.3. Adversarial Robustness of Transformers

As mentioned in the introduction, two conflicting con-
clusions exist in the literature regarding the relative adver-
sarial robustness of CNNs and Transformers. In one group
of studies, it is claimed that Transformers are more robust
than CNNs. The studies in [3, 6, 30, 32] commonly make
a conclusion that Transformers are more robust against
gradient-based attacks including FGSM, PGD, and C&W
because CNNs rely on high frequency information while
Transformers do not. In [20], it is suggested that the se-
vere nonlinearity of the input-output relationship of Trans-
formers causes their higher robustness than CNNs. When
adversarial training is considered, it is recognized that ViTs
exhibit more robust generalization than CNNs [22]. An-
other group of studies argues that Transformers are as vul-
nerable to attacks as CNNs. The work in [25] finds that
ViTs are not advantageous over ResNet in terms of robust-
ness against various attack methods such as FGSM, PGD,
and C&W. In [7], it is shown that CNNs and Transform-
ers are similarly vulnerable against various natural and ad-
versarial perturbations. In [5], it is attempted to compare

CNNs and Transformers on a common training setup, from
which it is concluded that they have similar adversarial ro-
bustness. An attack perturbing single patches is designed
in [13] to induce vulnerability of ViTs, and similarly the
patch attack [19] is applied to Transformers in [15].

2.4. Our Distinguished Contributions

Our work is distinguished from the previous works as
follows. (1) Compared to some previous works where only
a limited number of models are compared [3, 6, 13, 30] or a
limited range of attack strength is considered [5, 7, 15, 25],
we consider the trade-off characteristics between vulnera-
bility and attack strength in an extensive manner for diverse
CNNs and Transformers over a wide range of image qual-
ity degradation. (2) Some previous works explain differ-
ent levels of vulnerability of CNNs and Transformers in
terms of their reliance on different frequency components
[3, 6, 30, 32]. While this conclusion is based on the results
of attacks in the spatial domain, we directly impose per-
turbations in the spectral domain to implement frequency-
selective attacks for Transformers. (3) In [13] and [15],
it is shown that localized perturbations on image patches
effectively attack Transformers due to the patch-wise self-
attention mechanism of Transformers. However, successful
patch perturbations are usually visible, which is undesirable
as adversarial attacks, whereas we show that Transformers
can become vulnerable by spectral-domain perturbations in-
ducing imperceptible global distortion in the images.

3. Method
3.1. Consideration of Attack Strength

In many popular attack methods, the attack strength can
be controlled by certain parameters (e.g., L∞ norm of per-
turbation in FGSM, the balancing parameter between the
amount of distortion and the change of the classification loss
in C&W). As an attack becomes strong, the target model be-
comes more vulnerable, but the image distortion becomes
more perceptible. We notice that depending on the consid-
ered attack strength, the superiority of one model to another
in terms of robustness may vary.
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Figure 2 shows an example of this issue. For each trained
model, we apply the FGSM, PGD, or C&W attack to the
images from the NeurIPS 2017 Adversarial Challenge [39].
For FGSM and PGD, the L∞ norm constraint of the per-
turbation varies among {0.1/255, 0.5/255, 1/255, 4/255,
8/255}. For C&W, the balance parameter between the
amount of perturbation and the cross-entropy varies among
{1, 0.4, 0.2, 0.1, 0.05, 0.01}. The figure shows the attack
success rate (ASR) of the attacked images with respect to
the attack strength. Here, the image quality of the attacked
images (peak signal-to-noise ratio (PSNR) in this figure) is
used to represent the attack strength. Overall, ResNet mod-
els tend to be more vulnerable than Transformers in all at-
tacks by showing higher ASR, which is consistent with the
results in [3, 6, 32]. When we have a look at the details,
observations demonstrating the vulnerability dependent on
the attack strength can be also made. For instance, in Figure
2a, DeiT-S is more robust than both ResNet models over 40
dB but they show similar vulnerability at 30-35 dB; in Fig-
ure 2b, all models are similarly vulnerable showing almost
100% of ASR for low PSNR values, but their vulnerabil-
ity becomes different after about 40 dB; Figure 2c shows
a similar trend to Figure 2b but in a higher PSNR range.
These results demonstrate that it is important to examine a
wide range of attack strength with various models in order
to better understand the vulnerability of different models.

3.2. Attack Method

Different from the existing works, we formulate a uni-
fied attack framework that is capable of perturbing images
both spatially and spectrally. There are two key motiva-
tions behind our approach. First, the previous studies point
out that CNNs tend to rely on high frequency information
in images, which may be why they appear more vulnerable
than Transformers [6,32]. In other words, the popular attack
methods injecting high frequency noise may be unfavorable
to CNNs. The unified framework tries to alleviate such an
inherent bias by enabling to flexibly perturb images in both
spatial location-selective and frequency-selective manners.
Second, we aim to analyze the mechanisms of Transformers
in various viewpoints through the results of attacks applied
in different domains.

The Fourier transform of an image X can be written by

F{X} = M · ejϕ, (1)

where M and ϕ are the magnitude and phase spectra, re-
spectively. The attacked image X ′ is obtained by the combi-
nation of multiplicative magnitude perturbation1 δmag, ad-
ditive phase perturbation δphase, and additive pixel pertur-

1We also tried an additive magnitude perturbation but it was not opti-
mized well because the magnitude spectrum has values over a wide range.

bation δpixel as follows:

X̃ ′ = F−1
{
clip0,∞(M ⊗ δmag) · ej(ϕ+δphase)

}
+ δpixel,

(2)

X ′ = clip0,1(X̃
′), (3)

where F−1 is the inverse Fourier transform, ⊗ is the
element-wise multiplication, and clipa,b(x) limits the value
of each element of x within a and b. Here, we assume that
the pixel values are normalized within 0 and 1. Note that
δmag and δphase are kept to be symmetric in order to en-
sure the resulting image after the inverse Fourier transform
to have real-valued pixel values.

We consider attacks employing one among δmag, δphase,
and δpixel, denoted as “magnitude attack,” “phase attack,”
and “pixel attack,” respectively. It is also possible to employ
two or all types of perturbation at the same time, the results
of which are in Supplementary Material.

The process to optimize the perturbations is inspired by
the C&W attack [8]. In other words, we minimize the L2

difference between the original and attacked images to keep
the amount of perturbation as small as possible, while the
cross-entropy (CE) loss is maximized to fool the classifier.
Thus, the loss function of the unified attack framework is
given by

Loss = λ · L2(X
′, X)− CE(f(X ′), y), (4)

where λ is a parameter balancing the L2 difference and
CE, which controls the attack strength, f(·) is the classifier,
and y is the ground truth. This loss can be minimized by
a gradient-descent approach to obtain δmag, δphase, and/or
δpixel, and consequently the attacked image X ′.

4. Experiments
4.1. Setup

We aim to benchmark the adversarial robustness of the
pre-trained models that serve as off-the-shelf solutions in
general image classification applications. We consider
ResNet50, ResNet152 as CNNs, and ViT-B/16, ViT-L/16,
DeiT-S, and Swin-B as Transformers. Here, S, B and L
mean small, base, and large, and /16 means the patch size.
ResNet50 and ResNet152 are from the torchvision models
[29] trained on ImageNet-1k [31]. ViT-B, ViT-L, DeiT-S,
and Swin-B are from the timm module [40], which are pre-
trained on ImageNet-21k [10] and finetuned on ImageNet-
1k. ViT trained on ImageNet-1k and DeiT-S without distil-
lation are also considered.

To evaluate the adversarial robustness of the models, the
image dataset from the NeurIPS 2017 Adversarial Chal-
lenge [39] is used.

To obtain perturbations by minimizing the loss in Eq.
(4), we use the Adam optimizer with a fixed learning rate
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(a) ResNet50 (b) ResNet152 (c) ViT-B

(d) ViT-B-1k (e) ViT-L (f) Swin-B

(g) DeiT-S (h) DeiT-S with no distillation

Figure 3. Comparison of different attacks for each model. The range for high attack success rates is enlarged for better visualization.

of 5 × 10−3 and a weight decay parameter of 5 × 10−6.
The maximum number of iterations is set to 1000. We also
set a termination condition that the optimization stops when
the loss does not improve for five consecutive iterations. We
vary the value of λ as {1, 103, 5×103, 104, 5×104, 105, 5×
105, 106} to control the attack strength.

We employ image quality metrics to enable representa-
tion of the attack strength commonly across different attacks
introduced in the previous section, including PSNR, multi-
scale structural similarity index measure (MS-SSIM) [37],
mean deviation similarity index (MDSI) [26], and learned
perceptual image patch similarity (LPIPS) [42]. Here, the
results using PSNR are shown; those using the other met-
rics are provided in Supplementary Material, which show
similar trends to those using PSNR.

4.2. Results

We present the results in two perspectives: (1) compari-
son of different attacks for each model, and (2) comparison
of different models for each attack type.

4.2.1 Comparison of Attacks

We first compare various attacks implemented using our
unified attack framework. Figure 3 shows the results in
terms of ASR with respect to PSNR. All the attacks can
achieve (almost) 100% of ASR at the lower extremes of
PSNR for all models. However, their relative effective-
ness varies depending on the model. For ResNet50 and
ResNet152, the pixel attack appears to be the strongest,
whereas the phase attack is the strongest for ViTs and Swin-
B. This shows that the flexible frequency domain attack is
able to overcome the limitation of the pixel attack primar-
ily perturbing high frequency information, and becomes a
potent tool for attacking Transformers. We assume that the
vulnerability of DeiT-S to the pixel attack is attributed to
its training method, which involves distillation from a CNN
teacher. This assumption is supported by the observation
that DeiT-S without distillation is also more vulnerable to
the phase attack, which is consistent with the vulnerability
of ViTs and Swin-B.

It is observed that the phase attack is mostly stronger
than the magnitude attack. Further analysis on this is pre-
sented in Section 4.4. Attention maps before and after at-
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(a) Magnitude attack (b) Phase attack (c) Pixel attack

Figure 4. Comparison of different models for each attack type. The range for high attack success rates is enlarged for better visualization.

tacks are also compared in Supplementary Material.

4.2.2 Comparison of Vulnerability of Models

In Figure 4, ASR of the models is compared with respect
to PSNR for each attack type. Notably, when ASR is rela-
tively high, Transformers are either equally or more robust
than ResNet models under the pixel attack but are more vul-
nerable to the magnitude and phase attacks. Again, this
is attributed to the flexible perturbations in the frequency
domain, which will be further analyzed later. At PSNR
over 45-50 dB, where ASR is low, the observed trends
do not hold anymore, i.e., some Transformers (ViTs and
DeiT-S) become similarly robust to ResNet models under
the magnitude and phase attacks, and ResNet models be-
come more vulnerable to all Transformers under the pixel
attack. When Swin-B is compared to ViT-B and ViT-L,
the former shows higher vulnerability than the latter for the
magnitude and phase attacks. When the model size is con-
cerned, larger models (ViT-L and ResNet152) are more ro-
bust than smaller models (ViT-B and ResNet50) under all
attacks. While [7] also observed a similar trend using pixel-
domain attacks (FGSM and PGD), we find that the same
also holds for the attacks in the spectral domain.

We also compare ViTs trained in different environments,
i.e. ViT-B and ViT-B-1k. It is observed that ViT-B is more
robust than ViT-B-1k below 45 dB, but becomes more vul-
nerable when PSNR increases, particularly for the pixel at-
tack. It is worth noting that [7] also pointed out the advan-
tage of training with a larger dataset to enhance robustness;
we additionally find that the benefit of a larger dataset is
even more prominent for the magnitude and phase attacks
than for the pixel attack, but the benefit disappears when the
amount of perturbation is small.

DeiT-S behaves more like ResNet than the other Trans-
formers due to the distillation using CNN. In Supplemen-
tary Material, the models pre-trained on the same dataset
(i.e., ImageNet-1k) are compared, where similar trends to
the above results are observed.
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Figure 5. Example of the attacked image under the phase attack,
distortion in the pixel domain (magnified by ×20), and distribution
of the distortion over different frequency regions.

4.3. Analysis

We further investigate the particular vulnerability of
Transformers to the phase attack.
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(b) ViT-B

Figure 6. Results of the phase attack when the perturbation is re-
stricted to reside only in the low or high frequency band. The case
without restriction is also shown as ‘whole.’

4.3.1 Frequency Analysis of Perturbations

In order to investigate the effect of the phase attack on
the spectral characteristics of images, we apply the Fourier
transform to the difference between the original and at-
tacked images, and analyze the magnitudes in different fre-
quency regions, which are defined as illustrated in Figure
5(b). Figures 5(c) to 5(f) show the attacked image, distor-
tion in the pixel domain, and magnitude distribution. The
averaged results over images are shown in Supplementary
Material. In the case of ResNet50, the distortion is con-
centrated on the high frequency regions, whereas low fre-
quency regions are mainly distorted in the other models.
Since CNNs and Transformers rely more on high and low
frequency information, respectively [6, 18, 28, 35], the at-
tack effectively injects perturbations in such vulnerable fre-
quency regions. Consequently, the distortion pattern signif-
icantly differs according to those properties.

4.3.2 Frequency-Restricted Attacks

We examine the case where the perturbation is applied to a
limited frequency band. Figure 6 compares the phase attack
when the phase perturbation is restricted to only the low fre-
quency band (regions 1 and 2 in Figure 5(b)) or the high fre-
quency band (region 10 in Figure 5(b)). Perturbing only the
high frequency band is more effective than perturbing the
whole band for ResNet50, as it is particularly vulnerable to
high frequency perturbations. However, for ViT-B, perturb-
ing only the high frequency band is the least effective and
the case without restriction (i.e., ‘whole’) implements the
strongest attack because effective perturbations need to be
applied to low-intermediate frequency regions as shown in
Figure 5(e).

4.3.3 Linearity of Models and Attacks

We further analyze the vulnerability of Transformers to the
phase attack in the viewpoint of the linearity of models and
attacks. A noticeable difference between the attacks, as
shown in Eq. 2, is whether the input is linearly perturbed
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Figure 7. Direction changes of output features (θϵ) for ViT-B and
Swin-B. Different colors indicate the results of different images.

or not. If a classifier f is linear, its input-output relationship
will be linear, i.e.,

g(X + ϵ · δ) = g(X) + ϵ · g(δ), (5)

where X is an input image, δ is a perturbation, ϵ is a scalar,
and g is the output at the penultimate layer of f (i.e., out-
put feature). For such a classifier, δ can effectively move
g(X+ ϵ · δ) along the determined adversarial direction g(δ)
in the feature space as intended. In contrast, if f is non-
linear, g(X + ϵ · δ) will not directly follow the direction
of g(δ) in the feature space, which will weaken the attack.
This explanation coincides with [14], which showed that ad-
versarial examples are a result of models being too linear.

To experimentally examine the linearity of models under
different attacks, we use the method in [20]. Consider Xϵ =
X+ ϵ · δ, where 0 ≤ ϵ ≤ 1. As ϵ increases, X moves on the
straight line along the direction determined by δ in the input
space. For a chosen ϵ, we examine the following quantity:

θϵ = π − arccos(ĝϵ− · ĝϵ+), (6)

where

ĝϵ± =
g(Xϵ±∆ϵ)− g(Xϵ)

||g(Xϵ±∆ϵ)− g(Xϵ)||2
. (7)

∆ϵ (> 0) controls the amount of forward and backward
shifts along the direction of δ in the input space. ĝϵ± signi-
fies the corresponding shifts in the feature space (with nor-
malization). θϵ indicates the orientation of these shifts in
the feature space, determining whether the linear displace-
ments in the input space are also maintained in the feature
space.
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Figure 8. Classification accuracy with respect to the ratio of re-
duction in the magnitude or phase spectrum.

Model Phase (%) Magnitude (%) Else (%)
ResNet50 2.04 0.11 97.85

ViT-B 33.92 0.26 65.82

Table 1. Proportions of magnitude-phase-recombined images that
are classified to the classes of the magnitude or phase images, or
some other classes.

Figure 7 shows θϵ of ViT-B and Swin-B for δ = X ′−X ,
where X is an image, X ′ is the attacked result of X with
λ = 5 × 103, and ∆ϵ = 0.001. For the pixel attack, high
peaks of θϵ appear as ϵ changes from 0 to 1 (Figures 7(b)
and 7(d)), i.e., the models are relatively nonlinear (as also
shown in [20]) and thus are robust to the pixel attack that
is linear. However, for the phase attack, which perturbs
the input in a nonlinear manner, θϵ remains as small val-
ues (Figures 7(a) and 7(c)), meaning that the features are
more effectively moved in the feature space in the adversar-
ial direction and thus become more vulnerable.

4.4. Dependence on Magnitude and Phase

In most results above, the magnitude attack appears to
be weaker than the phase attack. We investigate this phe-
nomenon further.

4.4.1 Sensitivity to Reduced Magnitude and Phase

We conduct an experiment to evaluate the impact of gradu-
ally reducing the magnitude or phase spectrum on the clas-
sification accuracy without any attack applied (i.e., M ′ =
M × (1−r) or ϕ′ = ϕ× (1−r), where r ∈ {0, 0.1, ..., 1}).
The results, as shown in Figure 8, demonstrate that both
ResNet50 and ViT-B are more sensitive to phase reduc-
tion than magnitude reduction. Notably, even with 90%
of the magnitude reduced, ViT-B still achieves an accuracy
of 85.6%. These results suggest that the corruption of the
phase spectrum has a more significant impact on model per-
formance than that of the magnitude, which explains the
higher vulnerability of the models to the phase attack.

4.4.2 Magnitude-Phase Recombination

Inspired by [9], we conduct an experiment where the mag-
nitude component of one image and the phase component
of another image are recombined in the frequency domain
and the classification result of this recombined image from
a model is tested. For all possible image pairs, Table 1
shows the proportion of the images that are classified as the
class of the magnitude image or phase image, or none of
the two classes. For ResNet50, most of the cases (97.85%)
do not follow either the classes of the magnitude or the
phase, while for the rest, more images follow the phase
classes (2.04%) than the magnitude classes (0.11%). For
ViT-B, however, a considerable amount of recombined im-
ages (33.92%) are classified as the class of the phase im-
ages, while only 0.26% of the images follow the classes of
the magnitude images. These results highlight the relative
importance of the phase information, providing an expla-
nation on the particular vulnerability of Transformers to the
phase attack and the higher strength of the phase attack than
the magnitude attack for Transformers.

5. Conclusion
We comparatively investigated the adversarial robustness

of CNNs and Transformers using the unified attack frame-
work with consideration of the relationship between the at-
tack strength and ASR. Our study provides a unique con-
tribution to the field by revealing that the vulnerability of
models to adversarial attacks is highly dependent on the
type of attack and the frequency regions where the perturba-
tions are injected. Specifically, we found that Transformers
are more vulnerable to the phase and magnitude attacks that
mainly inject perturbations in the low frequency regions,
while CNNs are more vulnerable to the pixel attack that
injects perturbations mainly in the high frequency regions.
We provided an explanation for this difference in the view-
point of linearity of the models and attacks.

Our results provide insights into the underlying mech-
anisms of adversarial attacks and highlight the importance
of considering the frequency domain when evaluating and
improving the robustness of deep learning models. Further-
more, we observed that the phase information plays a more
important role in classification for both CNNs and Trans-
formers than the magnitude information, and reliance on the
phase information is more prominent in Transformers.

As a future work, it would be interesting to explore the
components that make ViTs vulnerable to the phase attack,
based on which robust ViT structures could be developed.
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