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Abstract

With the rise in expectations related to generative mod-

els, text-to-video (T2V) models are being actively stud-

ied. Existing text-to-video models have limitations such as

in generating complex movements replicating human mo-

tions. These model often generate unintended human mo-

tions, and the scale of the subject is incorrect. To over-

come these limitations and generate high-quality videos

that depict human motion under plausible viewing angles,

we propose a two stage framework in this study. In the

first stage a text-driven human motion generation network

generates three-dimensional (3D) human motion from input

text prompts and then motion-to-skeleton projection mod-

ule projects generated motions onto a two-dimensional (2D)

skeleton. In the second stage, the projected skeletons are

used to generate a video in which the movements of a sub-

ject are well-represented. We demonstrated that the pro-

posed framework quantitatively and qualitatively outper-

forms the existing T2V models. Previously reported hu-

man motion generation models use texts only or texts and

human skeletons. However, our framework only uses texts

and outputs a video related to human motion. Moreover,

our framework benefits from using skeleton as an addi-

tional condition in the text-to-human motion generation net-

works. To the best of our knowledge, our framework is the

first of its kind that uses text-driven human motion gener-

ation networks to generate high-quality videos related to

human motions. The corresponding codes are available at

https://github.com/CSJasper/HMTV .

1. Introduction

Present, text-to-image models (T2I) that generates im-

ages using a given text prompt are being actively stud-

ied. Particularly, models such as stable diffusion [1] and

*These authors contributed equally to this work
²Corresponding author

DALL-E2 [2] are attracting considerable attention owing

to their outstanding performance. Alongside the growth of

T2I models, text-to-video models (T2V), which generates a

video based on a given text prompt, are also being devel-

oped.

Seminal research on T2V has gained momentum ow-

ing to diffusion-based models such as a Dreamix [3], video

diffusion model (VDM) [4], ImagenVideo [5], and Make-

A-Video [6]. However, these models face challenges when

generating videos using prompts involving human motion.

First, a prompt indicating the desired motion incorrectly

produces the intended pose as shown in the first row in

Fig.1 (a). Second, owing to the lack of information regard-

ing the scale of the human body, a scaling problem emerges,

as presented in the first row in Fig. 1 (b). Lastly, the lack

of specific guidance causes inconsistencies across frames,

as demonstrated in the first row in Fig. 1 (c), in which the

prompt is meant to generate human motion, yet the human

body disappear in some frames. To solve these problems,

the skeleton-guided text-to-video generation [7, 8], which

is conditioned on a human skeleton, has been introduced.

However, this method creates or locates a pose that matches

the given text, accurately obtaining the desired motion is

difficult.

Early methods of human motion generation use human

motion prediction [9±11] methods that predict subsequent

actions based on previous actions and generate in-between

motion [12,13]. Recently, text-driven human motion gener-

ation, using models such as motion diffusion model (MDM)

[14], MotionDiffuse [15], and text-to-motion generative

pre-trained transformer (T2M-GPT) [16], which generates

three-dimensional (3D) human motion sequences from text

prompts, has been studied. In particular, T2M-GPT [16] is

expected to be widely applicable as it can generate com-

plex movements using sentence much longer than previous

models.

In this study, we propose a novel video generation algo-

rithm that generates natural human movements with text-to-

skeleton module and a pose guided text-to-video module.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. This figure shows the difference of output video between the presence and absence of pose guidance applied to T2V models.

Models without pose guidance shows the problem of ambiguity, improper scale and temporal consistency problems. In the presence of

pose guidance these problem do not happen.

Specifically, a text prompt is used as an input to generate

high quality 3D human motion. This process can yield ac-

curate human motion. Next, motions are converted to two-

dimensional (2D) skeletons using a text guided projection

matrix. At this stage, we can obtain desired pose by pro-

jecting a 3D motion onto the 2D pose corresponding to the

camera direction prompt. Lastly, the input text and the 2D-

human-skeleton sequence obtained from the generated 3D

human motion are used to create a video containing high-

quality human movements.

Notably, this framework generates high-quality videos

containing human motion and controls the viewing angle

and movement of the camera. To the best of our knowl-

edge, our algorithm is the first of its kind that can control the

camera position and the scale of the subject as desired. We

comfirmed the feasibility of the model, demonstrating the

potential to implement camera techniques commonly used

in acutal films.

Importantly, our model can potentially be used as a

framework connecting text-driven human motion genera-

tion and text-to-video models. As these model improve ow-

ing to seminal research, their combination within our frame-

work would yield better text-to-video outputs.

Our contribution are as follows:

• We proposed a framework that employs text to skele-

ton module and text to video generation modules to

synthesize a high quality video expressing dynamic

scenes with complex human behavior by a text based

camera control.

• Our framework can control a viewing direction of gen-

erated video when generating projected 2D skeleton

which enables the output more dynamic and plausible.

• Our text-to-video methods outperform both in quanti-

tative and qualitative results than previous methods.

2. Related Work

2.1. Text-driven Video Generation

In early studies, mainstream human motion generation

methods predicted subsequent frames based on the initial

frame [17,18]. Subsequently, generative adverarial network

(GAN) [19]-based models [20] were introduced, which can

generate videos unconditionally without using the initial

frame or with classes as the only condition.

As language models and transformers have developed,

video generation from text prompts has become possible.

Godiva [21] extended the Vector Quantized-Variational Au-

toEncoder (VQ-VAE) [22] to T2V generation by mapping

text tokens to video tokens and generated highly realistic

scenes. NUWA [23] proposed an auto-regressive framework

that can be used for both T2I and T2V tasks, and is an ex-

tension of the model proposed by Godiva [21].

Diffusion [24] is a technique that adds noise to the in-

put image and then removes the noise in several steps to

produce a realistic image. A VDM [4] uses a space-time

decomposition U-Net [25] to directly implement the diffu-

sion process at the pixel level. Make-A-Video [6] uses T2I

to learn the relationship between text and video, and learns

motions via unsupervised learning on unlabeled video data.

In addition, ModelScope [26], Zero-Scope [27], Runway-

AI [28] and CogVideo [29] are T2V models that generate

plausible video. Even though, there have been several such

efforts, there are problems, namely motion ambiguity prob-

lem, scale problem and temporal consistency problem as

shown in Fig. 1. Our method is also in the field of Text-

driven Video Generation and we addressed these problems

in two stages, which consist of the text-to-skeleton module

and the pose guided text-to-video module.

2.2. Text-driven Human Motion Generation

Our text-to-skeleton module consists of the text-to-

motion generation module and the motion-to-skeleton pro-

jection module. Recently, various methods such as Varia-

tional AutoEncoder (VAE) [30], diffusion [24] have been
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studied for human motion generation. Models such as

[31±34] which are based on VAE [30] are often used for

human motion generation. The most representative method

is T2M-GPT [16]. It maps motion to discrete values using

VQ-VAE [22] and uses motion-GPT, a GPT [35]-like net-

work [16], to predict the next discrete values or indices that

correspond to the motions. Then, these indices are decoded

to obtain the motions that correspond to the given text. Dif-

fusion based methods, such as Motion Diffuse [15] and

MDM [14], have been widely studied. Motion Diffuse [15]

is the first model that uses a diffusion model [24] for text

to motion generation. MDM [14] is a diffusion-based gen-

erative model without a classifier for the human motion do-

main. Text-driven human motion generation is a powerful

technique that can output a desired motion for skeleton-

guided T2V model. Among various text-driven models used

for generating human motion, we tested T2M-GPT [16] and

diffusion-based MDM [14] in this study. The outputs ob-

tained from the models were then used as guidance for the

T2V model in our framework.

2.3. Pose-guided Video Generation

Despite the efforts to implement text-driven video gener-

ation models, directly generating human motion in videos is

difficult. Previously, generative models [36, 37] used skele-

ton guidance to generate human motion, however, there was

a problem with generating random style video. Recently,

based on these ideas, models [7,8] have shown the possibil-

ity of solving this problem using both prompt and skeleton

guidance, however, these models cannot be implemented

immediately because of the problem of inputting skeleton

videos and text. We solved this problem by combining text-

driven human motion generation approach.

3. Proposed Method

In this section, we present an overview of our proposed

framework, which is shown in Fig. 2. Our framework aims

to generate high quality and diverse videos depicting hu-

man motions and the method consists of two stages. The

(1) text-to-skeleton generation stage generates motion from

given texts and then use motion-to-skeleton projection mod-

ule to obtain projected 2D skeletons. In the text-to-motion

generation, various text-to-motion generation models can

be applied in this stage. Motion-to-skeleton projection is

a sub-stage that projects generated 3D human motions to

2D space. In this stage, we use motion-to-skeleton projec-

tion module which projects human motion with text driven

camera matrix. In this step, texts which describe the view-

ing direction could be given. With given texts, this mod-

ule controls the output projection style by adjusting cam-

era angles and distances. Therefore, we can generate diverse

scenes using different camera angles and movements inally,

(2) the skeleton-guided text-to-video generation stage gen-

erates videos using the texts from the first stage along with

the projected human joints. Similar to the first stage, we can

use various text-to-video models in the final stage.

3.1. Text-to-Skeleton Motion Generation

This stage consists of two sub-stages: Text-to-motion

Generation and Motion-to-skeleton Projection.

Text-to-motion Generation

Text-to-motion generation stage uses a predefined T2M

network that generates sequential 3D human motion. Note

that 3D human motion is generated by a set of joints that

represent locations relative to a root position. Using input

text P , the T2M network F (P; θ) generates sets of vertices

{V 3D
i }Ki=1

which form meshes representing human motion

as expressed below.

F (P; θ) = {V 3D
1

, · · · , V 3D
K }, (1)

where the θ is a model parameter of T2M network and K is

the number of vertices in the meshes.

T2M [38] uses a convolutional motion autoencoder

to obtain motion snippet code, which contains latent se-

quences of motions. Using given texts, the network ap-

proximates the conditioned probability distribution using

Text2Length Sampling. At the motion generation stage, 3D

human motion, which is conditioned on the given text and

sampled motion length, is generated. MDM [14] and Mo-

tionDiffuse [15] use transformer and diffusion based archi-

tectures to generate 3D human motion. We can use these

models during the first stage. Similar to T2M [38], the T2M-

GPT [16] model uses VQ-VAE [39] to encode latent se-

quences. Then, the model uses motion-GPT to sequentially

generate indices.This model generates motion from text in

an auto-regressive fashion when predicting the next index.

Using the given i − 1 indices, S<i, and text c, the model

chooses the next index which maximizes the probability

p(Si|c, S<i). Therefore, at this stage a pre-trained motion

VQ-VAE is required.

Motion-to-skeleton Projection

At this stage, we will introduce motion-to-skeleton pro-

jection module shown at the bottom of Fig. 2. This mod-

ule accepts a preset text description of a camera direction,

PCamera, as an input and outputs the corresponding projected

2D skeletons. This module consists of three parts. The first

part involves 3D skeleton regression. This stage accepts 3D

mesh vertices from the text-to-motion network and uses the

joint regressor reported in [40] to regress joints from the

mesh vertices. We can formulate this stage as shown be-

low where V 3D
i ∈ R

3 denotes the ith vertex of the mesh,

J3D
i ∈ R

3 denotes the ith joint regressed from the mesh

and Jreg is the joint regression matrix.

J3D
i = JregV

3D
i (2)
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Figure 2. Overall process of our proposed framework. Top: Our framework consists of two stages: (1) Text-to-skeleton generation, (2)

Skeleton-guided Text-to-Video Generation. A text prompt is passed to the text-to-human motion generation network to generate 3D mesh

vertices of each frames of motion. Then, with camera direction description prompt, motion-to-skeleton projection module converts these

vertices to the skeletons and project to 2D space corresponding to the camera direction prompt. The last stage, (2) Skeleton-guided text-

to-video generation, we use text-to-video network with 2D projected skeletons from motion-to-skeleton projection module and generates

the output video corresponds to input prompt P . Bottom: Motion-to-skeleton projection module module in detail. Motion-to-skeleton

projection module takes 3D vertices of mesh and regress the 3D skeleton with joint regressor. And, decide camera position and direction

with given textual description PCamera about the camera. Then mapping pre-define parameter between prompt and camera direction and

position, motion-to-skeleton projection module project the 2D skeletons with the projection matrix determined by prompt PCamera.

In the second part, the camera position is changed using

a camera prompt. We can express rotation and translation

using a camera extrinsic matrix containing homogeneous

coordinate, as expressed below.

(

R3×3 t3×1

01×3 11×1

)

4×4

(3)

Note that R3×3 defines the rotation of a camera and t3×1

defines the translation of the camera. An intrinsic matrix in

combination with the extrinsic matrix is used to define a

projection matrix Pproj as follows.

Pproj =





fx 0 cx 0
0 fy cy 0
0 0 1 0





(

R3×3 t3×1

01×3 11×1

)

(4)

We pre-defined the textual descriptions and correspond-

ing directions, and the motion-to-skeleton projection mod-

ule uses the lookup table to decide camera position. The

final step involves 2D projection based on camera rotation

and translation matrices. Using the determined Pproj , we

can project the 3D skeleton onto 2D space using a homoge-

neous coordinate system as follows:





XI

YI

w



 = Pproj









Xw

Yw

Zw

1









. (5)

The final output of the motion-to-skeleton projection

module is a direction-aware 2D-projected skeleton Ĵ2D
i .

Notably, PCamera need not be used to decide the camera po-

sition. If no textual description related to camera position

is available, then an identity matrix is used as the camera

extrinsic matrix.

3.2. Skeleton-guided Text-to-video Generation

The output of the second stage is provided to a T2V

network, which uses the 2D skeleton from the motion-to-

skeleton projection module as a guide. Let G be a T2V net-

work and γ be its parameter. Using the given 2D skeleton

from the motion-to-skeleton projection module Ĵ2D
i , we ob-

tain the videos consists of m frames {f1, · · · , fm}.

This stage is formulated as below where Ĵ
2D is a se-

quence of 2D projected motions represented as concate-

nated form. The formal definition of Ĵ2D and output of G

are formulated as below.

Ĵ
2D = concat(Ĵ1

2D
, · · · , Ĵm

2D
), (6)

{f1, · · · fm} = G(Ĵ2D,P; γ). (7)

4. Experiments

4.1. Experimental Results

In this section, we describe the three main experiments

conducted and analyze the results. First, we compare the
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Figure 3. This figure shows a comparison between the T2V models and our frameworks. Left: human face disappears in Zeroscope [27].

Scale problems occur for the rest of the models, creating a large hand. Right: Given a complex prompt, ModelScope [26], Zeroscope [27]

and T2V-Zero [8] do not generate a proper person. In case of CogVideo [29] and Runway-Gen2 [28] the motions are not generated properly,

but our framework is robust to the complext text prompt.

results obtained from the T2V stage in the presence and ab-

sence of pose guidance from the first stage. Here, we ap-

plied Modelscope [26], Text2Video-Zero (T2V-Zero) [8],

Follow Your Pose (FYP) [7], Runway-Gen2 [28], Zero-

scope [27], Cogvideo [29], as the T2V networks. In the

case of Runway-Gen2 [28], only visualization results were

included due to the limited number of accounts for us-

ing the model. Second, we compare the videos generated

two different T2M networks, namely, T2M-GPT [16] and

MDM [14]. Third, we tested the proposed framework using

a camera prompt. We used static shot (default), top view,

lateral view, and zoom in/out as prompts to describe the

camera positions. The prompts we used in action classifi-

cation (AC), CLIP score (CS), and frame consistency (FC)

were conducted through the prompt set that we decided on

separately, the details of which are included in the supple-

mentary information.

4.2. EvaluationＭetrics

Action Classification (AC) accuracy AC accuracy is the

ratio of a well-classified video to the entire generated video.

This ratio measures the extent to which the generated videos

match with the action in the prompts. To evaluate the extent

to which text prompt P is aligned with the video output, we

used the action classification model Text4Vis [41] to deter-

mine the AC based on the classes ºjumpº, ºrunº, ºclimbº,

ºkickº, ºpunchº, ºclapº, ºgolfº, and ºsitº.

CLIPscore (CS) [42] CS measures the extent to which the

generated videos are aligned with the text prompts. In pre-

cise manner, it is a metric that represents the extent to which

a caption matches an image without relying on human an-

notations. Let I be an input image, C be a corresponding

caption, and EI , EC be embeddings within the image and

caption, respectively. Then, the CLIP score is defined as fol-

lows:

CLIPScore(I, C) = max(100 ∗ cos(EI , EC), 0)

where the CLIP score is between [0, 100]. The closer the

score is to 100, the better alignment.

Frame Consistency (FC) [43] FC is the average value of

the cosine of the similarities between all consecutive pairs

of CLIP image embeddings on all frames. This measures

the extent to which naturally generated frames change. This

metric is in the range of -1, 1, similar to the range of values

of the cosine function. The closer the score is to 1, the better

the result.

4.3. Quantitative Results

Table 1 shows the quantitative results from T2V models

which obtained with and without pose guidance, based on

AC, FC [43] and CS [42]. Note that the use of pose guid-

ance is not necessary in T2V-Zero [8]. As shown in table 1,
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Figure 4. This figures shows that using motion-to-skeleton projection module, we can generate human motion from diverse view points

such as top view and side view. Moreover, scaling the size of the human is possible.

Table 1. Quantitative comparison between various text-to-video

networks on action classification (AC) accuracy, frame consis-

tency (FC) [43], CLIPscore (CS) [42]. If we proceed with our

framework, we can see that the performance is better than other

T2V models. In addition, in the case of Text2Video-Zero [8], it

can be seen that adding our framework increases all performance.

T2V model
Metric

AC↑ FC↑ CS↑
ModelScope [26] 32.5% 88.9% 30.1

Cogvideo [29] 35.2% 90.8% -

Zeroscope [27] 34.6% 92.2% 30.3

Text2Video-Zero [8] 44.1% 81.7% 28.4

Text2Video-Zero + Ours [8] 47.8% 92.2% 29.9

Follow Your Pose + Ours [7] 48.9% 87.5% 30.4

Table 2. Quantitative results comparison between two different

text-to-motion networks using pose guidance. It can be seen that

even using various T2M models shows better performance than

the existing T2V models.

T2M model
Metric

AC↑ FC↑ CS↑
T2M-GPT [16] 47.8% 92.2% 29.9

MDM [14] 46.0% 92.1% 30.2

based on T2V-Zero [8] the presence of our framework out-

perform the results on AC accuracy, FC [43] , and CS [42]

than T2V-Zero [8] without ours. Moreover, using our frame-

work with FYP [7], we obtained the state-of-the-art perfor-

mance in T2V tasks. This demonstrates that our framework

has a significant role in T2V task. Table 2 shows the ef-

fect of T2M networks on our framework, experimented by

fixing the FYP [7] of the second stage of our framework.

Even if MDM [14] is used, which has lower performance

than T2M-GPT [16], the performance of T2V network us-

ing our framework is better. Table 3 shows metrics that var-

ious camera prompts applied to motion-to-skeleton projec-

tion module. In case of camera rotation, top view shows

the best performance in overall metrics. In skeleton scale it

Table 3. Quantitative results applying camera rotation and skeleton

scaling on motion-to-skeleton projection module with pose guid-

ance.

Technique Metric

Camera Rotation AC↑ FC↑ CS↑
Default 51.9% 92.8% 30.3

Top view 57.7% 92.8% 30.5

Lateral view 51.0% 92.7% 30.7

Skeleton Scale AC↑ FC↑ CS↑
Default 51.9% 92.8% 30.3

Zoom in 48.0% 92.7% 29.6

Zoom out 45.2% 92.7% 29.3

rather shows worse results than not using scaling, since T2V

models are not tend to generate small person. Moreover, in

case of too large subjects they do not generate videos too.

4.4. Qualitative Results

Fig. 3 shows the comparison between various T2V mod-

els and our frameworks. In the images on the left of Fig.

3, a face disappears in the results using Zeroscope [27],

and a scale problem occurs for the rest of the models such

as creating a giant hand. Given a complex prompt, Mod-

elScope [26], Zeroscope [27] and T2V-Zero [8] do not gen-

erate a person properly. And in case of CogVideo [29] and

Runway-Gen2 [28] do not generate human motion aligned

with the text prompt. However, using our framework, we

generate human motion which aligned well with the given

text prompt. We control camera direction using motion-to-

skeleton projection module and the results are shown in Fig

4. A motion like ªjumpº is shown to be represented well us-

ing top view. Moreover, a motion like ªkickº tends to have

better representation at the lateral view. These implies with

adequate viewing direction is provided, the better quality

of outputs. Therefore, controlling the viewing direction is

important work to be studied. Figure 6. shows the prob-

lems that we mentioned before. In case of motion ambi-
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Figure 5. The above figure shows the user study results for Zero-

scope, Runway AI, T2V-Zero, and Our. We evaluated four mod-

els based on a total of three, and obtained 56.8% and 52.1% and

50.4% results for Semantic reference of Prompt and video, Real-

ism of motion, and Overall quality, respectively. For the rest of the

models, we have up to 24.5% performance for quality, but we can

see that our results are overwhelming.

guity, the figure shows that our results shows more plausi-

ble motion since adequate projections are applied. In case

of scale problem, this problem does not occur since we can

project skeleton to the scale what we want. Finally in case of

temporal consistency problem, since the skeletons consist-

ing human motions are generated in continuous and smooth

manner, we can have the better quality than before.

User Study We show the results of four T2V models apply-

ing the the same prompts to 100 users and let them evaluate

the video according to three criteria: semantic relevance of

prompt and video, realism of human motion, overall quality.

Fig 5 visualizes the results. 56.8% of the evaluators judged

that the video applied to our network was better in terms

of semantic relevance of prompt and video, 52.1% of the

evaluators preferred our results in terms of realism of hu-

man motion, And 50.4% of respondents said that in terms

of overall quality, the video that went through our frame-

work was better overall. The video applying our algorithm’s

motion-to-skeleton projection module was also shown and

evaluated by the user. The results of applying motion-to-

skeleton projection module were shown to the user and the

effect was predicted, and a total of 49.8% of users guessed

correctly the motion-to-skeleton projection module applied

to the picture. The details appear in the supplementary ma-

terials.

4.5. Limitations

Although our methods enhance the quality of output

video with human motions, there are limitations of our

method. First, our method cannot automatically regress ade-

quate camera pose for viewing direction. We experiment an

interpolation of camera matrix based on similarity of word

embeddings in naive way. We left this for future works.

We look forward the integration with advanced natural lan-

guage processing fields. Second, as we mentioned the back-

ground does not change in the case of T2V-Zero [8] net-

work. Even with an adjustment of camera position and di-

rection, the size of the human change but not the back-

ground so that the output videos look like a human shrink-

ing. Third, the output quality of our method depends on the

performance of both text-to-motion and text-to-video net-

works. Shown in Fig. 7: Top, the generated motions from

text-to-motion network does not align to the prompt result-

ing mis-aligned output video. Moreover, in Fig. 7: Bottom,

even though text-to-motion network work well, the output

video may be mis-aligned because of text-to-video network.

5. Conclusion

In this study, we addressed the problem associated with

T2V models. Previous T2V models cannot generate suit-

able text-aligned outputs, including human motions. There

are three main problem in previous T2V models. First, un-

intended or ambiguous motions are generated. Second, a

video containing inadequate scale which poorly represents

the text are generated. Third, a temporal consistency be-

tween frames in videos are not guaranteed. We solve this

problem using our proposed framework. Our framework

consists of two stages. The first stage is the text-to-skeleton

module that generate projected skeletons from the T2M net-

works. This stage generate human motion from the prompt

using T2M networks. Then, the motion-to-skeleton projec-

tion module projects generated skeletons with predefined

viewing descriptions and camera parameters loop-up table.

The second stage is pose-guided text-to-video generation

which use pose guided T2V networks to exploit generated

skeletons from the previous stage and the text prompt from

the first stage to generate human motion included videos.

Our frameworks outperforms previous T2V models in the

quantitative manner. Moreover, even in qualitative results,

the problems mentioned before do no appear. To the best

of our knowledge, our framework is the first of its kind

that uses text-driven-motion-generation networks to gener-

ate high-quality videos related to human motions. We hope

that our research would have a positive impact on the sub-

sequent studies and applications involving T2V tasks.

6. Acknowledgement

This research was supported by the MSIT(Ministry of

Science and ICT), Korea, under the ITRC(Information

Technology Research Center) support program(IITP-2023-

RS-2023-00260091) supervised by the IITP(Institute for In-

formation Communications Technology Planning Eval-

uation), National RD Program through the National Re-

search Foundation of Korea(NRF) funded by Ministry of

Science and ICT(2021M3H2A1038042) and Basic Science

Research Program through the National Research Founda-

tion of Korea (NRF) funded by the Ministry of Education

(2020R1A6A3A01098940, 2021R1I1A1A01051225).

5087



Figure 6. This figure shows problems of motion ambiguity, scale, and temporary consistency, which are the problems of existing T2V

Model. At the top, despite given text prompts containing kick and punch, Runway-Gen2 [28] generate static human. At the middle, in case

of text prompt containing words run and jump, the scale objects are too large which is a problem. At the bottom, a person is disappearing

in the middle of the frames which is inconsistent. However, using our framework these problems are not occurred.

Figure 7. This figure shows the limitation for T2M and T2V. Look at the picture on the left, We can see that the motion of punching

comes out only from the front. It is the limitation of the T2M that cannot control the camera to express the punch well, and the right is the

limitation of the T2V, which explains that the background does not change according to the movement.
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