
Implicit Neural Image Stitching
With Enhanced and Blended Feature Reconstruction

Minsu Kim1, Jaewon Lee1, Byeonghun Lee2, Sunghoon Im1, and Kyong Hwan Jin2*

1DGIST, Republic of Korea 2Korea University, Republic of Korea
1{axin.kim, ljw3136, sunghoonim}@dgist.ac.kr 2 {byeonghun lee, kyong jin}@korea.ac.kr

Abstract

Existing frameworks for image stitching often provide
visually reasonable stitchings. However, they suffer from
blurry artifacts and disparities in illumination, depth level,
etc. Although the recent learning-based stitchings relax
such disparities, the required methods impose sacrifice of
image qualities failing to capture high-frequency details for
stitched images. To address the problem, we propose a
novel approach, implicit Neural Image Stitching (NIS) that
extends arbitrary-scale super-resolution. Our method esti-
mates Fourier coefficients of images for quality-enhancing
warps. Then, the suggested model blends color mismatches
and misalignment in the latent space and decodes the fea-
tures into RGB values of stitched images. Our experiments
show that our approach achieves improvement in resolv-
ing the low-definition imaging of the previous deep im-
age stitching with favorable accelerated image-enhancing
methods. Our source code is available at https://
github.com/minshu-kim/NIS.

1. Introduction
Image stitching aims to generate a wider field-of-view

panorama from multiple scenes with arbitrary views. They
provide rich visual information for various fields that re-
quire panoramic images including autonomous driving, vir-
tual reality, and medical imaging.

Depending on the existence of a fixed grid transforma-
tion, image stitching is categorized as view-fixed [17,22,44]
or view-free methods [10,21,26,33,48]. Previous view-free
stitchings [10, 21, 26, 32–35, 48] align multiple views with-
out the priors of inter-relationship between given scenes. In
contrast, view-fixed approaches [17, 22, 44] use pre-defined
grid transformations to stitch different views. Among them,
a trainable stitching method [33] with a neural network
shows good qualities at capturing color mismatches and
blending misalignment in latent space. Because the method
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Figure 1. Overview of our proposed image stitching. Our
model, NIS, estimates stitched images given a pair of target &
reference images and transformed grids. Neural warping extracts
high-frequency-aware 2D features and aligns them according to
the given grids. Blender takes the warped features and merges
them into a feature map. A decoder (MLP) predicts an RGB sig-
nal at a coordinate (x, y) of stitched image domain from a blended
feature.

is fast and automatic, it demonstrates its practicality for
real-time applications like virtual reality (VR) [2, 15], au-
tonomous driving [17, 44]. However, the existing methods
struggle with low image qualities caused by large deforma-
tions and a lack of constraints for reasonable trade-offs be-
tween image quality and blending.

The recent successful demonstrations of arbitrary-scale
super-resolution (SR) with implicit neural representation
(INR) [5, 20] shed light on restoring such damaged low-
definition images. Because the warp of an image using
a grid is equivalent to the arbitrary-scale up-and-down
sampling, the warped images can be enhanced by an
extension of the arbitrary-scale SR. Following the idea,
we propose a novel approach, implicit neural image
stitching (NIS), which enables enhanced image stitching.
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Figure 2. Visual Demonstration. two-view image stitching with single perspective Homography.

With the assumption that aligning transformations are
given, NIS predicts warped Fourier features with high-
frequency details. Then, a CNN-based blender combines
two aligned features into one latent variable in order to
alleviate color mismatch and misalignment. Afterward,
a decoder provides a representation of a stitched image
over the extracted features. Our experiments show that the
suggested INR restores local textures while keeping the
estimation of a blended feature as the previous method [33].

In summary, our main contributions are as follows:

• We propose an implicit neural representation for image
stitching that restores high-frequency details.

• We extend the concept of arbitrary-scale super-
resolution into image stitching.

• Our model simplifies the image stitching pipeline per-
forming various tasks into inference including warping
paired images, blending misalignment and parallax er-
rors, and relaxing blurred effects.

2. Related Work
Homography Estimation The feature-based approaches
estimate homography using the direct linear transforma-
tion (DLT) [11] given feature correspondences [3, 27, 39].
Although those approaches can infer reasonable aligning
transformations, they often fail to compute homography in
challenging conditions where a pair of images is captured
in different environments, such as day-to-night scenes and
scenes with dynamic objects. To overcome the limitations,
various deep homography estimators with superior feature
extractors were suggested [4,7,8,18,31,35,50,52,53]. The
first supervised and unsupervised deep homography estima-
tors are proposed by Detone et al. and Nguyen et al. [7,31],
respectively. The proposed methods commonly estimate
4 corner displacements between two images. Then, using
DLT algorithm and predicted displacements, they compute
an aligning homography. Inspired by these works, various
advanced methods are suggested, including variations of

VGG-style networks [8, 18, 53], the moving content-aware
model [50], extracting one-channel of Lucas-Kanade fea-
ture map [52], and iterative architectures for inferencing a
homography [4, 35].

Implicit Neural Representation Implicit neural represen-
tation [12] approximates continuous signals such as 2D im-
ages and 3D shapes. Thanks to the property of INR, various
tasks have been proposed including arbitrary image super-
resolution (SR) [5, 20], SR for image warping [19, 40, 47],
view synthesis [28], etc. Among them, local INR [5,19,20]
uses both feature maps from a CNN encoder and relative
coordinates showing the robustness in generalization to out-
of-scale datasets. Lee et al. [19] proposed an INR architec-
ture, Local Texture Estimator for Warping (LTEW). Com-
pared to the previous work [40], it shows the robustness
of the generalization performances by demonstrating the
model under unseen grid transformations, including out-of-
scale homographies, and Equirectangular projection (ERP).
Motivated by their successful application of arbitrary-scale
SR for image warping, we propose an implicit neural func-
tion for image stitching.
Image Blending Blending techniques combines the over-
lapping regions of semantically aligned images as naturally
as possible. There is a number of blending methods, in-
cluding gradient-domain smoothing of color (a.k.a. Pois-
son blending) [1,9,36,42], alpha blending [37], multi-band
blending [49], and deep blending [45, 51]. Among the
approaches, the introduction of deep blending techniques
paved the way for the previous learning-based image stitch-
ing [33].
Image Stitching There are two branches under image
stitching, view-fixed [17, 22, 41, 44], and view-free tasks
[10, 14, 21, 26, 32, 33, 35, 48]. View-fixed scheme stitches
images with given fixed views which are free from estimat-
ing an aligning transformation. View-fixed image stitch-
ing is often applied for specific tasks like autonomous driv-
ing [17, 44] and surveillance videos [22] that use cameras
with fixed locations. In contrast, view-free image stitching
is applied to images with arbitrary views. It estimates geo-
metric relations under dynamically distributed views. Then,
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Figure 3. Overall Flowchart of our Neural Image Stitching framework (NIS). Our NIS consists of a neural warping, a blender (Bη),
and a decoder (Gθ). We employ a homography estimator, IHN [4], for image alignment.

it aligns the inputs and merges them. Gao et al. [10] pro-
posed a model that estimates a dual homography to align
two globally dominant frames in given images. Lin et
al. [26] proposed a method of estimating smoothly varying
affine fields. Zaragoza et al. [48] suggested moving DLT
to infer as-projective-as-possible (APAP) spatially weighted
homography. Li et al. [21] computed thin plate splinte
(TPS) to finely optimize per-pixel deformations. Liao et
al. [23] proposed single-perspective warps (SPW) and em-
phasizes image alignment using dual-feature (point + line)
for structure-preserving image stitching. Jia et al. [13] sug-
gested leveraging line-point-consistence (LPC) which pre-
serves the geometric structures of given scenes. Recently,
Nie et al. [33] proposed an unsupervised deep image stitch-
ing method (UDIS) which blends two warped images in la-
tent space and decodes them to a stitched image. The ap-
proach shows favorable results in correcting illumination
differences and relaxing parallax and misalignment. In-
spired by such achievements, we propose a neural architec-
ture for enhanced image stitching based on arbitrary-scale
SR.

3. Problem Formulation
In our formulations, we define x and y ∈ R2 as an input

frame and a warped frame coordinate, respectively. A[x]
denotes the nearest neighbor interpolation for a signal A
using a pixel coordinate. Given a reference (Ir) and a tar-
get image (It) where I· ∈ Rh×w, we formulate an implicit
neural function as

NΘ : (yr,yt, Ir[xr], It[xt]) 7→ (R,G,B). (1)

The coordinates are obtained by transformation estima-
tors [4, 21] and NIS leverages them with input images. For
detailed modularization of NIS, we decompose NΘ as

NΘ = Gθ ◦Bη ◦ g, (2)

where Gθ,Bη, and g are an implicit neural representation,
a blender, and a displacement-dependent learnable warp,
respectively. Our modular decomposition enables us to
keep the property of the implicit neural representation that
provides continuous RGB values of an implicitly stitched
feature. Because the blending and reconstruction of high-
frequency details are conflicting tasks, we suggest thorough
strategies in Sec. 4.

3.1. Homography Estimation

As described in Sec. 5.2, we use a deep homography es-
timator IHN [4] to train NIS. Because IHN recursively up-
dates displacement vectors in the pre-fixed number of iter-
ations, we design an additional formulation for it. Specifi-
cally, we formulate an unsupervised training for IHN [4] as
follows:

D̂ = argmin
D

K∑
k=1

αK−k · ∥Ir −W (It;Hk)∥1, (3)

where Hk = ft(Dk, c), D =
∑
k

Dk,

ft denotes the Direct Linear Transform (DLT) [11].
W (A;B) means warping A using a homography B. K
is the total number of iterations in IHN [4]. c is a set of 4
corner coordinates of a target image. Dk and Hk are a k-th
estimated displacement vector and a homography computed
by Direct Linear Transform (DLT) [11]. α is the weight of
the objective function set as 0.85 in our implementation.

3.2. Implicit Neural Image Stitching

Estimation of Detail-aware Feature We suggest Neural
Warping (NW, g) for the estimation of warped features with
enhanced textures. To this end, NW uses a vector containing
direction and distance from the nearest referenceable coor-
dinate. Specifically, we use a relative coordinate (cm ∈ R2)
as a prior and a CNN-based filter that contains a learnable
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Figure 4. Training Strategy. In scratch training, we synthesize
the aligning transformations and a stitched GT. In fine-tuning, we
use IHN to estimate a homography Ht and train NIS in an unsu-
pervised manner. Because there are no reference seam regions for
Ŝt and Ŝr , we estimate them with scratch-trained NIS.

warping module restoring local textures in a warped feature
z ∈ Rh′×w′×4C as

z[y] = g(Eφ(I
IN )[x], cm), (4)

where cm = y − y′, y′ = X[y],

Eφ(·) : R3 7→ RC is a CNN encoder [24]. X := {x|x ∈
R2} is a grid of an input image IIN ∈ Rh×w frame.
Fourier Coefficients for Stitching INR Inspired by the
successful demonstration of LTE [20] for resolving spectral
bias [38], NW leverages Fourier coefficients given a feature
z′ = Eφ(I) ∈ Rh×w×C and a cell s ∈ Rh′×w′×10 that con-
tains numerical Jacobian and Hessian tensors [19] to predict
the density distribution of a warped grid (or a cell decoding)
as

A = ga(z
′), F = gf (z

′), P = gp(s;y), (5)

where ga(·) and gf (·) : RC 7→ R4C are an amplitude and
a frequency estimator, respectively. gp(·) : R10 7→ R2C is
a phase estimator. After the estimation of the coefficients, a
detail-aware feature (z) that represents a high-dimensional
stitched image is associated as

z[y] = A[y] · (cos F + sin F), (6)
where F = π(⟨F[y], cm⟩+P[y]).

Implicit Neural Representation After NIS prepares a pair
of features of a target (zt) and a reference (zr) images, it
stitches them in a merged signal C′ ∈ Rh′×w′∈C . To this

end, we design a blender Bη(·, ·) : (R4C , R4C) 7→ RC that
learns a high-dimensional representation of a seamlessly
stitched image as

C′(y) = Bη(zt, zr). (7)

Then a decoding INR Gθ(·) : RC 7→ R3 takes a latent
vector and provides an RGB of a stitched image (Ĉ) as

Ĉ[yu] = Gθ(C
′,yu), (8)

where yu ∈ Yu ⊂ U denotes a valid region coordinate,
U := [0, h)× [0, w) is a uniform grid.

4. Method

NIS consists of a neural warping (g), blender (Bη), and
a decoding INR (Gθ). The model is an end-to-end learn-
able model and infers a stitched image, automatically. This
section provides detailed methods for training.

4.1. Training Strategy

We suggest 2 stage training to make the model strictly fo-
cus on each task (i.e., enhancing and blending). NIS learns
high-frequency details in the first stage. After then, the
model learns blended features in the second stage.
Learning Enhanced Details Inspired by previous
arbitrary-scale super-resolution [5, 19, 20, 40], we design
supervised learning using data synthesize methods [32]. We
minimize L1 loss between ground truth and the estimated
stitched images as

L1(Θ) = argmin
Θ

∑
yu

∥C[yu]− Ĉ[yu]∥1. (9)

Learning Blended Features The concatenation of two
warped features causes inevitable differences between the
distribution of overlapped and non-overlapped regions. The
blending layer (Bη) has to be trained to combine the two la-
tent spaces into a single space correcting color mismatches
and hiding parallax errors. To this end, the blender is con-
strained with a photometric seam loss [33] as follows:

Lseam(Θ) = argmin
Θ

∑
n

∥Ŝn − Sn∥1, (10)

where Ŝn = Mn ⊙ Ĉ,

Sn = Mn ⊙NΘ(yr,yt, In, 0⃗), n ∈ {r, t},

M(·) is a mask of seam regions between the target and ref-
erence. 0⃗ ∈ Rh×w is a blank image with the same size as
an input image In domain. Overall procedures are provided
in Fig. 4.
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Method mPSNR (↑) mSSIM (↑) #Params.
Bilinear 34.78 0.96 -
Bicubic 36.25 0.97 -

UDIS [33] 33.45 0.97 8.0M
NIS (ours) 38.69 0.98 3.2M

(a) Evaluation on Synthetic Images.

Method NIQE (↓) PIQE (↓) BRISQUE
(↓)

APAP [48] 3.30 46.95 34.72
Robust ELA [21] 3.59 53.67 37.78

SPW [23] 3.39 51.68 36.84
LPC [13] 3.37 50.81 37.15

LPC + Graph Cut 3.50 50.63 37.14
UDIS [33] 3.43 50.01 36.71

IHN [4]+NIS 3.28 46.21 33.17
IHN [4]+NIS (F) 3.15 43.05 31.14

(b) Evaluation on Real Images.

Table 1. Quantitative Comparison on Stitching performance.
Red and Blue colors indicate the best and the second-best perfor-
mances, respectively.

4.2. Training Details

Enhancement We apply an on-the-fly data generation that
warps a mini-batch with the same homography. It provides
synthesized paired images and ground truth stitched images
per a mini-batch. To generate synthetic datasets, we fol-
low the whole pipeline of [32]. We set the ratio of 4 corner
offsets (∆x,∆y) as random values within 25% of cropped
image resolutions hc, wc. For training, we randomly sam-
ple M spatial query points from valid regions and minimize
the L1 loss between RGB prediction and ground truth as
in [19]. This augmentation strategy is as follows:

(∆x,∆y) = (ax · wc, ay · hc) ∈ R2, (11)
where al ∼ U(0, 0.25) x, y ∈ l.

Blending In this stage, NIS learns to correct color mis-
matches and misalignments. Because there is no given
transformation prior in the real images, we use a homog-
raphy estimator IHN [4], which was trained with the sug-
gested unsupervised training methods [33]. Our network
is trained only with the queries extracted from the seam re-
gions of two images. We freeze NIS except for the decoding
INR and fine-tune it as a representation provider for blended
stitched images. Because no ground truth or reference exists
for predicted seam region RGBs, we generate warped target
and reference images to use them as reference images. By
forwarding an image (target or reference image) and a blank
image into a frozen, scratch-trained NIS, we get the warped
images and use them as references for predicted samples.
The elements of a blank image are set to 0.

Method Size Mem. Time ResourceInput Stitched (GB) (ms)

LPC [13]
1282 1922 - 109 AMD Ryzen
5122 7842 - 4,883 4800H
10242 15362 - 28,446 (CPU)

UDIS† [33]
1282 1922 9.1 74 NVIDIA
5122 7842 9.3 128 RTX 3090
10242 15362 9.7 253 (GPU)

NIS
1282 1922 0.5 58 NVIDIA
5122 7842 5.4 384 RTX 3090
10242 15362 17.3 1,944 (GPU)

Table 2. Specifications of Stitching Methods. † denotes a third-
party implementation.

4.3. Training Configurations

In the first stage of training, we train NIS with a batch
size of 20 and 250,000 iterations. We choose the crop size
hc × wc as 48 × 48. In the second stage, we fine-tune the
model with a single batch size. We set the number of it-
erations as 60,000 and 300,000, respectively. For the sec-
ond stage, the resolution of input images is downsampled
to 128× 128 by bilinear downsampling. We use Adam op-
timizer [16] with β1 = 0.9 and β2 = 0.999. The learning
rates are initialized as 1 × 10−4 for the first and second
stages. The learning rates are exponentially decayed by a
factor of 0.98 for every epoch.

5. Experiment
5.1. Dataset

We use two datasets : MS-COCO [25] and UDIS-D [33].
The first stage uses synthetic MS-COCO which is free from
parallax errors. In the second stage, we use UDIS-D that
includes various degrees of parallax errors.

5.2. Implementation Details

Estimation of Alignment We employ a deep homography
estimator IHN [4] and robust ELA [21] for estimation of
transformation to align images. We train a 2-scale IHN on
UDIS-D and then use the estimated transformation to train
NIS in our experiments. To check the performance of the
trained model for unseen elastic warps, we use robust ELA
to obtain aligning grids.
Neural Image Stitching The blender (Bη) and the encoder
(Eφ) of the neural warping use EDSR [24] without upscal-
ing module. The decoder (Gθ) is a 4-layer MLP with Re-
LUs, whose hidden dimension is 256. The amplitude, fre-
quency, and phase estimators in neural warping are imple-
mented with a single convolution layer without activation
function. The amplitude and frequency estimators use a
256-channel 3 × 3 convolution layer and the phase estima-
tion layer uses a 128-channel 1× 1 convolution layer.

5.3. Evaluation

Quantitative result In Tab. 1a, we evaluate stitched image
qualities on the synthetic MS-COCO dataset under synthe-
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Robust ELA [21] APAP [48] UDIS [33] NIS (ours)

Figure 5. Qualitative comparisons to other image stitching approaches on the UDIS-D real dataset [33].

sized ground-truth alignment. We find that the image stitch-
ing of UDIS negatively affects image quality as reported in
Tab. 1a. Although the method employs bilinear warps, the
UNet-based architectures cause such harmed imaging with
jagging and blurred artifacts. However, the table validates
that NIS successfully resolves the problem with 2.44, and
3.91 mPSNR gains compared to the bicubic warp, and bi-
linear warp, respectively. Tab. 1b shows the summarized
performances of image stitching quality. Since there is no
ground truth for UDIS-D real dataset, we report NIQE [30],

PIQE [43], and BRISQUE [29]. We denote the fine-tuned
NIS with (F). As shown in the table, the fine-tuned NIS
that is capable of correcting color mismatches and paral-
lax relaxing shows superior performances compared to the
model without the training of feature blending. In addi-
tion, the comparison between UDIS and ‘LPC + Graph Cut’
indicates that the learnable image stitching contributes the
better image quality. Furthermore, the performance gains
from a comparison of ‘IHN+NIS’ to UDIS implies that our
method for image stitching achieves significant image en-
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Figure 6. Qualitative comparison. On the diagonal, the left side
is the stitched image of UDIS [33] and the right side is our image.

hancement.
Qualitative result Qualitative comparisons on UDIS-D real
dataset are shown in Fig. 5. We compare NIS with the
feature-based [48], [21] approaches, and a learning-based
approach [33]. APAP and robust ELA show parallax-
tolerant image warping while UDIS and NIS blend parallax
errors correcting the illumination difference. The qualita-
tive comparisons of image qualities between UDIS and ours
are provided in Fig. 6. The comparison supports the perfor-
mance gains in Tab. 1a indicating that our method captures
high-frequency details while keeping the image blending
capability.
Inference under Elastic warp Our model is trained un-
der rigid transformations (or homography). To check if
this training configuration can limit model performances for
elastically transformed grids, we explore an experiment as
in Fig. 7. As shown in the figure, we demonstrate an image
aligned by a Thin-plate Spline grid and stitched by NIS. We
use robust ELA [21] to estimate the elastic grid and generate
the stitched image using NIS. As shown in the figure, our
implicit neural representation for image stitching recovers
high-frequency details on the totally unseen aligning grids.
Cost Effectiveness In Tab. 2, we compare the specifications
of stitching methods for 3 different resolutions. To evaluate
the model, we forward a common pair of images with 100
iterations, repeatedly. Then, we report max memory con-
sumption (GB) and the average computation time (ms). As
shown in the table, while NIS is cost-efficient for 1922 and
7842 sizes but, it shows weakness on high-resolution im-
ages 15362 compared to the UDIS.

5.4. Ablation Study

Fourier Features To explore the contribution of Fourier
features for image stitching on synthetic MS-COCO, we re-
visit the models with 3 configurations: 1) removal of ampli-
tude, 2) frequency, and 3) phase estimator, respectively. We
train all the cases with the first stage to clarify model perfor-
mances on image enhancements. Note that the experiment
using NIS without blending training shows different scale
mPSNR as the model is fine-tuned on the other dataset,
UDIS-D. In Tab. 3, ‘w/o Amp.’ removes the amplitude esti-

R
ob
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tE

L
A

N
IS

(o
ur

s)

Figure 7. Stitching with pre-computed Elastic Transformation
grid. Our pre-trained model is successfully applied on an elasti-
cally warped grid (unseen grid). We use robust ELA [21] to esti-
mate the elastic grids.

Method mPSNR (↑) mSSIM (↑)
w/o Amp. 20.33 0.767
w/o Freq. 43.23 0.990
w/o Phase 44.07 0.990
NIS (ours ) 44.16 0.991

Table 3. Quantitative Ablation Study of NIS.

mator by setting all the amplitudes of frequencies as 1. ‘w/o
Freq.’ estimates 128 frequencies whose size corresponds to
half of the frequency estimator in NIS. The ‘w/o Phase’ re-
moves the phase estimator. As shown in Tab. 3, the ‘w/o
Amp.’ model shows damaged Fourier features with sig-
nificant performance degradation. The ‘w/o Freq.’ model
shows the reduced number of samples from the Fourier dis-
tribution. The result provided in the table emphasizes the
importance of frequency priors. The ‘w/o Phase’ model
keeps the number of Fourier samples but shows a worse
Fourier distribution. The observation has a negative effect
as shown in the table.
Learning Strategy We investigate the contributions of our
training methods in Fig. 8. The first row contains learning
procedures for enhanced feature reconstruction. The second
row provides the observations during the fine-tuning stage.
As in the figure, our learning methods are helpful for captur-
ing high-frequency details and correcting color mismatches
and misalignment. Despite the estimation of blended sig-
nals that may cause a worse image quality, we notice that
our learning strategy for blended feature reconstruction pro-
vides visually pleasing stitched images.

6. Discussion

Efficiency of Neural Warping LTEW’s pipeline for local
INR prevents over/undershoot and blocky artifacts for more
than ×8 upscale factors. In contrast, our pipeline leverages
displacement vector (cm) as a prior for the representation of
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Figure 8. Ablation study of our training method.

stitched images with accelerated computations. In Tab. 4,
we compare Neural Warping (NW) with LTEW, which is
the state-of-the-art method for high-definition warp to ver-
ify our method. Following the recent research of arbitrary-
scale super-resolution for Equirectangular projection (ERP
SR), we employ the same evaluation configurations as pre-
vious works [6, 47]. The measurement of computation time
is conducted under a fixed resolution to focus on complex-
ity checking. After we train Neural Warping with Gθ and
LTE on ODI-SR ×4 scale dataset, we test the models on
ODI-SR test dataset [6] and SUN 360 [46] dataset. As
shown in Tab. 4, we see that our method shows favorable
performances on both computational complexity and super-
resolution.
NIS with Seam cutting In Fig. 9, we demonstrate a
comparison of multi-view stitching to explore NIS with
seam cutting. We prepare seam masks using OpenCV
‘DpSeamFinder’. For image reconstruction with NIS, we
determine a reference image Ir and two target images
It1 , It2 . After that, using seam masks, we obtain two la-
tent variables C′

1 and C′
2 from zr, zt1 and zr, zt2 , respec-

tively. Then NIS estimates the stitched image by blending
C′

1,C
′
2 and decoding the output. As shown in Fig. 9, The

enhancement of NIS demonstrates the potential to be used
with seam cutting for advanced blending.

7. Conclusion
We proposed NIS, a novel end-to-end implicit neural re-

constructor for image stitching. Our model predicted the
dominant frequencies in warped domains from a pair of im-
ages to represent high-frequency details in a stitched image.
Furthermore, our method successfully blended color mis-
matches and misalignments relaxing parallax errors. Our
framework shows significant gains in synthetically stitched
datasets over traditional methods for stitching, including bi-
linear and bicubic warps. Qualitative results on real im-
ages support that we successfully achieved high-frequency
details for view-free image stitching compared to existing

[Bilinear + Seam cutting] NIQE/PIQE/BRISQUE: 3.17/32.30/26.68

[NIS + Seam cutting] NIQE/PIQE/BRISQUE: 2.90/27.55/21.98

Figure 9. Comparison on the stitching of Multiple images.

Dataset Method
WS-PSNR

×8 ×16

ODI-SR
LTEW 25.53 23.91

Neural Warping 25.56 23.93

SUN 360
LTEW 25.60 23.59

Neural Warping 25.62 23.60
(a) Performance on ERP SR.

Size Method Memory (GB) Time (ms)

256× 256
LTEW 0.36 20.50

Neural Warping 0.24 (↓ 33.3%) 5.37 (↓ 73.8%)
(b) Cost-efficiency.

Table 4. Comparison of Neural Warping to LTEW.

image stitching methods. On the other hand, we fail to
simplify the training pipeline for neural image stitching.
To design full end-to-end deep image stitching from image
alignment to reconstruction, additional strategies for train-
ing would be required.
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