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Abstract

Trendy suggestions for learning-based elastic warps en-
able the deep image stitchings to align images exposed to
large parallax errors. Despite the remarkable alignments,
the methods struggle with occasional holes or discontinu-
ity between overlapping and non-overlapping regions of a
target image as the applied training strategy mostly focuses
on overlap region alignment. As a result, they require addi-
tional modules such as seam finder and image inpainting for
hiding discontinuity and filling holes, respectively. In this
work, we suggest Recurrent Elastic Warps (REwarp) that
address the problem with Dirichlet boundary condition and
boost performances by residual learning for recurrent mis-
align correction. Specifically, REwarp predicts a homog-
raphy and a Thin-plate Spline (TPS) under the boundary
constraint for discontinuity and hole-free image stitching.
Our experiments show the favorable aligns and the compet-
itive computational costs of REwarp compared to the ex-
isting stitching methods. Our source code is available at
https://github.com/minshu-kim/REwarp.

1. Introduction
Estimation of geometric transformations for image

stitching requires descriptions of the spatial correspon-
dences between given scenes. To calculate such relation-
ships, existing methods are categorized into two branches:
feature-based methods [5, 7, 8, 13, 15, 16, 18, 28] and
learning-based [10, 11, 21–25] methods. Feature-based ap-
proaches detect key points or lines to match the textures of
images in order to estimate the optimal transformation. In
contrast, learning-based frameworks compute a 4D cost vol-
ume [27] which computes receptive field-wise correlations
and provides a prior like dense matching between given
scenes.

The two branches have clearly distinct limitations. The
recent feature-based frameworks [7, 15] leverage line and
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Figure 1. Overview of our approach. REwarp sequentially esti-
mates homography and thin-plate spline with two recurrent neural
networks. This combination enables elastic image alignment for
parallax-tolerant image stitching.

key point matching and estimate transformation minimizing
the error of the matched features keeping geometric struc-
tures. However, the approaches cause frequent failures and
performance degradation in challenging environments like
low resolution and few textured scenes.

On the other hand, the recent parallax-tolerant deep
image stitchings [10, 22] are robust to few textured im-
ages owing to the CNNs with wide receptive fields and
the prior of dense correspondences from correlation-based
cost volumes [27]. The methods are implemented by ei-
ther a parametric combination (homography and Thin-plate
Spline (TPS) [22]) or a Warp Field [10]. Because the TPS-
based image deformation is a global warp, sometimes it
shows limited correction of local misalignment under large
parallax errors. In contrast, the flow-based image stitching
shows warps with high flexibility for alignment of wide par-
allax. However, because the method is exposed to artifacts
or holes (Fig. 8), it requires modules to address the prob-
lems. Furthermore, the occasional discontinuity (Fig. 7)
of deep elastic warps between overlap and non-overlap re-
gions requires seam masks [9,14,17] to hide the unpleasant
boundary.

To address the problems, we suggest Recurrent Elas-
tic warps (REwarp) with Dirichlet boundary condition that
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(a) Observation on overlap region. 1, 2, 4, 6th iterations of
global(top) and the residual(bottom) alignment (b) Image Stitching with our approach.

Figure 2. Visual Demonstration of our approach.

learns discontinuity-free residual elastic warps. For each in-
ference of recurrent estimations, REwarp predicts an elas-
tic warp parameterized by a homography and a Thin-plate
spline. Our experiments show that REwarp addresses the
generation of holes and discontinuity of learning-based
elastic warps with remarkable image alignment.

In summary, our main contributions are as follows:

• We propose a novel deep image stitching that corrects
residual misalignment and varying degrees of parallax
errors using elastic warps.

• Our approach shows favorable performance with-
out additional hole-filling and discontinuity correction
modules required in the previous methods of deep elas-
tic warp for image stitching.

• We investigate the computation costs of REwarp and
our baselines to show that REwarp is a lightweight
and failure-tolerant model. The properties will shed
light on real-time deep image stitching.

2. Related Work
Elastic Warp for image stitching As a global alignment
by single homography lacks the consideration of local
misalignment or parallax, there have been various studies
and trials to overcome such a limitation. Gao et al. [5]
suggested a method that determines two globally domi-
nant frames and estimates dual homography. Lin et al.
[18] proposed smoothly varying affine fields. Zaragoza et
al. [28] suggested moving Direct Linear Transformation
(DLT) [6] to infer as-projective-as-possible (APAP) spa-
tially weighted homography. Li et al. [13] proposed robust
elastic warps (robust ELA) that compute thin plate splinte
(TPS) to finely optimize pixel-wise deformations. Joo et
al. [8] suggested a line-guided moving DLT for structure-
preserving image stitching. Liao et al. [15] proposed single-

perspective warps that leverage dual-feature (point + line)
for structure-preserving image stitching. Lee et al. [12]
introduced residual warping for large parallax alignment
using multiple homography. Jia et al. [7] suggested a
line-point-consistence (LPC) constraint for advanced ge-
ometric structure-preserving image alignment. Kweon et
al. [10] suggests Pixel-Wise warping Module (PWM) that
learns warp field for wide-parallax image alignment. Re-
cently, Nie et al. [22] proposed UDIS++ that contains a
deep seamless compositor, a homography estimator, and a
TPS estimator for deep image stitching. Despite the suc-
cessful extends of deep image stitchings to elastic warps
[10,22,25], there are still challenging hurdles on complete-
ness of aligned image composition. They struggle with dis-
continuity between overlap and non-overlap regions in tar-
get images. In this work, we address the problem and sug-
gest novel deep residual warps for image stitching.

3. Problem Formulation

Parallax is a local misalignment caused by lost infor-
mation on depth planes. As depicted in Fig. 4, the mis-
alignment in projection plane π2 arises from the disparity
between the homography projection (H : x1 7→ x′

2) and
the direct projection from real world to an image plane π2

(Aπ2 : x 7→ x2) [6]. The mismatched depth (x − xπ,1)
causes an intrinsic limitation to align such parallax error (⃗ϵ),
which is represented as

ϵ⃗ = x2 − x′
2 = Aπ2

x−Hx1, (1)
= Aπ2

A−1
π1

x1 −Hx1. (2)

To minimize the error ϵ⃗ on the plane, our network aims to
predict a warp field F̂ [10] to compensate ϵ⃗ and a homogra-
phy Ĥ to globally align two images. Note that we denote (̂·)
as an estimated warp used for image stitching. The overall
formulations for alignment of parallax errors are the same
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Figure 3. Architectural Overview of REwarp. Our model consists of transformation estimators for global alignment and local residual
alignment. After the estimation of both parametric warps, we ensemble them and composite an elastic warp field. In our H/T-Cell, an
accumulator (Σ) sums estimated displacements (∆Dk) from a regressor that consists of multi-layer CNNs (EH or ET ).

Figure 4. A parallax error on point x2. π denotes a projection
plane, C is a view point, x′ is a point projected by a homography.

as follows:

min ϵ⃗ ≡ min ||x2 − (Ĥ · x1 + F̂[x′
2])||, (3)

= min ||x2 − (x′
2 + F̂[x′

2])||,
= min ||x2 − x̂2||,

where x2 denotes an ideal point, x′
2 is a point exposed to a

prallax error ϵ⃗ by the homography projection.
The estimated grid X̂2 := {x2|x2 = x′

2 + ϵ⃗} is used for
the image warping, which is defined as

W (I,X ) := I[X ], (4)

where I ∈ I and X ∈ X is a set of images (∈ Rh×w) and a
warped grid of a stitched frame (∈ Rh′×w′

) respectively. To
satisfy our formulations, REwarp estimates an accumulated

displacement vector DG and DL for homography [6] and
TPS computation, respectively. Specifically, we compute a
warped grid X̂′

2 using DG and a warp field F̂ ∈ Rh×w×2

using DL as

X̂′
2 = SV(DG) ·X1, (5)

X̂2 = X̂′
2 + SPr (D

L;Xo), (6)

where SV and SPr denote a Direct Linear Transforma-
tion [6] and a warp field evaluation (Sec. 4.1), respectively.
V := {0, h} × {0, w} is a vector containing four corner
coordinates, Pr := {0, 1

12 , ...,
11
12}

2 ∈ R12×12 is a con-
trol point grid for Ir (or a pre-computed uniform grid). Xo

means a coordinate set consisting of overlapping regions
given by an estimated homography Ĥ = SV(DG).

4. Method
REwarp consists of CNN encoders (Eφ,EΘ), an H-Cell

(fG) and a T-Cell (fL). Both cells take in a 4D cost vol-
ume to estimate a homography and a TPS representation,
respectively. Specifically, H-Cell and T-Cell predict a resid-
ual displacement vector ∆DG and ∆DL of four corners
V [3] and a control point grid Pr [1], respectively. The es-
timated residual vectors are accumulated and converged to
the optimal vectors given K (H-Cell) or N (T-Cell) number
of iterations as

DG =

K∑
k=1

∆DG
k , DL =

N∑
n=1

∆DL
n , (7)

where [∆DG
1 , . . . ,∆DG

K ] = fG(C,K; Ir, It, φ),

[∆DL
1 , . . . ,∆DL

N ] = λ · fL(C, N ; Ir,Jt,Θ),
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Algorithm 1 Operations in H-Cell and T-Cell.
Input : C, kiter ▷ Cost Volume, Init., # Iter.
Output : X̂ ▷ Elastic Grid

1: procedure CELL(C, kiter)
2: F1, δ1 ← 0⃗
3: k ← 1
4:
5: while k ≤ kiter do
6: ## Prior Preparation
7: Ck ← fc(C;Xk) ▷ fc := Pooling [26]
8: sk+1 = [Ck,Fk]
9:

10: ## Update & Predictions
11: if H-Cell then
12: ∆DG

k+1 ← EH(sk+1)

13: DG
k+1 ←

∑k+1
j=1 ∆DG

j

14: Xk+1 ← SV(DG
k+1) ▷ SV := DLT

15: end if
16:
17: if T-Cell then
18: ∆DL

k+1 ← ET (sk+1)

19: DL
k+1 ←

∑k+1
j=1 ∆DL

j

20: Fk+1 = SPr (D
L)k+1 ▷ SPr := F Eval. (Sec. 4.1)

21: Xk+1[x
o] = Xk[x

o] + Fk+1[x
o]

22: end if
23: k ← k + 1
24: end while
25: end procedure

Jt denotes a target image warped by a homography H com-
puted from DG. As shown in the above equation, a vector
DL for a control point grid is estimated from a globally
aligned image Jt and a reference image Ir to correct the re-
maining parallax errors. More details and pipelines of our
REwarp are provided in Algorithm 1.

4.1. Warp Field Evaluation

We obtain a warp field (F) via Thin-plate Spline Trans-
formation as

F = SPr
(DL) = Xt −U, (8)

where U := [0, h) × [0, w) is an uniform grid, Xt =∆

{xt|xt ∈ R2} is a warped grid by TPS transformation.

TPS Transformation An explicit representation TPS pro-
vides a warp field (F) given control points Pr and Pt ∈
R12×12. In this work, we assume that control points Pt

in It are presented as P̂t = Pr + DL under the assump-
tion that Pr is equal to a fixed uniform grid to ease the
formulation for image alignment. Specifically, TPS calcu-
lates the affine weights (v⃗ := [a, b, c]) and kernel weights
(w⃗ := [w1, w2, · · · , wM ]) for each x and y axis as[

w⃗x v⃗x
w⃗y v⃗y

]T
= L−1

[
P̂T

tx 0 0 0

P̂T
ty 0 0 0

]T
, (9)

w/o constraint w/ constraint

Figure 5. Discontinuity Removal. The white arrows denote dis-
placement vectors of control points to be applied to overlap region
warping. As in the red box, our constraint removes discontinuity
by relaxing the displacements in the edge.

where L is a deterministic matrix corresponding the pairs of
control points [1], [P̂tx; P̂ty] = P̂t. The TPS derives each
coordinate of the target grid (Xt =∆ {xt|xt ∈ R2}) with
the calculated weights and reference grid Xr =∆ {xr|xr ∈
R2} in a range of [0, h)× [0, w), as

xt =

[
xt

yt

]
=

[
v⃗x · [1,xr] +

∑
m wx,mB(||(xr −Pr,m)||)

v⃗y · [1,xr] +
∑

m wy,mB(||(xr −Pr,m)||)

]
,

where B(z) = z2logz2 is a radial basis function, wA,m

denotes a A (x or y) coordinate and mth kernel weight of
M kernels.

Dirichlet Boundary Condition Though the recent remark-
able deep parallax-tolerant warps [10, 22] can align paired
images with wide-parallax errors, the methods struggle with
discontinuity between overlap and non-overlap regions. To
address the problem, we suggest a Dirichlet Boundary Con-
dition for TPS-based deep image stitching. Specifically, we
design REwarp to fix the edge of the control point grid
(Pt ∈ R12×12) and leverage the estimated displacement
vectors (∆DL ∈ R10×10). After that, we plug the vectors
into the prepared control point grid. As shown in Fig. 5, this
constraint prevents REwarp from inconsistent discontinuity
because TPS coefficients in Eq. (9) provide almost no warp
in the edges of the overlap region owing to the property of
radial basis function.
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Stitched Image Robust ELA [13] LPC [7] REwarp (ours)

Figure 6. Qualitative comparisons to the other methods.

4.2. Training

H-Cell We minimize photometric errors of overlapping re-
gion as

(LH) : min
ΘG

K∑
k=1

αK−k ·
∑
j∈Jk

∥Ir[xj
r]− It[x

j
t ]∥1, (10)

where ΘG denotes parameters in H-Cell. Jk denotes a valid
region coordinate in the kth iteration’s overlap region (J =∆

{j|j ∈ R2}), xj
A is an overlap region coordinate in the plane

of A. α is a weight (= 0.85). K is the total iteration number
of the H-Cell set as 6 in our implementation.
T-Cell We freeze H-Cell and train T-Cell to make REwarp
strictly focus on learning the correction of residual parallax.

Similar to Eq. (10), we minimize L1 Loss as

(LT ) : min
ΘL

N∑
n=1

αN−n ·
∑
q∈Qn

∥(Ir[xq
r]− Jt[x

q
t ])∥1,

where Jt = W (It, Ĥ ·Xt),

where Xt ∈ Rh×w×2 is a grid of a target image, Qn =∆

{q|q ∈ R2} denotes a query set of nth overlapping region,
N is the total number of iterations for T-Cell that is set as 3
in our implementation. The optimization of TPS coefficient
estimators is guided by the photometric loss, i.e., the criteria
is to maximize the correlation of overlapped regions.
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Overlap Ratio
Average (↑) Failures (↓)

Time
∼ 30% (↑) 31 ∼ 60% (↑) 61% ∼ (↑) (ms)

SIFT [20] + RANSAC [4] 18.32 21.68 22.30 21.48 1.27% 111
UDIS [21] 19.61 20.15 19.88 19.97 0% -

IHN [2] 20.09 21.73 23.27 22.99 0% 38
APAP [28] 21.28 22.30 23.54 22.69 12.30% 574
SPW [15] 20.74 21.71 22.45 21.95 85.08% 383
LPC [7] 17.97 21.04 21.59 20.82 42.13% 1395

Robust ELA [13] 21.84 22.91 24.29 23.48 0.72% 79
REwarp (ours) 22.11 24.55 26.08 24.84 0% 50

Table 1. Quantitative Comparisons on Image Alignment. Red (or Blue) indicates the best (or second-best) performance.

Method
Iteration mPSNR Time
(Num.) (dB) (ms)

H-Cell

1 19.15 32
3 23.81 36
6 24.84 50

10 24.79 67

T-Cell

1 24.49 47
3 24.84 50
6 24.80 61

10 22.75 82

(a) Number of Iterations.

Method mPSNR (dB) Parameter (M)
H 22.31 1.0

H+ F 24.43 1.7
H+TPS (Ours) 24.84 1.8

(b) Implementation approach for Elastic Warp.

Table 2. Ablation Study on Method specifications.

5. Experiment

In our experiments, we use the UDIS-D [21] dataset that
includes real images exposed to various degrees of parallax
errors. We follow the splitting method of the pioneering
work [21].

5.1. Implementation Details

To optimize REwarp, we apply 2-stage learning. First,
we train H-Cell during 100 epochs and 8 mini-batch. After
then, we set the epoch for T-Cell as 100 with 8 mini-batch.
Common Configurations We use AdamW optimizer [19]
with β1 = 0.9 and β2 = 0.999. The learning rates are
initialized as 1×10−4 and exponentially decayed by a factor
of 0.98 for every epoch. We employ a 12× 12 control point
grid. Note that because we constrain the grid with Dirichlet
Boundary Condition, REwarp estimates 11 × 11 grid and
adds it to the 12 × 12 zero-initialized grid as described in
Sec. 4.1.

5.2. Evaluation

Qualitative Comparison Fig. 6 shows the comparisons of
REwarp to the previous parallax-tolerant stitchings [7, 13].
The first column contains REwarp’s stitched results. The
zoom-in comparisons among Robust ELA, LPC, and RE-
warp are provided in the second to the last columns, re-
spectively. For fair comparisons, we average overlapping
regions to composite stitched images. As shown in the fig-
ures, we notice that REwarp resolves the hole generations
and discontinuity between overlap and non-overlap regions
without any additional prevention methods [10]. Under the
natural scenes like the first, and last rows, the other base-
lines with REwarp show reasonable alignment. However,
we see that our approach empirically provides more stable
results. In this experiment, while Robust ELA and LPC
show frequent failures under the images with few textures
like the third row (stair), REwarp shows relaxed favorable
results. The experiences support the performance gains in
the next quantitative comparisons.

Quantitative Comparison In Tab. 1, we report photomet-
ric errors using mPSNR (valid region-only PSNR) consid-
ering that measurement with PSNR contains the contribu-
tion of invalid black regions. The reported times are mea-
sured by averaging repeated 100 inferences under NVIDIA
RTX 3090 24GB (or AMD Ryzen7 4800H). The ‘Failures’
column provides the ratio of evaluation failures including
no overlapping regions and huge image resolutions caused
by unreasonably estimated warps. To observe the perfor-
mances with the difficulty of image stitching, we addition-
ally investigate the overlapping regions. Note that stitching
under a low overlap ratio is a more challenging configura-
tion compared to a high ratio. In the provided table, we
see that the computation of REwarp is competitive for the
existing image stitchings. In addition, the comparison be-
tween IHN and REwarp implies the effectiveness of our
warps showing a 1.85dB performance gain. The compar-
ison between Robust ELA and REwarp informs that the
residual learning for misalign correction provides remark-
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w/o Constraint w/ Constraint

Figure 7. Ablation Study on Dirichlet Boundary Condition.

able performance gains. On the other hand, the failure ratios
of structure-preserving image stitching [7, 15] indicate that
their constraints may boost failure cases and cause harm to
the overall aligning performances.

5.3. Ablation Study

We explore the contributions of three methods of RE-
warp including iterative estimation, implementation ap-
proach for elastic warps, and boundary constraint. As a
default model configuration, we fix the number of H-Cell
and T-Cell iterations as 6 and 3, respectively.
Iterative Estimation In Tab. 2a, we investigate the rela-
tionship between the number of iterations and model perfor-
mance. As shown in the table, H-Cell stably converges to
a global optimum under model capacity while T-Cell shows
divergence at 10 iterations. The result implies that the warp
field’s high degree provides limited model capacity for the
extreme number of iterations.
Implementation Approach for Elastic warp In Tab. 2b,
we explore methods that can be used for the implementation
of elastic warp. As an approach for H, we use our H-Cell.
To prepare the estimator for F, we simply revise the regres-
sor of T-Cell to a regressor estimating F ∈ Rh×w. Our
investigation shows the effectiveness of the TPS-based im-

age alignment achieving a 0.41dB mPSNR gain compared
to the flow-based warp.
Boundary Constraint For empirical observation that our
constraint using Dirichlet Boundary Condition prevents RE-
warp from the discontinuity between overlap and non-
overlap regions, we explore qualitative comparisons in
Fig. 7. In this study, we use linear blending considering
that the guarantee of continuity makes the stitched image
exposed to misalignment. As shown in the left column of
Fig. 7, the flow addition in the overlap region of the target
image (It) causes discontinuity. However, our simple con-
straint resolves such a problem.

6. Discussion

Property of Flow and TPS-based Alignment Although
flow-based deep image stitching enables highly flexible
warps, it struggles with artifacts in low-frequency textures
and discontinuity between overlap and non-overlap regions
as in Fig. 8. In contrast, the TPS-based method provides
relatively rigid flexibility compared to the method. De-
spite the property, TPS’s non-linear and smooth warps with
our boundary condition are free from the limitations of
flow-based stitching satisfying most alignments for paral-
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H+ F REwarp (H+TPS)
Figure 8. Qualitative Comparison of Flow-based and TPS-
based deep image stitching.

lax. Though our constraint resolves the discontinuity, it may
cause visually unnatural image stitching. Future works ad-
dressing the problem will be promising.
Multiple image stitching Sequential inferences with RE-
warp enable multiple image stitching. In Fig. 9, we demon-
strate a qualitative comparison of multi-view stitching be-
tween LPC [7] and ours. To evaluate the image, we deter-
mine a reference image Ir and two target images It1 , It2 .
Then we sequentially estimate transformations between
three frames Ir, It1 and Ir, It2 . Despite the relaxed dis-
continuity of our constraint, REwarp may be exposed to the
discontinuity as in the upper crop of trucks in each figure,
slightly.
Under Large Parallax In Fig. 10, we explore REwarp’s
stitching with images exposed to large parallax errors. As
shown in the figure, it mostly guarantees continuity while
providing visually unnatural image composition. Because
TPS is a global transformation with smooth warps, our con-
straint may cause unnecessary warps in other local regions.
To overcome this, a more advanced TPS warps with higher
flexibility and C2 continuity in boundary would be required.

7. Conclusion
We proposed a Recurrent Elastic warp (REwarp) for

parallax-tolerant deep image stitching, which recursively
and sequentially estimates global and residual warps for
misalign correction. REwarp resolves the hole generation
and discontinuity issues of the previous work that leverages
deep elastic warps and successfully demonstrated its im-
age stitching on traditional real images and UDIS-D dataset
quantitatively achieving 1.36dB mPSNR gain compared to
Robust ELA. Furthermore, REwarp’s fast computation and

LPC [7]

REwarp (ours)

Figure 9. Comparison on Multiple image stitching.

Figure 10. Failure Case.

perfect success ratio in our experiment validated the poten-
tial usage for real-time image stitching.
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