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Abstract

Recent advances in Neural Radiance Field (NeRF) show
promising results in rendering realistic novel view images.
However, NeRF and its variants assume that input images
are captured using a pinhole camera and that subjects
in images are always all-in-focus by tacit agreement. In
this paper, we propose aperture-aware NeRF optimization
and rendering methods using a thin-lens model (dubbed
LensNeRF ), which allows defocus images of any aperture
size as input and output. To generalize a pinhole camera
model to a thin-lens camera model in NeRF framework,
we define multiple rays originating from the aperture area,
solving world-to-pixel scale ambiguity. Also, we propose
in-focus loss that assigns the given pixel color to points
on the focus plane to alleviate the color ambiguity caused
by the use of multiple rays. For the rigorous evaluation
of the proposed method, we collect a real forward-facing
dataset with different F-numbers for each viewpoint. Ex-
perimental results demonstrate that our method successfully
fuses an aperture-size adjustable thin-lens camera model
into the NeRF architecture, showing favorable qualitative
and quantitative results compared to baseline models. The
dataset will be made available.

1. Introduction

3D-aware novel view synthesis has gained tremendous
attention in recent years. Especially, NeRF [45] has shed
light on this trend, showing impressive results on novel view
synthesis. NeRF samples 3D points along the rays under the
pinhole camera assumption. Sampled points and ray direc-
tions are used to query view-independent density and view-
dependent color from the implicit MLP model. Obtained
density and color values are integrated using a volume ren-
dering scheme to generate novel view images. The success
of 3D-aware novel view synthesis has given rise to tons of
NeRF-based methods [1, 3,4,21, 36, 38,39, 44,49]. How-
ever, most of these studies overlook one important fact: We
do not use pinhole cameras in real life.

Although a simple pinhole camera model works well in
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Figure 1. Our LensNeRF marries NeRF with a thin-lens camera
model, enabling more general scenarios. LensNeRF facilitates the
task of deblurring and defocusing in a single NeRF framework.

many cases, there are some scenarios that cannot be ex-
plained using the pinhole assumption. Such an assumption
hinders NeRF-based methods from using images with defo-
cus blur. Specifically, defocus blur caused by rays coming
through the open aperture area cannot be described using
a pinhole camera model. There are some works that try to
bridge the gap between a pinhole camera model and a gen-
eral camera model. Deblur-NeRF [20] accepts defocus im-
ages as input, recovering sharp neural radiance fields from
them. However, this work focuses on the problem of remov-
ing blur, rather than embracing a thin-lens camera model to
NeRF framework. Deblur-NeRF cannot be expanded to the
novel view synthesis task for general cameras with varying
aperture sizes, since they are utilizing the view-dependent
blur kernel. NeRFocus [44] tries to mimic the behavior of
a thin-lens camera using synthetic gaussian blur. Although
the NeRFocus model can synthesize defocus images, this
work cannot decompose or explain blur in input images,
taking only all-in-focus images as input. Unlike other meth-
ods, DoF-NeRF [46] can remove blurs from the input im-
ages, or synthesize a defocus image. However, since its

3182



blur modeling relies on the geometric information learned
from the pinhole-based NeRF model, DoF-NeRF fails to
converge without initially training the pinhole-based NeRF
model.

In this paper, we propose LensNeRF, a thin-lens camera-
aware NeRF model. Unlike previous methods, LensNeRF
not only grants defocus images as input but also renders
novel view images with varying aperture sizes as output.
To combine a thin-lens camera model with a NeRF model,
we define multiple rays whose origins are distributed over
the aperture area and the directions are refracted with re-
spect to the ray origins accordingly. However, world space,
where ray origins reside, is defined up-to-scale. Since the
scale of world space is generally initialized using the first
two frames chosen for structure-from-motion (SFM) regis-
tration, it causes scale ambiguity between the given scene
and the camera space. This fact makes it difficult to define
the exact aperture area for ray origin sampling. Even af-
ter we succeed in importing the thin-lens model into NeRF,
there is color ambiguity caused by defocus blur. Estimat-
ing the true color of a blurred pixel is an ill-posed problem
without problem relaxation.

Our LensNeRF resolves world-to-pixel scale ambiguity
by explicitly optimizing it through sample positions, where
the sample position is expressed with respect to the scale
and aperture size. To alleviate color ambiguity caused by
the defocus effect during training, the in-focus loss is pro-
posed to maximally utilize color information from in-focus
pixels. Our contributions boil down to the followings.

¢ We introduce the thin-lens camera model to NeRF
framework for a multi-view scene optimization task,
solving scale ambiguity.

* We propose an in-focus loss for a thin-lens camera
model to alleviate color ambiguity caused by defocus
blur and demonstrate its effectiveness on the deblur
task.

* We collect a real-world dataset consisting of images
with varying aperture sizes, which can be used for
evaluating novel view, and novel F-number image syn-
thesis tasks.

* By integrating the thin-lens camera model into the
NeRF approach, we gain the ability to restore clear
neural radiance fields from defocus images and to cre-
ate defocus images from in-focus images.

2. Related Work

Novel View Synthesis Novel view synthesis has been ac-
tively explored in computer vision and graphics [7, 18, 19,

,31,34,41,50]. After the introduction of Neural Radi-
ance Field (NeRF) [24], NeRF-based view synthesis work
has surged [1,21,21,30,49] because of its promising out-
comes. These NeRF-based methods require multiple im-

ages taken from different positions and utilize a single ray
to form a single pixel under the pinhole camera assump-
tion. To overcome the aliasing artifacts, Mip-NeRF [3] con-
structs a cone-like frustum for rendering a pixel to simu-
late the continuous characteristic of a ray in the real-world.
Accelerating NeRF train time without harming its perfor-
mance has also gained attention. [8, 26, 38]. DVGO [38]
optimizes the voxel grids directly with the shallow MLP,
unifying the implicit and explicit representation. Neverthe-
less, the NeRF-based methodologies employed for generat-
ing new viewpoints differ in their physical principles of an
actual camera in the real world, where multiple rays com-
bine to form a single pixel.

Defocus When taking a picture using a camera with a large
aperture, we can observe defocus blur in the image, espe-
cially around the region that is far from the in-focus plane.
To mimic such a behavior of a real-world camera, there have
been some attempts to synthesize the defocus images. The
research on a light field camera has represented versatile
applications like refocusing [25,29] and novel view synthe-
sis [11]. The studies on a depth estimation [2,37,42] show
that the synthetic shallow depth-of-field images can be gen-
erated with a depth map estimated from stereo or monoc-
ular input. RawNeRF [22] uses raw images as train im-
ages and synthesizes novel defocus images by utilizing pre-
computed multiplane images during the rendering process.
NeRFocus [44] acquires a defocus effect of a real-world
camera by learning from synthetic Gaussian blurring. DoF-
NeRF [46] estimates circle of confusion(CoC) based on the
geometric information learned from the scene. It is worth
noting that the methods mentioned earlier lack the ability to
intuitively adjust blur size through conventional F-numbers.
Instead, the adjustment of blur size necessitates the manip-
ulation of hyper-parameter scales. In contrast, our proposed
method allows users to input intuitive F-numbers, which in
turn facilitates the synthesis of corresponding novel views,
with adjusted F-number attributes.

Deblurring As a part of the image restoration, deblur-
ring aims to recover the sharp image from the given blurry
image. Conventional methods [6, 14, 47] for deblurring
restore the sharp image by jointly optimizing the image
and the blur kernel in the deconvolutional process. Af-
ter the introduction of a neural network, the deblurring
work [5, 15,17,27,40, 48] that adopt a deep neural net-
work have emerged. KPAC [35] utilizes the shared multiple
atrous convolution filters for the efficient simulation of in-
verse kernels for the single image deblurring. For deblurred
novel view synthesis task [9, 16,20,43], Deblur-NeRF [20]
published the real-world dataset with blur (without ground-
truth) and the NeRF architecture for deblurring. However,
the primary emphasis of Deblur-NeRF lies in the elimina-
tion of image blur, rather than modifying the underlying
camera model.
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3. Preliminary
3.1. Volume Rendering

The concept of volume rendering is the integration of a
neural radiance field through a ray. Following the notation
in NeRF [24], estimated color C of a ray r(t) = o + td is
written as follows.

N
é ~ ZTiaici, (la)
i=1
j=i—1
T, =exp | — Z 00 |, (1b)
j=1

Here, N is the number of sampled points over a ray, ¢ is
the index of a sample, §; is the distance between the adja-
cent samples, o; is the density of the i-th sample, T; is the
probability of not hitting any other sample points before the
i-th sample, a; = 1 — exp (—0;0;) is the probability of hit-
ting the ¢-th sample, and c; is the estimated color of the i-th
sample.

3.2. Thin-Lens Model

The assumption behind the thin-lens model is that the
lens is so thin that the ray refracts only once on the sur-
face of the lens, ignoring its thickness. The thin-lens model
obeys the following rule.

1 1 1
= @)
Zo  Zw F
Eq. (2) implies the case when the object is located at Zy,
amount away from the lens center, and rays originating from
the object converge at a point with the distance Z-. We can
apply this equation directly to the camera model. When a
thin-lens camera with a focal length L; is focused at the
point with distance L as shown in Fig. 4, we can rewrite
the Eq. (2) as

1 1 1

—t— == 3

Ly + Ly F )
Ly and F in Eq. (3) are conventionally called focal length
and lens focal length respectively. To prevent confusion,
focal length will be named camera focal length afterward.

4. Method

Cameras in the real-world can manipulate their aperture
size, adjusting the amount of light coming through the lens.
Following this manner, the color of a pixel can be consid-
ered as the integration of rays coming through the open
aperture area. Our goal is to embrace such a thin-lens cam-
era model to NeRF. To this end, we define and utilize mul-
tiple rays originating from the aperture area. The overall
architecture of the proposed method is described in Fig. 2.

Modeling of ray origin and direction for the thin-lens cam-
era is described in Sec. 4.1. Volume rendering scheme mod-
ified to fit in our thin-lens model is illustrated in Sec. 4.2
and how we circumvent scale ambiguity is elaborated in
Sec. 4.3. The in-focus loss that can mitigate color ambi-
guity is elaborated in Sec. 4.4. Loss functions for optimiz-
ing neural radiance fields of a given scene are depicted in
Sec. 4.5.

4.1. Thin-Lens Ray Modeling

In this section, given normalized coordinates dEZ) of a
pixel p,, a bunch of refracted ray directions d>7 that con-
tribute to the formulation of the pixel p; will be derived.
Following the thin-lens camera ray tracing scheme [12,33],
ray origins and directions obey the Eq. (4),

ij 1 i
dyi =~ -0, +di}). )
which is also depicted in Fig. 4. Using Eq. (3), we can
rewrite Eq. (4) as

(i9) 1 1 (i)
d, = <L1 — F> o;+d,’ . 5)
Note how Eq. (5) generalizes to the pinhole camera model

(1) be the same

when o; accepts [0, 0,0]% only, making d
as the dEQ The camera focal length L; and the lens focal
length F' are acquired through camera intrinsics and EXIF
information, respectively. For the purpose of acquiring ray
origins, a procedure of regular grid sampling is executed.
This sampling process occurs within the boundaries of a
square region that tightly encloses the aperture area. This
approach is adopted to maintain computational tractability,
satisfying
0; € O{[X;,Y;,0]" |j € {0,1,...,N, = 1}}  (6a)
2 ( J %\/No) A,
VN, - 1)
2 (3//VNG) A,

A ST (¢

X, =-A+ (6b)

where A, is the aperture radius, and N, is the number of
sampled ray origins on the aperture area. Note that the ray
origins are expressed with respect to the aperture radius A,..

4.2. Thin-Lens Volume Rendering

From Sec. 4.1, we can define a ray r(J) = o, + td(:7
that composes a pixel p;. Volume rendering rays r(*4) for
all sampled ray origins o; gives us a patch image I; €
R3*VNoxVNo nstead of directly using this patch image,
we upscale it to obtain T} € RV VNG 50 as to ap-
proximate a patch image obtained using densely sampled
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Figure 2. The overall architecture of our LensNeRF. (a) Unlike conventional NeRF, our LensNeRF samples points along multiple rays. (b)
Aperture radius and scale converting pixel units to world units are used for computing sample position. We adapt DVGO [38] as our base
method, directly optimizing features and densities in the voxel grids. The color ¢, is estimated following the volume rendering convention
in Eq. (1) for each ray. (c) To estimate the color of queried pixel p,, we average the volume rendering results of multiple rays within the
disk area as in Eq. (7). The figure shows the case when the N, is 3 x 3 and N is 9 x 9. Orange arrows represent the path where gradients

flow during optimization.

ray origins. And then, the color values within the circular
area are averaged to obtain the color of pixel p;. Estimated
color of pixel p; is written as follows:

N!—1 N!—1

Clp)= ) L()li(e)/ )Y 1), D
=0

=0

where N/ is the number of approximated ray origins, o; is
the [-th approximated ray origin, and 1 (o;) is the indicator
that returns 1 if o; is within the circular area with a radius
of A,., otherwise, 0. Eq. (7) is illustrated in Fig. 2(c). Here,
we simply averaged colors within the aperture area instead
of applying a weighted sum since the ray origins are sam-
pled from evenly spaced grid positions and each ray cov-
ers roughly the same aperture area, endowing each ray with
equal importance. A gamma correction function is omitted
since we observed performance degradation. We can think
of it as applying a gamma correction function g(z) = z'/7
with a gamma value of 1.

4.3. Scale Ambiguity

To sample ray origins within an aperture area with a ra-
dius of A,., we should know what A,. is. Aperture radius can
be obtained from the following EXIF exchangeable format:

A Lens Focal Length F g

" 2(F-number) 2 (F-number)’ ®)
Note that lens focal length F' has the unit of pixel, and F-
number has no unit since it is a ratio. Naturally, the unit of
aperture radius A, follows that of F', which is pixel. Since
ray origins in Eq. (6) are expressed with respect to A, the
unit of ray origins also is pixel. However, to sample points
along the ray in 3D space for volume rendering, ray origins
should be expressed in 3D space coordinates. Background
color in Fig. 4 shows the unit difference between camera
space and 3D world space.

To obtain scale s3p_,,;, that converts the 3D space unit
to the pixel unit, we assume that in-focus depth Lz in a 3D
space unit is known. From this, we can rewrite Eq. (3) as
follows: 1 L )

Ly * S3ppix - Lp F ©
Note that L; and F' are obtainable from EXIF in pixel unit.
Since we assume that in-focus depth L is known, the only
unknown variable here is s3p_,pix, making Eq. (9) solvable
with respect to s3p_,pix. To approximate Lz, sparse 3D
points produced by COLMAP [32] are utilized. We ap-
proximate L as a median depth obtained by projecting 3D
points to train images.

The derived s3p_pix may have errors caused by rough
estimates of in-focus depth Lz. To recoup this, residual for
scale As3p_,piy is introduced and optimized explicitly.

ggi?mz = (3p[r)e)—>pix + S(Bplr;)—>piz ! AS3D—>PiJC' (10)

To make gradients flow towards Assp_, i, the sample
position is concatenated with shallow MLP inputs. Fig. 2(b)
depicts how gradients flow towards Assp_,p; through the
sample position and the ray origin.

4.4. In-Focus Loss

As stated in DeblurNeRF [20], deblurring images from
view-consistent blurry pixels is an ill-posed problem. How-
ever, when there is an inconsistency in blur across mul-
tiple views, we can expect our model to decompose blur
into multiple true-colors, trying to compensate for inconsis-
tency. For additional ambiguity relaxation, we present the
in-focus loss here.

When we define a sampled point x;;, along a ray through
the lens center with respect to the ray origin o and direction
d, such as x;;, = o + t;d, the in-focus loss is defined as
follows:
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Figure 3. Qualitative results of novel view synthesis in a defocus, a deblur, and a classic task. (a) The purpose of the defocus task is
to synthesize images captured with a wide aperture camera given images captured with a narrow aperture. (b) The deblur task aims to
generate images captured with a small aperture camera given images captured with a wide aperture. (c) The goal of the classic task is to
render novel view images under the assumption that the aperture size is fixed. The smaller F-number is, the wider the aperture size is.
PSNR and LPIPS are written on the image and the best results are highlighted in red.
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Here, 7 is the indices of pixels in a batch, K is the in-
dices of the sampled points along a single ray, x; is a sam-
pled point, ¢(x;y,) is the estimated color of the sample point,
C(p;) is the true color of the i-th pixel, 7 is the hyperpa-
rameter, and +(/°¢) is a scalar value that makes the sampled
point be on the focus plane. This loss forces the color of
the sampled points to have the color of the input pixel if the
points are close to the focus plane. Fig. 4 illustrates how
our in-focus loss works. Please note that wy, gets bigger as
tr, becomes closer to the t(foe),

4.5. Training Objective

To optimize our LensNeRF framework, six different
types of loss functions are employed.

L :)\pﬁpho + >\e£ent + )\t‘ctv + )\d['dis + )\f‘cfoc-
(12)
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Figure 4. Ilustration of our in-focus loss. The in-focus loss forces
the focus plane to have the same color as the input image. Note
that assigning the green color of p; to the focus plane of Camera2
not only helps to determine the true color of a given 3D point but
also helps to narrow down possible color compositions for gray
pixel p;, such as (unknown, unknown, green), removing (gray,
gray, gray) from the candidates.

First coming four types of losses Lpno, Lents Ltvs Ldist
are inherited from our cornerstone, DVGO [38,39]. Lyho
is photometric loss that minimizes mean square error be-
tween the target image and rendered image. L., is entropy
loss responsible for enforcing accumulated alpha values in
Eq. (7) to concentrate either on foreground or background.
Ly, 18 TV loss that takes the role of preventing superfluous
sharpness observed in explicit NeRF representation. Lg;s;
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is distortion loss initially proposed in Mip-NeRF360 [4] that
is in charge of preventing floaters and background collapse.
Please refer to the DVGO [38,39] paper for a more detailed
explanation. L. is in-focus loss in Sec. 4.4.

4.6. Iterative Scale Calibration

Algorithm 1: Iterative scale calibration.

Data: Input images I,, with EXIF, Camera intrinsics
and extrinsics from COLMAP
Result: Trained NeRF model Fg

(init)
1 83D —pix <~ S3p_spix

2 for i < 0to N yier do

3 © <« random initialization
4 | Ogi < 0and I, + le-4 x (1e-2)mn(0:2)
/* NeRF&Scale optimization x/

5 for j < 0 to Njyuer; do

6 L Ovdir < Ovdir — Vo, L
A53D—>pi)c ~V L

8 if i + 1 # N,uer then

9 L continue

83D —pix

/+ NeRF optimization */
10 fOl‘j — NinnerltONinnerZ do
1 | ©~6-Vol

Algorithm 1 shows the iterative training scheme applied
to LensNeRF. Jointly optimizing residual scale As3zp_;pig
and NeRF parameters © from scratch generally fails to con-
verge. To handle this problem, we introduce an outer loop
for calibrating s3p_,piz. The NeRF parameters © are reini-
tialized when the outer loop starts. The learning rate /r
for s3p_spi, diminishes as the index of the outer loop in-
creases. Outer loops are early stopped when the inner loop
iteration exceeds Ninner1 €Xxcept the last outer loop. We ini-
tialize MLP layer weights that are multiplied with the view-
ing direction as zero and freeze it for Niyperi, guiding NeRF
network to learn view-independent color first, and develop
view-dependent color from the view-independent color es-
timated by the previous inner loop.

5. Experiments
5.1. Dataset Acquisition

There are several datasets introduced by precedent stud-
ies for the novel view synthesis task [13,23,45]. However,
none of these datasets is captured using a camera with a
wide aperture setting. To properly evaluate our work, we
construct a dataset for novel view synthesis with varying
aperture sizes. Specifically, Canon EOS 550D with 50mm
prime lens is used to capture images. For every position
where the image is taken, the aperture value is manipu-
lated to have four different F-numbers (F4, F5.6, F8, F22).
When training and testing, a single F-number is selected

from the four F-numbers for each viewpoint based on the
task that we want to achieve. Exposure time is set ac-
cordingly so that the exposure value (Ev=Av+Tv=2log,(F-
number)-log,(exposure time)) is constant. Camera pose is
obtained by COLMAP [32] using images with an F-number
of 22. Mostly, we capture images of forward-facing scenes
focused at the center. Starting from the first image, every
eighth image is kept for evaluation. The number of col-
lected scenes is nine in total.

5.2. Implementation Details

We use DVGO [38, 39] as our cornerstone, which im-
parts memory efficiency to the optimization process, pro-
viding us the room for multiple rays. Images are resized to
1296 x 864 both for the training and evaluation phase. As
in DVGO framework, density and color are expressed us-
ing explicit-implicit hybrid representation. The density is
explicitly queried from the density voxel grid. The color
is acquired by employing shallow MLP to the concatena-
tion of the queried feature representation, the viewing di-
rection, and the sample position. Based on the values as-
signed for IV, we define three models, named LensNeRF-
D(Dense)/M(Moderate)/S(Sparse), having 49 = 7 x 7,
25 = 5 x5,and 9 = 3 x 3 as N, value respectively.
N! is fixed as 11 during the training phase and dynami-
cally changed based on the target F-number during the test
phase, ranging from 1 to 11. To train our model, a single
NVIDIA A100 GPU is used for each scene. Training takes
8 hours for the D(Dense) model. For the aforementioned
hyper-parameters in Algorithm 1, we use 3 for Nyy¢er, 40k
for Ninner1, and 120k for N;y,pnero. We use a batch of 2048
rays for training. For the aforementioned hyper-parameters
in Eq. (12), we use 0.4 for A;. The 7 in Eq. (11) is set to
5.0. Other hyperparameter values follow those of our base-
line, DVGO [38]. The lens focal length is obtained from the
EXIF embedded in an image. Novel view synthesis takes
29s, 14s, 6.5s for LensNeRF-D/M/S respectively.

5.3. Comparative Study

Thanks to the introduction of the thin-lens camera model
to NeRF, our LensNeRF can handle input images with any
F-numbers and has the ability to synthesize novel view im-
ages with any F-number of interest. Since there are not
many studies that fully match our experimental scenarios,
we define three tasks and compare our method with the
baselines of each task. We define the case where the F-
number of input images is bigger than that of output images
as a defocus task, the case where the F-number of input im-
ages is smaller than that of output images as a deblur task,
and the case where the F-number of input images is identi-
cal to that of output images as a classic task. The brightness
of the resulting images in qualitative results is adjusted for
ease of comparison.
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Defocus Task PSNR{ SSIM{ LPIPS| | PSNR? SSIM{ LPIPS |
Methods | F22 — F4 | F22 - F5.6
DiskBlur + DVGO [38] | 27.7064  0.8628  0.2946 | 28.1376  0.8537  0.2903
NeRFocus [44] 248951  0.7122  0.3460 | 252636 07156 03291
DoF-NeRF [46] 246593 07017 03411 | 253044 07128  0.3144
LensNeRF-D 285347 0.8955  0.2344 | 287060 0.8849  0.2355
LensNeRF-M 283465 0.8940  0.2368 | 284842 0.8835  0.2387
LensNeRF-S 277758 08838  0.2562 | 27.8823 0.8759  0.2487
Methods | F22 — F8 ‘ Fmix — F4
DiskBlur + DVGO [38] | 28.2544  0.8438 02932 | N/A N/A N/A
NeRFocus [44] 253963 07132 03245 | N/A N/A N/A
DOF-NeRF [46] 255785 07162 0.2981 | 24.1304 0.6976 03614
LensNeRF-D 28.6910  0.8725  0.2432 | 29.4934 0.8974  0.2321
LensNeRF-M 283881 0.8706  0.2474 | 289642 0.8955  0.2348
LensNeRF-S 27.8331 08643  0.2552 | 284776  0.8895  0.2431

Table 1. Quantitative results of novel view synthesis in the defocus
task. All metrics are averaged over scenes. The best result is in
boldface and the second-best result is underlined.

5.3.1 Defocus Task

Here, we compare our method with three baseline meth-
ods, DiskBlur+DVGO [38], NeRFocus [44] and DoF-
NeRF [46]. DiskBlur+DVGO is a two-stage method that
first synthesizes defocus images that match the target F-
number, as in other studies [22, 37, 44], and then trains
DVGO [38] using these synthetically blurred images.
Quantitative Results We summarize the quantitative re-
sults of our method and baseline methods in Tab. 1. Our
method surpasses the other baseline performance in PSNR,
SSIM, and LPIPS. Please note that as the input and output
F-number difference is more dramatic, proposed LensNeRF
outperforms baseline methods by a large margin.
Qualitative Results Qualitative results on the defocus task
are shown in Fig. 3(a). From the first column, we can ob-
serve that the other baseline methods learn weak blur all
over the pixels. Baseline results from the second column
fail to synthesize the proper defocus blur. On the other
hand, the proposed LensNeRF successfully model the de-
focus blur that reflects the depth variation. Overall, our
LensNeRF model can synthesize novel view images with
realistic defocus blur.

5.3.2 Deblur Task

In the deblur task, we compare our method with
KPAC [35]+DVGO [38], DeblurNeRF [20], and DoF-
NeRF [46]. Similar to DiskBlur+DVGO, KPAC+DVGO
is a two-stage method. First, given images with defocus
blur, KPAC(3-level) removes blur for each image, and then
these blur-free images are used for DVGO training. Al-
though we report PSNR as an evaluation metric in deblur
task, the PSNR is known to be generous to blur [I, 28],
which is not perfectly suitable for deblur task evaluation.
Check the PSNR of the images in Fig. 3(b). Although
our result is more crispy, there are some cases where the
PSNR of KPAC+DVGO is higher than ours. To increase

Deblur Task | PSNRT SSIM{ LPIPS| DISTS| | AVG |
Methods | F4 — F22

KPAC [35] + DVGO [38] | 26.8882  0.7920 0.3651 0.1891 | 0.0896
Deblur-NeRF [20] 23.4495  0.6363 0.3373 0.1743 | 0.1125
DoF-NeRF [46] 23.9006  0.6341 0.4068 0.2269 | 0.1228

LensNeRF-D 264639  0.8001 03239  0.1624 | 0.0854

LensNeRF-M 259477 0.7964 03281  0.1659 | 0.0889

LensNeRF-S 259926 07915 03398  0.1714 | 0.0904
Methods | F5.6 — F22

KPAC [35] + DVGO [38] | 27.5523  0.8068 0.3331 0.1683 | 0.0811
Deblur-NeRF [20] 23.1585  0.6309 0.3158 0.1577 | 0.1100
DoF-NeRF [46] 24.8471  0.6663 0.3682 0.2009 | 0.1088

LensNeRF-D 271412 0.8141  0.2990  0.1491 | 0.0781

LensNeRF-M 27.1385 08126 03024  0.1503 | 0.0785

LensNeRF-S 26.8368 0.8059  0.3124  0.1561 | 0.0817
Methods | F8 — F22

KPAC [35] + DVGO [38] | 27.8307 0.8156 0.3110 0.1540 | 0.0763
Deblur-NeRF [20] 23.3319  0.6399 0.2869 0.1432 | 0.1034
DoF-NeRF [46] 25.0532  0.6757 0.3488 0.1857 | 0.1036

LensNeRF-D 274203 0.8236  0.2817  0.1387 | 0.0738

LensNeRF-M 272740 0.8217 02855  0.1393 | 0.0749

LensNeRF-S 27.1298  0.8170 02923 0.1443 | 0.0769
Methods | Fmix — F22

KPAC [35] + DVGO [38] | 27.9776  0.8147 0.3165 0.1578 | 0.0765
Deblur-NeRF [20] 23.1888  0.6305 0.2878 0.1437 | 0.1048

DoF-NeRF [46] 23.1072  0.6290 0.4053 0.2615 | 0.1333
LensNeRF-D 27.8825  0.8275 0.2803 0.1366 | 0.0713
LensNeRF-M 27.4536  0.8247 0.2862 0.1392 | 0.0740
LensNeRF-S 27.1647  0.8198 0.2898 0.1421 0.0761

Table 2. Quantitative results of the deblur task. All metrics are
averaged over scenes. The best result is in boldface and the

second-best result is underlined.

the credibility of our evaluation, we add one more metric,
DISTS [10], which is known to be good for deblur task
evaluation. For ease of comparison, we define AVG as in
Mip-NeRF [3] to aggregate all metrics. One difference from
AVG in Mip-NeRF [3] is that our AVG reflects DISTS. AVG
aggregats all metric measurements using the following for-
mula: 10~ PSNR/10 5 (/T —GSTM x LPIPS x DISTS. The
lower AVG value represents a better result.

Quantitative Results Quantitative results on the deblur task
can be found in Tab. 2. KPAC+DVGO generally shows
high PSNR, SSIM, LPIPS, and DISTS values, meaning that
the resulting images are numerically similar to the ground-
truth images, and Deblur-NeRF generally has low PSNR,
SSIM, LPIPS, and DISTS values, meaning that the result-
ing images are visually plausible to human perception. Our
LensNeRF shows harmoniously good results in all four
metrics in general, showing superior results in an aggre-
gated score, AVG.

Qualitative Results Fig. 3(b) shows the qualitative result of
the deblur task. From the qualitative results, we confirm that
the proposed LensNeRF can synthesize crispy novel view
images only from defocus images. Check out not only the
region highlighted by the red box but how much the back-
ground region is clear enough compared to the other base-
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Classic Task PSNRT SSIM{ LPIPS| | PSNRt SSIM1{ LPIPS |
Methods | F4 — F4 | F5.6 — F5.6

DVGO 29.2202  0.8709 0.2745 | 29.2462  0.8625 0.2688
DVGO2 29.2957  0.8721 02790 | 29.2812 0.8640  0.2736
DVGO49 23.0537  0.7691 0.4046 | 229716  0.7499  0.4097

LensNeRF-D | 30.1185  0.8951 0.2360 | 29.3277 0.8834  0.2372
LensNeRF-M | 29.6116  0.8933 0.2385 | 29.4338 0.8822  0.2401
LensNeRF-S | 29.2035  0.8882 0.2453 | 28.7302  0.8757 0.2482

Methods F8 — F8 | F22 — F22

DVGO 29.1323  0.8534  0.2676 | 28.6261 0.8266  0.2906
DVGO2 29.2261 0.8550  0.2736 | 28.7760  0.8291 0.2982
DVGO49 22,7101 0.7326  0.4130 | 22.1168  0.6903 0.4551

LensNeRF-D | 29.1582  0.8706  0.2458 | 28.1451  0.8365 0.2644
LensNeRF-M | 28.7341  0.8685 0.2486 | 27.7949  0.8338 0.2691
LensNeRF-S | 28.5137  0.8639 02565 | 27.5721  0.8288 0.2739

Table 3. Quantitative results of the classic task. All metrics
are averaged over scenes. The best result is in boldface and the
second-best result is underlined.

line methods.

5.3.3 Classic Task

The classic task assumes that the input images and the out-
put images are taken from the same F-number. A conven-
tional NeRF optimization using multi-view images can be
considered as a special case of the classic task, where in-
put and output images are captured using a pinhole cam-
era. Here, we expand the camera model other than the pin-
hole camera. From Tab. 3, we can confirm that the pro-
posed LensNeRF has better interpretability power of a given
scene, synthesizing more ground-truth-like novel view than
our base model DVGO [38, 39]. The larger the aperture
size is, the more superior our LensNeRF is compared to
the others. To show the effect of sampling multiple points,
we report the result of two models, DVGO2 and DVGO49.
Each represents the DVGO model with an increased num-
ber of point samples, where DVGO2 uses two times more
points than those of DVGO and DVGO49 uses 49 times
more. The experiment shows that doubling the number of
sampled points achieves a slight performance gain. Sam-
pling 49 times more points fails to converge to plausible
results. From this, we can infer that the achievement of our
LensNeRF is not simply due to using more points. Qualita-
tive results can be found in Fig. 3(c).

5.4. Ablation Study

For the ablation study, we subsample three scenes
(AmusementPark, Gink, Sheep) and use them for analysis.
In-Focus Loss and Scale Optimization We conduct an ab-
lation study to show the effectiveness of each component.
As in-focus loss is designed to support deblur task, we per-
form the ablation study on the most representative deblur
task, F4—F22. Also, to show the effectiveness of the scale
optimization, we further perturbed initial in-focus depth L
estimated from Sec. 4.3 by 30%. From Tab. 4, we can verify
that using in-focus loss is advantageous for the deblurring

Deblur Task PSNR{ SSIM{ LPIPS| DISTS| AVG |
Methods [IL SO | F4 — F22
LensNeRF (none) | X X | 194070 06232 04828 02351  0.1681
LensNeRF (IL) | O X | 217125 07075 04616  0.2214  0.1389
LensNeRF (SO) | X O | 25659 0.8418  0.2747  0.1395  0.0802
LensNeRF (full) | O O | 261644 0.8447 02753  0.1386  0.0777

Table 4. Ablation study of novel view synthesis with the deblur
task. IL refers to in-focus loss and SO refers to scale optimization.
All metrics are averaged over scenes. The best result is in boldface
and the second-best result is underlined.

Ours (None)

Ours (with ILonly)  Ours (with SO only) Ours (Full)
\\

Yo s By, o 7 e

| - S & R § 15
Figure 5. Effectiveness of using in-focus loss and scale optimiza-
tion for deblur task. IL means in-focus loss, and SO means scale
optimization. As we can see, with in-focus loss, color ambiguity
caused by defocus blur can be mitigated.

task. Scale optimization also contributes to the impressive
performance enhancement of LensNeRF framework. Check
Fig. 5 for the effectiveness of applying in-focus loss and
scale optimization in a qualitative manner.

6. Discussion and Conclusion

Limitations LensNeRF is specially designed to interpret
the thin-lens model, so our model cannot remove motion
blur as Deblur-NeRF [20] does. Also, LensNeRF requires
comparatively large memory and computation, utilizing
multiple rays that originate from a thin-lens aperture area.
Lastly, LensNeRF requires EXIF metadata such as camera
focal length L; and lens focal length F'.

Conclusion In this paper, we propose LensNeRF, a NeRF
framework that generalizes volume rendering procedure for
a thin-lens camera model. To this end, we suggest a way
to solve scale ambiguity, bridging the world coordinates
and the pixel coordinates. Introducing a thin-lens camera
model allows us to perform not only the classic NeRF opti-
mization task but also the deblur task and the defocus task.
To boost the performance of LensNeRF, especially for the
deblur case, newly designed in-focus loss is introduced to
fully exploit view inconsistency over images and to allevi-
ate color ambiguity caused by defocus blur. Experimental
results show that our LensNeRF achieves surpassing or on-
par performance compared to the baselines.
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