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Abstract

We propose a novel domain generalization technique,
referred to as Randomized Adversarial Style Perturbation
(RASP), which is motivated by the observation that the
characteristics of each domain are captured by the feature
statistics corresponding to its style. The proposed algo-
rithm perturbs the style of a feature in an adversarial di-
rection towards a randomly selected class. By incorpo-
rating the perturbed styles into training, we prevent the
model from being misled by the unexpected styles observed
in unseen target domains. While RASP is effective for han-
dling domain shifts, its naı̈ve integration into the training
procedure is prone to degrade the capability of learning
knowledge from source domains due to the feature distor-
tions caused by style perturbation. This challenge is alle-
viated by Normalized Feature Mixup (NFM) during train-
ing, which facilitates learning the original features while
achieving robustness to perturbed representations. We eval-
uate the proposed algorithm via extensive experiments on
various benchmarks and show that our approach improves
domain generalization performance, especially in large-
scale benchmarks.

1. Introduction
One of the major drawbacks of machine learning models

compared to human intelligence is the lack of adaptivity to
distribution shifts. While humans easily make correct de-
cisions even on unseen domains, deep neural networks of-
ten exhibit significant performance degradation on the data
from unseen domains. The lack of robustness to novel do-
mains restricts the applicability of neural networks to real-
world problems since it is implausible to build a training
dataset that covers all possible domains and follows the true
data distribution. Therefore, learning domain-invariant rep-
resentations with limited data in the source domains is criti-
cal for deploying deep neural networks in practical systems.

Domain Generalization (DG) attempts to train a machine
learning model that is robust to unseen target domains, us-
ing data from source domains. The most straightforward

way to achieve this goal is to expose the model to various
domains during the training procedure. To stretch the cover-
age of the source domains, recent approaches often employ
data generation strategies [16, 19, 22, 26, 29, 32–35]. While
they have shown promising results on generalization abil-
ity, many of them require additional information about data
such as domain labels for individual instances [22, 33–35]
or even extra network components such as generators and
domain classifiers [22, 29, 33, 34]. However, the additional
information including domain labels is unavailable in gen-
eral and the need for architectural support increases compu-
tational complexity and training burden. There exist a few
approaches that do not require extra information about data
or additional network modules [16, 19], but they are lim-
ited to straightforward feature augmentations by stochasti-
cally adding trivial noise. While [22, 26] adopt adversarial
data augmentation techniques, they impose perturbations in
image space without style disentanglement, which incurs
higher computational complexity and inferior generaliza-
tion capabilities.

This paper presents a simple yet effective data augmen-
tation technique based on adversarial attacks in the feature
space for domain generalization. The proposed approach
does not require architectural modifications or domain la-
bels but relies on feature statistics in the intermediate lay-
ers. Our work is motivated by the observation that each
visual domain differs in its feature statistics given by in-
stance normalization, which corresponds to the style of a
feature. Based on this observation, existing works attempt
to learn style-agnostic networks robust to domain shifts via
style augmentations [12, 19, 35]. Although they do not re-
quire additional networks [19, 35], they are limited to us-
ing simple augmentation techniques with no feedback loop
in the augmentation process, leading to suboptimal perfor-
mance. While StyleNeophile [12] augments novel styles
that have different distributions from the source domain us-
ing the information observed in the previous iterations, its
simple style diversification objective is weak for improving
performance on unseen styles in the target domain.

Although our approach follows the same assumption
as [12,19,35], its objective for style augmentation is unique
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in the sense that it actively synthesizes hard examples to
improve trained models. To this end, inspired by adversar-
ial attacks [7, 17, 27], the proposed method, referred to as
Randomized Adversarial Style Perturbations (RASP), ad-
versarially augments the styles of features so that the corre-
sponding examples deceive the network to be misclassified.
Unlike the other methods based on adversarial attacks to-
ward the fixed target label [22, 32], we draw random labels
for attacks to ensure the plausibilty of the augmented styles.
While the features with modified styles strengthen the gen-
eralization ability on unseen domains, they might neglect
crucial information observable in the source domains since
the style augmentation is prone to disturb the representa-
tions of perturbation-free examples. To compensate for this,
we propose Normalized Feature Mixup (NFM) technique
based on mixup [30]. Instead of applying the naı̈ve feature
mixup technique, NFM combines the normalized represen-
tations of perturbed and perturbation-free features. By inte-
grating normalized features given by NFM, we successfully
maintain the representations from the source domains while
taking advantage of style augmentation based on RASP.

Our contributions are summarized as follows:

• We present a unique style augmentation technique, re-
ferred to as RASP, for domain generalization based on
adversarial learning. This method is free from any ar-
chitectural modifications or the need for the domain
label of each example.

• We introduce a novel feature mixup method, NFM,
which allows us to maintain knowledge from source
domains while facilitating the adaptation to fresh data
via robust domain augmentation.

• The proposed approach consistently demonstrates out-
standing generalization ability in multiple standard
benchmarks, especially in large-scale datasets.

The rest of this paper is organized as follows. We first
review previous works about domain generalization in Sec-
tion 2, and our main algorithm based on RASP and NFM
is discussed in Section 3. We present experimental results
from the standard benchmarks in Section 4 and conclude
this paper in Section 5.

2. Related Works
In the pursuit of robust Domain Generalization (DG), a

central challenge is to develop models that generalize to un-
seen target domains using only source domains for training.
Existing approaches address the DG problem by using the
following techniques: 1) meta-learning 2) data augmenta-
tion, 3) feature statistics manipulation, and 4) flat minima
seeking. This section summarizes the technical details of
each of the four categories.

Meta-learning approaches The algorithms in this line
of research formulate the domain generalization task as a
meta-learning problem [2, 6, 15] by splitting the source do-
mains into the meta-train and meta-test sets. Using these
sets, they adopt the learn-to-learn schemes of meta-learning
for the generalization on unseen domains. However, they
rely heavily on the assumption that the diversity of the
source domains is large enough to effectively cover unseen
domains, which may not hold in real-world scenarios.

Data augmentation approaches The methods in this cat-
egory, which deal with domain shifts by introducing new
images belonging to new domains for training [22,23,26,28,
29, 32–34], and can be divided into two groups. One group
uses generative models to increase the number of training
examples [29, 33, 34], which induces extra computational
complexity and instability of training. The approaches in
the other direction rely on image perturbation for data aug-
mentation [22, 26, 28, 32]. However, some of them [22, 28]
still require auxiliary neural networks for the regulariza-
tion. While some image perturbation approaches [22,26,32]
employ adversarial augmentation techniques similar to our
method, they operate on image space without style disen-
tanglement, leading to high computational complexity and
inferior performance compared to the proposed method.

Feature statistics manipulation approaches The meth-
ods in this type take advantage of the observation that the
feature statistics capture characteristics of the visual do-
mains [12, 19, 21, 35]. DSON [21] introduces domain spe-
cific normalization layer using the weighted sum of batch
and instance normalization statistics. MixStyle [35] gener-
ates novel domain features by mixing feature statistics from
different images while pAdaIN [19] randomly permutes the
statistics of each feature before every batch normalization
layer. Similarly, SFA [16] adopts a feature-level augmen-
tation technique that applies simple stochastic linear trans-
forms. Unlike [19, 35], StyleNeophile [12] augments styles
that have different distributions from those in previous itera-
tions. Although StyleNeophile [12] does not rely on simple
stochasticity, there is no guarantee that the augmented styles
will be useful for the generalization in target tasks.

Flat minima seeking approach It is well-known that flat
minima in the objective function facilitates learning robust
models to the variations of input data. SWAD [3] exploits
this property and proposes the stochastic weight averaging
strategy [11] tailored for domain generalization; the tech-
nique finds flat minima for enhancing the generalization
ability to domain shift.

3. Proposed Approach
This section describes the technical details of the pro-

posed Randomized Adversarial Style Perturbations (RASP)
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Figure 1. Overall framework of our algorithm, Randomized Adversarial Style Perturbations (RASP) with Normalized Feature Mixup
(NFM). Our model runs two parallel paths, one with RASP+NFM and the other without the modules. Before each block in the RASP+NFM
path, we apply the RASP module to augment novel styles. RASP adjusts the style of each feature by minimizing the loss with respect to a
random target class different from the ground-truth. After passing through the RASP module, followed by a ResBlock, NFM is performed
to regularize the style-augmented features. The perturbation-free path injects the style normalized information into the NFM module. Note
that the common network components in the two paths share their parameters.

and the Normalized Feature Mixup (NFM) methods.

3.1. Background

Instance normalization and style Recent studies on neu-
ral style transfer [10, 24] discover that the style of a feature
can be captured by the instance-specific channel-wise mean
and standard deviation. Instance Normalization (IN) [24]
removes the effect of styles on features by normalizing fea-
tures as follows:

IN(z) = γ
z − µ(z)
σ(z)

+ β, (1)

where z is the feature for an input example x, (γ, β) are
learnable affine parameters, and (µ(z), σ(z)) are instance-
specific channel-wise statistics computed by

µ(z) =
1

HW

H∑
h=1

W∑
w=1

zh,w, (2)

σ(z) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(zh,w − µ(z))2. (3)

AdaIN [10] allows the style of an input feature z′ to be
transferred to the content of another input z by replacing
the affine parameters of IN with the feature statistics of the
style image z′ as follows:

AdaIN(z, z′) = σ(z′)
z − µ(z)
σ(z)

+ µ(z′). (4)

Gradient-based attacks Adversarial attacks [7,13,17,18,
27, 31] trick a neural network by injecting imperceptible
small noise to an example. A popular way to generate such
perturbations is to utilize the gradient information of the
network. Given an image-label pair (x, y) and model pa-
rameters θ, FGSM [7] computes the optimal perturbation of
a linearized cost function, which is given by

x = x+ ε sign(∇xJθ(x, y)), (5)

where ε is the magnitude of perturbation and Jθ(·, ·) is a
task-specific loss function. I-FGSM [13] extends FGSM [7]
by using multiple iterations as

x0 = x, (6)
xt+1 = clipx,ε [xt + α sign(∇xJθ(xt, y))] , (7)

where α is the step size for each iteration and clipx,ε[·] de-
notes a clipping operation that restricts the magnitude of a
perturbation from the original image only up to ε. We adopt
an unclipped and targeted version of I-FGSM as our base-
line of adversarial attacks.

3.2. Overall Framework

Let (x, y) denote an image and class label pair sampled
from an arbitrary source domain. We adopt Empirical Risk
Minimization (ERM) using the standard cross entropy loss,
`CE, as our baseline. Our goal is to train a feature extrac-
tor fθ and a classifier gφ parameterized by θ and φ, re-
spectively, which are robust to domain shifts. To apply
our methods, we divide fθ into L residual blocks as fθ :=
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fLθ ◦ f
L−1
θ ◦ · · · ◦ f1θ . When we train the proposed network,

we consider an additional forwarding path—a perturbation-
free path—with shared weights in parallel and make the two
paths interact with each other.

To introduce the challenging styles during training, we
incorporate the Randomized Adversarial Style Perturba-
tions (RASP) module, which will be discussed in Sec-
tion 3.3, before each block of the backbone network with
a probability of 0.5. When RASP is applied, we also per-
form Normalized Feature Mixup (NFM) after each block
with a probability of 0.5. It prevent the augmented features
from being deviated too much from the original features.
Figure 1 illustrates the overall framework of the proposed
approach.

3.3. Randomized Adversarial Style Perturbations
(RASP)

The proposed method augments the styles of features in
each block of a network, employs the style-augmented ex-
amples for adversarial training, and improves the robustness
of the trained model to the features regardless of their styles.
While the existing style perturbation methods [12, 19, 35]
are helpful for learning style-agnostic feature extractors, we
argue that simply generating diverse examples is subopti-
mal for training models and that the target direction in style
augmentation is critical for training domain-agnostic mod-
els using a limited number of data with new styles.

RASP generates examples that meet two desirable
properties—style difficulty and plausibility. First, the aug-
mentation process is conducted in a way that provides chal-
lenging styles, to prevent the model trained with the styles
from being deceived by the unexpected distribution shifts.
Second, since the proposed algorithm perturbs an example
towards one of the target classes other than its ground-truth,
the generated examples tend to be more realistic than those
obtained by simply reducing the score corresponding to the
ground-truth label. In addition to the target selection strat-
egy, we adopt a threshold to terminate the RASP iterations
when the prediction score for the ground-truth label falls be-
low the threshold; it ensures that the augmented styles are
within the desired range aligned with realistic images.

The training procedure with RASP is simple. Given a
feature zi−1 for an input x after the (i − 1)st block and a
randomly sampled target label ytarget different from the orig-
inal label y, we compute the style loss Lstyle at each attack
iteration t as

Lstyle = `CE
(
gφ ◦ fLθ ◦ · · · ◦ f iθ(zi−1t ), ytarget

)
, (8)

where zi−1t = z̃i−1 · σt + µt is the denormalized vector
and `CE is standard crossentropy loss. Notice that z̃i−1

is the instance normalized feature derived from zi−1 and
(µt, σt) characterizes the style at the tth iteration, where
(µ0, σ0) = (µ(zi−1), σ(zi−1)). Given a step size ε, the

style of a feature is updated in a way that decreases Lstyle as
follows:

µt+1 = µt − ε · ‖µ0‖2 · sign(∇µt
Lstyle) (9)

σt+1 = σt − ε · ‖σ0‖2 · sign(∇σt
Lstyle) (10)

as long as the following condition is met:

softmax(gφ ◦ fLθ ◦ · · · ◦ f iθ(zi−1t ))y ≥ τ. (11)

where τ is the score threshold of the ground-truth class for
terminating the RASP iterations. Note that the step sizes in
RASP for updating the mean and the standard deviation are
proportional to their magnitudes as in (9) and (10).

3.4. Normalized Feature Mixup (NFM)

Although RASP provides plenty of effective novel styles
that strengthen generalization performance on unseen do-
mains, it degrades the capability of learning features from
source domains since perturbed styles may deviate exces-
sively from the original ones. To compensate for this
phenomenon, we propose the Normalized Feature Mixup
technique (NFM) technique, which ensembles instance-
normalized features from both the perturbation-free path
and the RASP path. By doing this, NFM preserves the
knowledge from the source domain while learning robust
representations by taking advantage of style augmentations.

Instead of using the features before the instance normal-
ization, which may change the augmented styles back to
the original one by mixup, NFM performs mixup with the
normalized features (content features) and then applies aug-
mented styles to the mixed normalized features via denor-
malization. Formally, given a feature from the ith block ziin,
we obtain an instance-normalized feature, z̃iin, and its aug-
mented style obtained from the RASP path. NFM mod-
ule mixes z̃iin with an instance-normalized feature from the
perturbation-free path in the ith block, ẑi, to get a mixed
normalized feature, z̃imix, and denormalizes it with the aug-
mented style (µ(ziin), σ(z

i
in)) to obtain the final output, ziout,

as follows:

z̃imix = α · ẑi + (1− α) · z̃iin, (12)

ziout = z̃imix · σ(ziin) + µ(ziin), (13)

where α ∼ Beta(0.1, 0.1) determines the mixup ratio.

3.5. Inference

While our method utilizes an additional forwarding path
and optimization steps during training, we only use the
perturbation-free path for inference. Therefore, it does not
incur additional computational cost at the inference time.

4. Experiments
We demonstrate the performance of the proposed algo-

rithm on standard benchmarks of domain generalization and
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Table 1. Performance on DomainNet with two different backbone networks. RASP+NFM presents outstanding accuracy in this large-scale
dataset. The bold-faced numbers indicate the best performance.

(a) Results of ResNet18 on DomainNet

Method Additional components Clipart Infograph Painting Quickdraw Real Sketch Avg.

ERM — 56.6 18.4 45.3 12.5 57.9 38.8 38.3
MetaReg [2] Domain label, Task network 53.7 21.1 45.3 10.6 58.5 42.3 38.6

DMG [4] Domain label, Mask predictor 60.1 18.8 44.5 14.2 54.7 41.7 39.0
StyleNeophile [12] — 60.1 17.8 46.5 14.6 55.4 45.3 40.0
RASP+NFM (ours) — 60.4 ± 0.2 22.6± 0.1 50.2± 0.2 17.2± 0.3 56.8± 0.3 48.5± 0.4 42.6

(b) Results of ResNet50 on DomainNet

Method Additional components Clipart Infograph Painting Quickdraw Real Sketch Avg.

ERM — 64.0 23.6 51.0 13.1 64.5 47.8 44.0
MetaReg [2] Domain label, Task network 59.8 25.6 50.2 11.5 65.5 50.1 43.6

DMG [4] Domain label, Mask predictor 65.2 22.2 50.0 15.7 59.6 49.0 43.6
StyleNeophile [12] — 66.1 21.4 51.4 15.3 61.7 51.8 44.6

SWAD [3] — 66.0 22.4 53.5 16.1 65.8 55.5 46.5
RASP+NFM (ours) — 66.5± 0.2 27.4± 0.2 55.2± 0.2 16.9± 0.3 63.7± 0.1 53.8± 0.3 47.2

analyze the characteristics of our approach in comparison
with existing techniques.

4.1. Datasets and Evaluation Protocol

We evaluate the proposed algorithm on DomainNet [20],
Office-Home [25], and PACS [14], which are standard
benchmarks for domain generalization. We set Domain-
Net, which is a large-scale dataset in terms of the num-
ber of classes and examples, as our primary target bench-
mark since verification in a large-scale benchmark is essen-
tial to confirm whether the proposed algorithm is applica-
ble in real-world problems. DomainNet contains 586,475
images of 6 domains (Clipart, Infograph, Painting, Quick-
draw, Real, and Sketch) and 345 classes. Office-Home con-
tains 15,558 images of 65 classes from 4 different domains
(Artistic, Clipart, Product, and Real world) while PACS,
the smallest dataset, consists of 9,991 images of 4 domains
(Photo, Art paint, Cartoon, and Sketches) and 7 classes
(dog, elephant, giraffe, guitar, horse, house and person).

We use the source domain validation set as the valida-
tion set for model selection, following the “training-domain
validation” criterion of DomainBed [8]. All the results are
average classification accuracy over five runs with different
random seeds.

4.2. Implementation Details

We employ ResNet18 or ResNet50 [9] pretrained on Im-
ageNet [5] as our backbone network architectures. We use
the SGD optimizer with a learning rate of 0.0005 decayed
by 0.1 after 30 epochs. The batch size is set to 32 and the
number of epochs for training is set to 60.

For our approach, we set the threshold of the ground-

truth class probability τ to 0.8, the step size ε to 2
255 , and the

number of attack iterations to 5 for all datasets. Note that
ε is rescaled by multiplying 64

channel size to maintain the size
of perturbations at each layer. RASP and NFM are applied
to the 2nd, 3rd, and 4th residual blocks, before and after
each block, respectively, as illustrated in Figure 1. All of
the experiments are performed on a single TITAN-XP GPU
using VESSL [1].

4.3. Results on DomainNet

We present the quantitative results of RASP with NFM
on DomainNet in comparison with other existing methods.
DomainNet is the most challenging dataset for DG since it
is the largest and there are substantial domain shifts between
domains, compared to other datasets. Despite these chal-
lenges, the proposed algorithm consistently achieves signif-
icant performance gains in all cases except the Real domain
with the ResNet18 and ResNet50 backbones as shown in
Table 1. Note that improvements in the domains with severe
distribution shifts (Infograph, Painting, Quickdraw, Sketch)
are more salient than the mild domains (Clipart, Real). This
result implies that the optimization for the worst-case styles
is particularly helpful in the case that there is a large domain
gap between source and target domains.

4.4. Results on Office-Home

To validate the effectiveness of our approach, we con-
ducted experiments on an additional dataset, Office-Home.
Table 2 clearly shows that RASP with NFM outperforms
other methods on this dataset. The proposed method ex-
hibits greater performance improvement in more challeng-
ing target domains; this is consistent with the observation
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Table 2. Performance on Office-Home with two different backbone networks. Note that the shaded rows indicate the algorithms that use
different hyperparameters for individual target domains, resulting in overestimated accuracies. The bold-faced numbers indicate the best
performance among the methods under fair comparisons without domain-specific hyperparameter turning.

(a) Results of ResNet18 on Office-Home

Method Additional components Art Clipart Product Real Avg.

ERM — 59.0 48.4 72.5 75.5 63.9
CrossGrad [22] Domain classifier/label 58.4 49.4 73.9 75.8 64.4
MixStyle [35] Domain label 58.7 53.4 74.2 75.9 65.5

StyleNeophile [12] — 59.6 55.0 73.6 75.5 65.9
RASP+NFM (ours) — 59.7 ± 0.4 57.6± 0.9 75.2± 0.3 76.7± 0.4 67.3

DDAIG [33] Generator 59.2 52.3 74.6 76.0 65.5
ADVTSRL [29] Generator 60.7 52.9 75.8 77.2 66.7

(b) Results of ResNet50 on Office-Home

Method Additional components Art Clipart Product Real Avg.

ERM — 64.7 58.8 77.9 79.0 70.1
CrossGrad [22] Domain classifier/label 67.7 57.7 79.1 80.4 71.2
MixStyle [35] Domain label 64.9 58.8 78.3 78.7 70.2

SWAD [3] — 66.1 57.7 78.4 80.1 70.6
RASP+NFM (ours) — 68.8± 0.4 61.7± 1.0 79.8± 0.2 80.9± 0.3 72.8

DDAIG [33] Generator 65.2 59.2 77.7 76.7 69.7
ADVTSRL [29] Generator 69.3 60.1 81.5 82.1 73.3

Table 3. Performance on PACS with the ResNet18 backbone network. Note that the shaded rows of the table indicate the algorithms that
use different hyperparameters for individual target domains. The bold-faced numbers indicate the best performance among the methods
that do not require the hyperparameter tuning specific to target domains.

Results of ResNet18 on PACS

Method Additional components Art Cartoon Photo Sketch Avg.

ERM — 75.1 74.2 95.6 68.4 78.3
CrossGrad [22] Domain classifier/label 79.8. 76.8 96.0 70.2 80.7
MixStyle [35] Domain label 84.1 78.8 96.1 75.9 83.7

StyleNeophile [12] — 84.4 78.4 94.9 83.3 85.5
RASP+NFM (ours) — 84.6± 0.5 79.8± 0.5 94.1± 0.4 80.1± 1.1 84.7

DDAIG [33] Generator 84.2 78.1 95.3 74.7 83.1
ADVTSRL [29] Generator 85.8 80.7 97.3 77.3 85.3

in DomainNet that RASP is useful especially when there
exists a larger domain discrepancy between the source and
the target. ADVTSRL [29] and DDAIG [33] are optimized
with a separate set of hyperparameters for each target do-
main and the comparisons with these methods are unfair.

4.5. Results on PACS

We also evaluate RASP with NFM on the PACS dataset
and present the results in Table 3. The proposed method
is competitive with all the compared methods even without
additional components such as domain classifiers or labels.
As mentioned earlier, ADVTSRL [29] and DDAIG [33] use
domain-specific hyperparameters, which makes the com-
parisons with our method unfair.

4.6. Ablation studies

As pointed out in DomainBed [8], selecting proper hy-
perparameters is a major issue for domain generalization
since the target domain data is inaccessible during train-
ing. To ensure the applicability of the proposed algorithm
to real-world domain generalization scenarios, we analyze
the effect of each hyperparameter on target domain accu-
racies and source domain validation accuracies. Also, we
test the various options of the proposed algorithm to further
validate the effectiveness of each component.

Number of attack iterations We study how the perfor-
mance of RASP is influenced by the number of attack it-
erations, T . Table 4(a) presents the evaluation results on
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Table 4. Ablation study results on the variations of attack iterations (T ) and attack termination threshold (τ ) with ResNet18 on Office-
Home.

Ablation types Variations Art Clipart Product Real Avg. Source Acc.

(a) Attack iteration (T )

1 59.5 53.0 75.6 76.9 66.3 83.7
2 60.8 55.0 76.0 77.2 67.3 84.1
3 60.5 56.5 75.5 77.4 67.5 84.3
4 60.2 56.9 75.6 77.0 67.4 83.8
5 59.7 57.6 75.2 76.7 67.3 83.5

(b) Threshold (τ )

0.0 57.4 58.0 72.4 74.8 65.7 82.4
0.2 58.0 58.6 73.4 75.2 65.7 83.2
0.4 58.6 58.5 74.2 76.0 66.3 83.5
0.6 59.2 58.0 74.7 76.5 67.1 83.8
0.8 59.7 57.6 75.2 76.7 67.3 83.5

Table 5. Ablation study results on the step size (ε) with ResNet18
on Office-Home.

Step size Art Clipart Product Real Avg. Source Acc.

ε = 0.5/255 60.1 53.2 76.1 76.9 66.6 83.9
ε = 1/255 61.0 55.4 75.9 77.2 67.4 84.2
ε = 2/255 59.7 57.6 75.2 76.7 67.3 83.5
ε = 3/255 59.0 58.2 74.0 76.0 66.8 83.3

Table 6. Ablation study results on the location where RASP is
applied with ResNet18 on PACS.

RGB Res2 Res3 Res4 Art Cartoon Photo Sketch Avg.

75.1 74.2 95.6 68.4 78.3

ASA [32] 75.8 76.3 95.7 67.4 78.8

CrossGrad
[22] 79.8 76.8 96.0 70.2 80.7

X 79.3 76.7 96.0 73.5 81.4
X 82.2 77.9 95.1 76.9 83.0

X 82.1 77.3 94.7 77.7 83.0
X 80.1 78.0 95.5 68.2 80.5

X X 83.2 78.0 94.2 80.2 83.9
X X 84.5 79.2 94.7 76.4 83.7

X X 83.4 79.5 94.4 77.6 83.7
X X X 84.6 79.8 94.1 80.1 84.7

Office-Home by varying the number of attack iterations.
Since the augmented examples with more adversarial iter-
ations have more challenging styles, the classification ac-
curacy on relatively easy target domains, e.g., Product and
Real, decreases as the number of iterations increases while
the accuracy on more difficult target domains, e.g., Clipart,
benefits from more iterations. An important observation
from Table 4(a) is that target domain accuracies have posi-
tive correlations with source domain validation accuracies;
one can easily select the proper T by observing source do-
main validation accuracies.

Stopping criterion of attack Our algorithm stops the ad-
versarial attack if the score of the ground-truth drops be-
low a threshold, regardless of the number of attack iter-
ations. The threshold is a hyperparameter that balances
the difficulty and plausibility of the synthesized style. Ta-
ble 4(b) presents the accuracies of our model by varying
the threshold values. Overall, our models with large thresh-
olds achieve better results in general compared to the mod-
els with small ones. However, a small threshold is rather
effective for the domains with large domain shifts, e.g., Cli-
part, because the augmented examples provide challenging
styles. Note that, if we set the threshold as too low, the over-
all performance is degraded substantially. Similar to the ab-
lation study about the number of attack iterations, the accu-
racies in the target domain and the source domain validation
set have positive correlations when we vary the threshold τ .
Hence, it is reasonable to select the proper hyperparameters
based on the validation accuracy in the source domain.

Step size Table 5 illustrates the results on Office-Home
under the change of step size ε. As the ε increases, aug-
mented styles get diverse while the plausibility is reduced.
Consequently, challenging target domains, e.g., Clipart, ex-
hibit improved accuracies, while easy domains, e.g., Prod-
uct and Real, and source domains witness degraded perfor-
mances. Note that there is a positive correlation between
the accuracies of source domain validation sets and target
domains.

Attack locations within models We evaluate the pro-
posed algorithms by applying our style augmentation tech-
nique to multiple different layers in the network. Table 6
demonstrates that the performance of the proposed method
varies greatly depending on the location of style augmen-
tation. Our algorithm provides a novel perspective on do-
main generalization in the sense that it attacks the fea-
ture statistics (styles) of the intermediate features instead
of input images. Table 6 clear shows inferior performance
of ASA [32] and RGB-level style attacks in our method,
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Table 7. Ablation study results on other variations of our algorithm with ResNet18 on PACS.

Ablation types Variations Art Cartoon Photo Sketch Avg.

(a) Augmentation Objective Ours 84.6 79.8 94.1 80.1 84.7
RASPGT 84.3 78.1 93.3 80.6 84.1

(b) NFM

w/o NFM 82.6 79.3 92.9 80.1 83.7
Style Mixup 83.4 79.0 93.5 79.5 83.9

Mixup 84.1 78.7 93.7 79.1 83.9
Ours 84.6 79.8 94.1 80.1 84.7

Figure 2. Eigenvalues of the covariance matrix of the channel
mean vectors after the 2nd ResBlock for the test set of the tar-
get domain, sketch of the PACS dataset.

highlighting the importance of feature-level augmentation.
Also, the comparison between RGB-level style attacks and
CrossGrad [22] shows the importance of style attacks with
style disentanglement. Note that CrossGrad [22] does not
disentangle styles but requires domain labels and domain
classifiers.

Attack objectives RASP randomly selects a target class
for augmentation. To show the effectiveness of this strategy,
we test another option for augmentation directions. One
simple way is to add perturbation in the direction of de-
creasing the prediction score of the ground-truth, which is
referred to as RASPGT. As shown in Table 7(a), such a di-
rection is clearly outperformed by the proposed scheme. We
argue that this occurs because simply decreasing the score
of the ground-truth label leads to a degenerate example, in-
dicating an unrealistic image caused by untargeted style per-
turbations. RASPGT produces more challenging but unreal-
istic styles. Consequently, RASPGT improves accuracy on
the Sketch domain, which is the most challenging domain
while degrading performance on other domains. This mod-
ified objective of the adversarial attack degrades the overall
performance.

Variations of NFM Table 7(b) presents the results from
the various options related to the NFM modules. When
mixup is applied to styles or features instead of normalized
features, classification accuracy significantly drops. This is

partly because the variations of our mixup strategy fail to
benefit from the novel style generation capability of RASP.
When NFM is not employed, the accuracy of easy tar-
get domains, e.g., art and photo, is significantly degraded.
These results support our arguments that NFM maintains
the knowledge learned from the source domains.

Effects on diversity of styles We plot the eigenvalues of
the covariance matrix of channel mean vectors after the 2nd
ResBlock using the test set of the target domain, the sketch
domain in PACS in this case. Figure 2 illustrates that the
proposed method with consistently larger eigenvalues al-
lows the network to observe more diverse styles than the
model based on ERM.

5. Conclusion
We presented a simple yet effective style augmentation

framework for domain generalization, called RASP, based
on adversarial attacks. RASP augments the styles that de-
ceive the network by attacking the model itself. Train-
ing models using the examples with the augmented styles
is helpful for improving the generalization ability on un-
seen domains by making the feature extractors robust to the
style changes. In addition to this idea, we also proposed
NFM to make the perturbed features have the desired prop-
erties and further enhance the domain generalization per-
formance. RASP with NFM does not require any archi-
tectural modifications or domain labels and can be easily
incorporated into the existing baselines. Extensive exper-
iments show that the proposed algorithm consistently im-
proves the generalization performance on unseen target do-
mains across multiple datasets.
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