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Abstract

Machine Learning models often only generalize reliably
to samples from the training distribution. Consequentially,
detecting when input data is out-of-distribution (OOD) is
crucial, especially in safety-critical applications. Current
OOD detection methods, however, tend to be domain agnos-
tic and often fail to incorporate valuable prior knowledge
about the structure of the training distribution. To address
this limitation, we introduce a novel, hybrid OOD detection
algorithm that combines a deep learning-based perception
system with a first-order logic-based knowledge representa-
tion. A logical reasoning system uses this knowledge base
at run-time to infer whether inputs are consistent with prior
knowledge about the training distribution. In contrast to
purely neural systems, the structured knowledge represen-
tation allows humans to inspect and modify the rules that
govern the OOD detectors’ behavior. This not only enhances
performance but also fosters a level of explainability that is
particularly beneficial in safety-critical contexts. We demon-
strate the effectiveness of our method through experiments
on several datasets and discuss advantages and limitations.
Our code is available online.1

1. Introduction

In recent years, Deep Neural Networks (DNN) [36, 27]
outperformed classical machine learning models on virtu-
ally every task involving large amounts of high-dimensional
data, like Natural Language Processing [34] and Computer
Vision [13]. Their superior performance enables novel use
cases, and current research explores applications in poten-
tially safety-critical areas, such as autonomous vehicles [11]
and healthcare [8]. However, DNNs have been shown to only
generalize well to new data points as long as they stem from
the distribution for which the models have been optimized
and tend to make egregiously wrong predictions with high
confidence when applied to inputs that are out-of-distribution

1https://github.com/kkirchheim/logic-ood
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Figure 1: Samples from a joint distribution pdata(x, y) with
decision boundaries for OOD detector (dotted) and binary,
linear concept detectors (dashed). Logical constraints such
as ¬z3 → z1∧z2 can reject inputs from regions that have no
support a priori, thereby tightening the decision boundary
and providing explanations for the rejected points.

(OOD) [10, 32]. In safety-critical applications, such OOD
inputs pose a safety risk and have to be detected in order
to avoid critical errors. However, current OOD detectors
are opaque and do not provide an efficient way to incorpo-
rate prior knowledge about the target domain. Furthermore,
while DNNs often perform well empirically on a surface
level, they still exhibit a lack of abstract reasoning abilities,
which, according to recent studies, is unlikely to be solved
by scaling current architectures [16].

In this work, we aim to address these shortcomings by
making the following contributions:

i) We propose a hybrid OOD detection method that iden-
tifies OOD inputs by reasoning over a first-order logic
knowledge base.

ii) We empirically demonstrate that the presented method

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 2: Architecture of the proposed OOD detection frame-
work: Inputs x are processed by a perception system that
detects the presence of semantically meaningful concepts
zi. A logical reasoning system is used to draw conclusions
regarding the consistency of the detected concepts with prior
domain knowledge encoded in a knowledge base.

can outperform state-of-the-art OOD detectors on some
datasets.

iii) We demonstrate that our hybrid design provides advan-
tages over purely neural systems, such as increased
explainability and modularity.

2. Background

Let pdata be the data-generating distribution. The set
of OOD inputs can then be defined as XO = {x ∈ X :
pdata(x) < α}, where α ∈ [0, 1] is a threshold. An OOD
detector Df (x) : X → R can be defined as a function that
assigns outlier scores to inputs x ∈ X , such that Df (x) is
high if x is more likely to be OOD. Here, f is some DNN
with input space X . Outliers are then identified by applying
a threshold τ such that

outlier(x) =

{
1 if Df (x) ≥ τ

0 else
. (1)

In recent years, various methods for OOD detection have
been proposed [45], most of which are based on either
the posterior class membership probabilities predicted by
a DNN-based classifier [17, 9], the unnormalized log-
its [1, 30, 14], or the representation of the input in some
higher layer [43, 28, 35]. For example, the Maximum Soft-
max Probability (MSP) baseline method [17] is defined as

Df (x) = −max
y

qθ(y|x) (2)

= −max
y

exp(fθ(x)y/T )∑N
i=1 exp(fθ(x)i/T )

, (3)

where qθ(y|x) is the posterior probability the DNN f with
parameters θ assigns to class y, and f(·)y refers to the yth

output of f [17]. T , which is 1 by default, is an optional
temperature value that can be used to scale the logits to im-
prove the model’s calibration [12]. More recently, activation
pruning methods were proposed that aim to rectify unusual
activations in some layers of the model [39, 7, 40].

3. Proposed Framework
State-of-the-art OOD detectors, as outlined above, are

based on statistics of the activations of neurons while ne-
glecting the semantics of these neurons in the context of
the task. We argue that the integration of priors in the form
of explicit rules on semantic concepts of the domain, de-
signed by and for humans, can increase the performance and
explainability of OOD detectors.

As a motivating example, consider Fig. 1: The image
depicts samples from a joint distribution pdata(x, y) as well
as the OOD decision boundary D(x) = τ of some detector
D. The set of inputs rejected by D is XR = {D(x) ≥ τ}.
Let us assume that we know a priori that points from the blue
class can only reside in the top-right quadrant, while points
from the orange class can only lie in the bottom-left quadrant.
These constraints define a set of OOD points XP ⊆ {x ∈
X : pdata(x) = 0} ⊆ XO. Now let X ′

R = XR ∪ XP . Clearly
|XO∩X ′

R| ≥ |XO∩XR|, which implies that rejecting points
from XP can only improve the OOD detection performance
since the additionally rejected points XP \ XR (red shaded
regions) will by construction be OOD.

In this work, we propose a framework for OOD detection
that allows integrating priors about which observations are
considered possible inside of a certain domain. The proposed
framework, whose architecture is depicted in Fig. 2, consists
of three components: (1) a perception system, possibly based
on DNNs, (2) a state, which is updated by the perception
system, and (3) a logical reasoning system that checks if the
current state is compatible with a set of constraints. Each of
these components will be described in detail in the following.

3.1. Perception System

In practical applications, domain knowledge is often only
present in the form of constraints on abstract semantic con-
cepts that are difficult to correlate with raw observations. In
other words, constraints are often not defined in the input
space X , but on a more abstract level. For example, when
classifying traffic signs in images, we have strong priors
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regarding the shape and color that certain signs should have
and would consider any observation that violates these con-
straints as highly unlikely. However, how the input pixels
relate to the abstract concept of shape is not obvious.

The perception system aims to bridge the gap between
the high-dimensional sensory inputs and prior knowledge
by mapping raw percepts to abstract semantic concepts. We
assume that each input x ∈ X is associated with some con-
cepts zi that each take values from a corresponding set Zi.
Such concepts could include, for example, the class of the
input, as well as other properties or attributes, such as its
shape, color, degree of rotation, et cetera. We refer to the
touple z = ⟨z1 ∈ Z1, ..., zN ∈ ZN ⟩ ∈ Z associated with
some x as the true state of x, where the state space Z is the
cartesian product of all Zi.

The perception system consists of a set of concept detec-
tors fi : X → Zi that detect the presence of certain concepts
in a given input. We refer to the tuple of detected concepts
ẑ = ϕ(x) = ⟨f1(x), ..., fN (x)⟩ ∈ Z as the predicted state
for some input x.

In the following, we parameterize the concept detectors
fi by DNNs. Note, however, that in general, other choices
are possible, and for some applications, choosing a different
parameterization might prove beneficial. While we could
implement concept detectors such that they use a shared
backbone with multiple concept detection heads, we suspect
that this could lead to correlated predictions for otherwise
independent concepts and, therefore, to correlated detection
errors, which should be avoided. In the following, we will,
therefore, use a different DNN for each concept if not stated
otherwise.

3.2. Reasoning System

Based on the state space, we can define a set of con-
straints on the semantic concepts that restrict the set of states
that are considered possible for the intended domain. While
there are several conceivable approaches to implement such
a system, we propose to use a logical reasoning system that
operates on constraints in the form of first-order logic formu-
las defined over the concepts zi detected by the perception
system. These constraints are stored in a knowledge base
(KB). The reasoning system implements a reasoning engine
satKB : Z → {0, 1} that is able to infer whether a given
state z satisfies all formulas in the knowledge base, or in
other words if z models the KB, i.e., z |= KB. Thereby,
we effectively partition the state space into those states that
satisfy the KB and those that do not. We refer to the states
z ∈ S = {z ∈ Z : satKB(z) = 1} that satisfy all formulas
in the KB as valid states, and to all other states in Z \ S as
invalid states.

For the introductory example in Fig. 1, a simple knowl-
edge base could contain the rule ¬z3 → z1 ∧ z2, which
asserts that, if z3 is false (i.e., the point belongs to the blue

class), z1 and z2 must both be true. If this condition is not
satisfied for some state z, the satKB function evaluates to 0,
and the predicted state is considered invalid.

Should a predicted state be invalid, we can mark the
corresponding input as OOD. This leads to a naïve approach
that assigns an outlier score of 0 if the predicted state satisfies
all constraints in the knowledge base and 1 if it does not, or
formally:

Dϕ(x,S) =

{
0 if ϕ(x) ∈ S
τ else

. (4)

However, this naïve approach neglects outliers in regions
not prohibited by the KB (i.e., XO \ XP ). Thus, we propose
to calculate the outlier score as

D′
ϕ(x,S) =

{∑N
i=1 λiDfi(x) if ϕ(x) ∈ S

τ else
(5)

where Dfi is some OOD detector for model fi and λi ∈ R
are weighting coefficients. In other words, the outlier score
is a linear combination of the outlier score of the concept
detectors fi, provided that the predicted state is valid and τ
(i.e., OOD) otherwise. In this work, we use the MSP baseline
detector from Eq. (3) as Dfi .

3.3. Theoretical Properties

The described method has a number of theoretical prop-
erties, proofs of which are provided in the supplementaries.
First, our detector is a generalization of existing OOD detec-
tors in the following sense:

Proposition 1. For some detector Df , there exists D′
ϕ, λ

and S such that ∀x : D′
ϕ(x,S) = Df (x).

Computational Complexity Computing ϕ(x) scales lin-
early with the number of concept detectors. However, when
the concept detectors are independent, as proposed, the com-
putation of the individual concepts f1(x), ..., fN (x) can be
trivially parallelized, implying that the overall response time
can remain constant. Inference in FOL, in general, is un-
decidable; however, there are subsets for which efficient
inference algorithms exist, such as Horn clauses, for which
checking if a particular state violates a constraint can be
done in polynomial time. While, for Horn clauses, it would,
in theory, be possible to enumerate all valid states and imple-
ment the reasoning system as a look-up table, enumerating
all valid states quickly becomes intractable:

Proposition 2. Enumerating the valid states S is #P-Hard.

However, for small state spaces, precomputing all valid
states to accelerate inference can be feasible.
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Modularity Modifying deep learning systems usually re-
quires re-training since the knowledge is encoded in the
model’s parameters, and it is difficult to determine how the
parameters have to be adjusted to cause a certain change
in behavior. Our framework, however, allows adjusting the
system easily. This provides advantages over existing OOD
detectors, as the system can be constructed incrementally
and can be customized to meet evolving requirements.

For instance, we can add a concept detector f ′ to the
perception system ϕ, resulting in an extended perception
system ϕ′ with state z′ ∈ Z ′.

Proposition 3. When adding a concept detector to ϕ, the
following holds: p(ϕ′(x) = z′ | x) ≤ p(ϕ(x) = z | x).

Thus, when increasing the number of concept detectors,
it becomes increasingly likely that the predicted state is not
equal to the true state. Similarly, we can add a new constraint
to the KB, which leads to a new set of valid states S ′.

Proposition 4. Adding a constraint to a KB with valid states
S results in a new set of valid states S ′ such that S ′ ⊆ S.

It follows that adding a constraint can not increase the
probability that an input is marked as IN. Under reasonable
assumptions, it can be shown that adding additional concepts
and constraints to the system will render it increasingly un-
usable but not increasingly unsafe, as the system will tend
to reject all inputs. Intuitively, the reason is that adding con-
cepts and constraints to the system will never cause an input
that was marked as OOD by the reasoning system before to
be marked as IN afterward.

4. Experimental Evaluation

In the following, we validate our approach on three
datasets that we selected because they readily provide prior
knowledge that can be utilized. The implementation of the
perception system is based on PyTorch [33] and PyTorch-
OOD [23], while the knowledge base and the reasoning
system are implemented in Prolog.

Several previous works demonstrated that the results of
experiments involving DNNs, including in the domain of
out-of-distribution detection, can vary significantly with the
random seed [4, 22, 24]. To account for this variation in
experimental outcomes, we averaged the results over 10
trials with different random seeds and tested our results for
statistical significance.

4.1. Ablations

To demonstrate the effect of each component of our pro-
posed architecture, we conduct ablation studies with the
following variants:

Logic To validate the general concept, we provide results
for naïve detector that only verifies if the predicted state is
valid, as formulated in Eq. (4).

Ensemble As a baseline, we calculate the outlier score as
the mean of the baseline MSP outlier scores, as given by
Eq. (3), over all of the concept detectors 1

N

∑N
i=1 Dfi(x).

This can be seen as a version of our approach where the
knowledge base does not impose any restrictions, and all
states are valid, such that S = Z . Compared to the usual
ensemble approach [26], where models are optimized from
different initializations, in this approach, the models are
optimized to predict different targets.

LogicOOD To demonstrate the effect of the KB, we pro-
vide results for our approach with a KB where the outlier
score is calculated as Eq. (5). Note that this method does not
require example outliers during training.

LogicOOD+ To demonstrate the modularity of our frame-
work, we extend our method by an additional concept de-
tector that is trained with example outliers to distinguish
between IN and OOD. We also add a rule to assert that all
inputs should be IN. We expect this method to outperform
LogicOOD due to the additional outliers used, as incorporat-
ing example outliers into the training is known to increase
the detection performance [19, 25, 21]. Note that the rest of
the system requires no change.

T-LogicOOD We furthermore include results for
temperature-calibrated concept detectors [12]. Optimal cali-
bration parameters are estimated on a validation set. Note
that temperature scaling does not affect the results of the
Logic approach, as it does not change argmaxy qθ(y | x).

4.2. German Traffic Sign Recognition

Correctly detecting and classifying traffic signs is an es-
sential application for autonomous driving. The German
Traffic Sign Recognition Benchmark (GTSRB) [37] dataset
contains images of German traffic signs from 43 different
classes, captured in natural environments and under diverse
illuminations, weather conditions, and from different an-
gles and with partial occlusions. In our first experiment, we
consider the GTSRB images as in-distribution.

4.2.1 Knowledge Base

It is a common phenomenon that objects in our environment
are associated with particular attributes. For example, traffic
regulations govern the shape and color of traffic signs. For
the GTSRB, we populate the KB with formulas representing
these laws. In this setting, we consider the three concepts

2125



label, color, and shape, where label refers to the class of a
traffic sign. Each of these concepts is detected by a different
concept detector fL, fC , and fS , respectively. The KB then
consists of rules in the form

∀ẑ : is_a(ẑ,stopsign) → has_color(ẑ,red)∧
has_shape(ẑ,octagon)

(6)

which specifies that, if something is labeled as stop-
sign, it also has to be a red octagon. Thus, the state
⟨stopsign,octagon,red⟩ satisfies this constraint. For
each traffic sign, we generate rules that associate the traffic
signs with a unique combination of color and shape.

In this setting, the entire state space contains 1720 possi-
ble states. However, the KB restricts the set of valid states
to |S| = 43, one for each sign type. The complete KB is
provided with the code.

For LogicOOD+, we can extend our method by an ad-
ditional concept detector fT that is trained to decide if an
image contains a traffic sign or not, using a set of available
training outliers. We can then extend the KB with the rule

∀ẑ : is_a(ẑ,traffic_sign) (7)

which asserts that all IN images must depict a traffic sign.

4.2.2 Data

The GTSRB dataset itself features 51,840 training and
12,630 test images from 43 classes. As OOD data, we use
five datasets with unrelated images: Textures [6], LSUN
Crop [29], LSUN Resize [29], TinyImageNet Crop [29] and
TinyImageNet Resize [29]. As training outliers for Logi-
cOOD+, we use a cleaned subset of the 80 million tiny
images database [41, 2], which has no overlap with the test
outliers.

4.2.3 Results

Results are provided in Tab. 1. The Ensemble approach
outperforms most other methods on its own, which sug-
gests that considering several targets instead of one already
increases performance on this dataset. Furthermore, we
see that LogicOOD significantly (unequal variances t-test:
p < 0.05) outperforms other OOD detection approaches
based on probabilities, logits, features, and activation prun-
ing, as well as the Ensemble method, which demonstrates
the effect of the reasoning system. Confidence calibration
has no significant impact on the results.

4.3. PrimateNet

Instead of constructing domain-specific knowledge bases
from the ground up, we can also use existing knowledge

graphs. The large-scale ImageNet database contains images
from more than 21,000 classes, where each class is associ-
ated with a concept in the WordNet [31] knowledge base.
By defining is-a or subtype relations between different con-
cepts, such as “a mammal is an animal”, WordNet structures
concepts into a hierarchy. PrimateNet is a subset of the Ima-
geNet that contains all classes in the subtree of the WordNet
hierarchy, beginning with Primate as the root node.

4.3.1 Knowledge Base

To populate the knowledge base for PrimateNet, we convert
the hierarchical is-a relations that exist between different
classes in the PrimateNet dataset into a set of first-order
logic statements, such as

∀ẑ : is_a(ẑ,lesser_ape) → is_a(ẑ,ape) (8)
∀ẑ : is_a(ẑ,gibbon) → is_a(ẑ,lesser_ape) (9)

which assert that each lesser ape is an ape, and each gibbon
is also a lesser ape. Additionally, we add rules that assert
that concepts at the same level of the hierarchy are mutually
exclusive, such as

∀ẑ : is_a(ẑ,ape) → ¬is_a(ẑ,monkey) . (10)

However, we could also encode such rules directly in the
DNN structure by using a multi-class classifier for each level
of the hierarchy instead of a binary classifier for each node.
From the rules (8) and (9), it follows logically that gibbons
must also be apes, and, together with rule (10), that gibbons
can not be monkeys. Overall, these constraints partition the
state space, which contains 2048 states in total, into 16 valid
and 2032 invalid states.

The perception system contains a concept detector for the
class, which discriminates between the 16 ImageNet classes
in the leaf nodes of the hierarchy, and 7 binary classifiers
for the intermediate nodes (except the root node Primate,
since we can not train a discriminative model for this concept
without example outliers) so that the predicted state consists
of 8 variables.

For LogicOOD+, we leverage example outliers by train-
ing a discriminative detector that decides whether an input
image contains a primate. For each of monkey, lemur and
ape, we then add a rule in the form

∀ẑ : is_a(ẑ,ape) → is_a(ẑ,primate) . (11)

It follows that all images in the PrimateNet belong to the
primate class. Therefore, each of the IN distribution images
must depict a primate, and all other images are considered
OOD.
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4.3.2 Data

The PrimateNet contains images from 16 ImageNet classes,
where, for each class, there are 1300 images for training
and 50 for testing. We treat all of these images as IN. In
our evaluation, we use datasets with images from differ-
ent datasets as OOD data: Textures [6], ImageNet-O [20],
Fooling Images [38], ImageNet-R [15], ImageNet-A [20],
NINCO [3] and iNaturalist [42]. We use 10 randomly se-
lected classes from the ImageNet dataset as training outliers
for LogicOOD+. These classes do not overlap with the OOD
test data. Further details are provided in the supplementary.

4.3.3 Results

Results are provided in Tab. 1. We observe that the Logic-
based approaches significantly outperform random guessing
but are often outperformed by other methods.

Visualizations of normalized outlier scores for the
NINCO (OOD) and PrimateNet (IN) data are provided in
Fig. 3. As we can see, the introduction of logical constraints
(Fig. 3b) leads to the assignment of high outlier scores to
some of the IN samples. Investigating these rejected IN sam-
ples, we notice that a large proportion is assigned the wrong
PrimateNet class by the class concept detector (46.8% of
rejected IN samples are misclassified, compared to an over-
all error rate of 18.6% on IN images). We also see that
including outlier examples (Fig. 3d) causes the system to
reject most OOD samples; however, the misclassified IN
samples remain rejected. We also observe a slight drop in
performance for calibrated models.

We conclude that the reasoning system does, in fact, work
as expected; however, the tendency to reject IN images that
are assigned the wrong class with high outlier scores de-
creases performance measures on the OOD detection task.

4.4. Fruit Recognition

We additionally conduct experiments on a dataset with
images of 33 different types of fruit. We only use two con-
cept detectors: one that predicts the type of the fruit and one
that predicts its color. We then verify that the detected color
indeed matches the detected fruit (e.g., a banana should
be yellow) by using a very simple KB. The remainder of
the setup is similar to the GTSRB experiments. As we can
see in Tab. 1, LogicOOD achieves competitive performance
and is only outperformed by feature-based detectors like
ViM and Mahalanobis, which suggests that the performance
could be further increased by using a feature-based OOD
detector. Statistically, there is no significant difference in the
performance of LogicOOD+ and ViM (p > 0.05). Again,
temperature scaling has no significant effect.

5. Discussion

5.1. Advantages

Explainability Explainability is generally considered a
desirable property of systems, particularly in safety-critical
applications. Current OOD detection methods predict a
scalar outlier score that provides no further insights into
the causes leading to this score. In contrast to DNNs, the
logical reasoning system provides our system with a cer-
tain degree of interpretability in the sense that we are able
to provide meaningful and intuitive explanations based on
human-interpretable concepts for many of the decisions of
the system. We will illustrate this in the following using
several IN and OOD samples from the GTSRB, provided in
Fig. 4.

Fig. 4a depicts an outlier that was classified as a Priority
Road sign with 100% confidence. However, the concept
detectors detected a red square in the image, while we would
expect a yellow square. Contrary to a scalar confidence value,
we can now provide a justification for why the prediction of
the classifier should not be trusted in this case, despite its
high confidence: to the perception system, the image looks
like a red square, which contradicts the rules encoded in our
knowledge base.

Fig. 4b depicts an occluded IN image that was missclas-
sified as a Keep Right sign with 96.35% confidence. The
concept detectors, however, correctly identify the shape and
color of the traffic sign, which do not match the predicted
label since we would expect the sign to be a blue circle. This
example illustrates that the consistency-enforcing behavior is
also able to detect certain types of misclassifications, which,
however, negatively impacts the OOD detection performance
measures.

Fig. 4c depicts an outlier that was classified as a Prior-
ity Road sign with 100% confidence. The concept detectors
perceive a square shape and the color yellow, which is consis-
tent with the domain knowledge about Priority Road signs.
However, in this case, the binary sign-concept detector of
LogicOOD+ determines that this input is not an actual traffic
sign, which, again, provides us with an explanation: the
shape and color in the image match the predicted sign, while
the image does not depict a traffic sign.

Finally, Fig. 4d depicts an outlier that was classified as
a Keep Left sign with 96.37% confidence. The concept
detectors identify a blue circle, which is consistent with the
domain knowledge. In this case, the sign detector mistakenly
marks the image as a real traffic sign. Inspecting the image,
we intuitively see that the color and shape prediction seem
reasonable. Hence, while the system failed, we can provide
an explanation: to the perception system, the image looked
like an actual blue traffic sign in the shape of a circle, closely
resembling a roundabout sign.

2127



0.0 0.2 0.4 0.6 0.8 1.0
Normalized Outlier Score

Fr
eq

ue
nc

y

Type
IN
IN (Missclassified)
OOD

(a) MSP

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Outlier Score

(b) Logic

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Outlier Score

(c) LogicOOD

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Outlier Score

(d) LogicOOD+

Figure 3: Frequencies of normalized outlier scores for the MSP baseline method and our proposed approaches for the
PrimateNet as IN and NINCO [3] as OOD data. Logic-based methods reject some of the in-distribution inputs, which we
attribute to the inaccuracy of the concept detectors.
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Figure 4: Examples of IN and OOD samples with corresponding confidence values as predicted by the MSP baseline method.
Figs. 4a to 4c result in states that are inconsistent with the knowledge base and therefore marked as OOD.

Completeness of Rules Another advantage of our hybrid
system, compared to purely neural approaches, is the trans-
parency obtained by incorporating a set of explicit, human-
understandable rules, which allows us to reason about the
system’s properties by assessing the knowledge base. For
example, a safety assessor can reason about the complete-
ness of the (e.g., formulas in the) knowledge base, which
constitutes an important step in safety evaluations. In con-
trast, an inspection of the weights of a DNN does currently
not provide much insight into its safety-related properties.

5.2. Limitations

Scalability As the concept detectors are usually imperfect,
adding an additional concept detector to the system increases
the probability that the predicted state differs from the true
state (Proposition 3), which could lead to rejected IN inputs.
As evident from the PrimateNet example, this property can
severely impact performance measures. However, as we
outlined in Sec. 3.3, scaling is likely to lead to many rejected
inliers and not to wrongly accepted outliers. This is also
supported by our experiments.

Additional Labeling Manually annotating a large num-
ber of concepts for individual images in a dataset can be

tedious. However, while it may seem that our approach re-
quires additional labeling, we demonstrated that additional
labels can often be derived from prior knowledge. For ex-
ample, the shape and color of a traffic sign are known a
priori; that is, they are known without having to inspect a
particular instance of the sign, which makes manual labeling
unnecessary.

Continuous Concepts To handle continuous concepts
such as Zi ⊆ R for some i ∈ N and to, for example, assert
that the value must lie in a specific interval, one would have
to extend the presented approach to real numbers. However,
we consider this a rather theoretical limitation since, in prac-
tice, reasoning systems like Prolog provide native support for
such operations, and the implementation is straightforward.

6. Conclusion & Future Work

In this work, we introduced a method for OOD detec-
tion that allows integrating prior knowledge in the form of
first-order logic constraints to infer whether a given input
is OOD. We found that the proposed approach can outper-
form state-of-the-art methods in some cases while being
more transparent and modular overall, which is an important
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Table 1: Mean performance and corresponding standard error of different OOD detection methods in our experiments. Results
averaged over 10 experimental trials with different random seeds and different datasets. The best result is in bold, and the
second best is underlined. ↑ indicates that higher values are better, while ↓ indicates the opposite – all values in percent.

Detector AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR95 ↓
GTSRB (WideResNet [46] + ImageNet 1K Pre-Training [18])

MSP [17] 99.04 ± 0.07 98.35 ± 0.14 99.29 ± 0.05 2.54 ± 0.15
EBO [30] 99.03 ± 0.11 98.76 ± 0.14 99.08 ± 0.12 2.26 ± 0.27
MaxLogit [14] 99.01 ± 0.11 98.73 ± 0.14 99.07 ± 0.12 2.29 ± 0.27
Entropy [5] 99.15 ± 0.07 98.64 ± 0.13 99.33 ± 0.06 2.46 ± 0.15
ReAct [39] 99.04 ± 0.10 98.77 ± 0.13 99.08 ± 0.12 2.21 ± 0.24
Mahalanobis [28] 99.70 ± 0.02 99.40 ± 0.06 99.83 ± 0.01 1.11 ± 0.05
ViM [43] 96.96 ± 0.08 95.95 ± 0.10 99.75 ± 0.02 6.08 ± 0.16
Ensemble [26] 99.77 ± 0.03 99.58 ± 0.05 99.86 ± 0.01 0.99 ± 0.07
Logic (ours) 86.08 ± 0.91 91.76 ± 0.54 91.76 ± 0.45 100.00 ± 0.00
LogicOOD (ours) 99.85 ± 0.01 99.74 ± 0.02 99.92 ± 0.01 0.60 ± 0.04
Logic+ (ours) 99.92 ± 0.01 99.90 ± 0.01 99.97 ± 0.00 0.13 ± 0.01
LogicOOD+ (ours) 99.94 ± 0.01 99.91 ± 0.01 99.97 ± 0.00 0.13 ± 0.01
T-LogicOOD (ours) 99.85 ± 0.01 99.74 ± 0.02 99.92 ± 0.01 0.60 ± 0.04
T-LogicOOD+ (ours) 99.94 ± 0.01 99.91 ± 0.01 99.97 ± 0.00 0.13 ± 0.01

PrimateNet (ResNet-50 [44] + ImageNet 1K Pre-Training [18])

MSP [17] 94.95 ± 0.10 99.18 ± 0.02 78.00 ± 0.34 22.13 ± 0.34
EBO [30] 97.39 ± 0.07 99.61 ± 0.01 84.53 ± 0.33 12.32 ± 0.34
MaxLogit [14] 97.15 ± 0.06 99.56 ± 0.01 84.21 ± 0.32 12.79 ± 0.32
Entropy [5] 96.46 ± 0.07 99.46 ± 0.01 81.05 ± 0.34 16.47 ± 0.41
ReAct [39] 98.88 ± 0.04 99.85 ± 0.01 92.76 ± 0.18 5.56 ± 0.15
Mahalanobis [28] 98.18 ± 0.06 99.77 ± 0.01 91.87 ± 0.20 7.69 ± 0.23
ViM [43] 99.59 ± 0.02 99.95 ± 0.00 97.46 ± 0.04 1.74 ± 0.06
Ensemble [26] 95.89 ± 0.08 99.19 ± 0.03 85.37 ± 0.17 14.12 ± 0.20
Logic (ours) 73.90 ± 0.30 96.53 ± 0.05 56.53 ± 0.13 100.00 ± 0.00
LogicOOD (ours) 92.19 ± 0.09 98.54 ± 0.02 83.47 ± 0.19 15.46 ± 0.23
Logic+ (ours) 89.45 ± 0.13 98.75 ± 0.02 73.81 ± 0.32 55.94 ± 3.45
LogicOOD+ (ours) 94.35 ± 0.07 99.19 ± 0.01 88.69 ± 0.14 10.89 ± 0.13
T-LogicOOD (ours) 91.72 ± 0.09 98.48 ± 0.02 80.72 ± 0.21 19.21 ± 0.29
T-LogicOOD+ (ours) 94.25 ± 0.07 99.18 ± 0.01 87.46 ± 0.18 11.37 ± 0.17

Fruits (WideResNet [46] + ImageNet 1K Pre-Training [18])

MSP [17] 96.40 ± 0.59 99.13 ± 0.14 85.99 ± 1.79 18.35 ± 2.84
EBO [30] 96.74 ± 0.52 99.24 ± 0.12 86.15 ± 1.70 18.55 ± 2.77
MaxLogit [14] 96.73 ± 0.52 99.24 ± 0.12 86.14 ± 1.69 18.56 ± 2.77
Entropy [5] 96.61 ± 0.56 99.20 ± 0.13 86.22 ± 1.75 18.09 ± 2.79
ReAct [39] 88.21 ± 1.13 96.94 ± 0.34 63.33 ± 2.01 50.98 ± 2.25
Mahalanobis [28] 99.86 ± 0.05 99.97 ± 0.01 99.29 ± 0.24 0.36 ± 0.17
ViM [43] 99.94 ± 0.02 99.99 ± 0.00 99.72 ± 0.09 0.06 ± 0.02
Ensemble [26] 98.19 ± 0.33 99.54 ± 0.09 93.54 ± 0.96 8.58 ± 1.45
Logic (ours) 74.55 ± 1.07 95.50 ± 0.18 64.78 ± 0.47 100.00 ± 0.00
LogicOOD (ours) 98.51 ± 0.26 99.63 ± 0.07 94.23 ± 0.88 7.33 ± 1.34
Logic+ (ours) 99.88 ± 0.04 99.97 ± 0.01 99.83 ± 0.04 0.17 ± 0.06
LogicOOD+ (ours) 99.91 ± 0.03 99.98 ± 0.01 99.93 ± 0.03 0.17 ± 0.06
T-LogicOOD (ours) 98.50 ± 0.27 99.62 ± 0.07 94.18 ± 0.93 7.22 ± 1.37
T-LogicOOD+ (ours) 99.91 ± 0.03 99.98 ± 0.01 99.91 ± 0.03 0.17 ± 0.06

aspect in safety-critical applications.

While we demonstrated that leveraging domain-specific
priors can provide state-of-the-art OOD detection perfor-
mance in some settings, strict logical reasoning may some-
times be too inflexible for real-world applications, as it does
not account for the uncertainty in the predictions of the
perception system. Consequently, supplementing the sys-
tem with probabilistic reasoning capabilities appears to be a

promising avenue for future work.
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