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Abstract

Generative Neural Radiance Fields (NeRFs) have
demonstrated remarkable proficiency in synthesizing multi-
view images by learning the distribution of a set of unposed
images. Despite the aptitude of existing Generative NeRFs
in generating 3D-consistent high-quality random samples
within data distribution, the creation of a 3D representation
of a singular input image remains a formidable challenge.
In this manuscript, we introduce ZIGNeRF, an innovative
model that executes zero-shot Generative Adversarial Net-
work (GAN) inversion for the generation of multi-view im-
ages from a single out-of-distribution image. The model is
underpinned by a novel inverter that maps out-of-domain
images into the latent code of the generator manifold. No-
tably, ZIGNeRF is capable of disentangling the object from
the background and executing 3D operations such as 360-
degree rotation or depth and horizontal translation. The ef-
ficacy of our model is validated using multiple real-image
datasets: Cats, AFHQ, CelebA, CelebA-HQ, and Comp-
Cars.

1. Introduction
The remarkable success of generative adversarial net-

works (GANs) [9] has spurred significant advancements in
realistic image generation with high quality. Particularly,
following the emergence of StyleGAN [18], numerous 2D-
based generative adversarial network models have benefited
from a deeper understanding of latent spaces [17,19]. Con-
sequently, various computer vision tasks, such as condi-
tional image generation and style transfer [14, 21], have
shown substantial progress. However, 2D-based image gen-
eration models are constrained in their ability to generate
novel view images and 3D manipulation such as 360-degree
rotations and spatial translations due to their neglect of ge-
ometrical context.

*Corresponding author.

Figure 1. Demonstration of the 3D reconstruction results employ-
ing our proposed method, ZIGNeRF. This illustration depicts the
successful zero-shot 3D GAN inversion across various real-world
image datasets [6, 16, 46].

To overcome this challenge, several studies have adopted
the neural radiance field (NeRF) [25] approach, which en-
codes a scene into a multi-layer perceptron (MLP) to pro-
vide 3D rendering. Although conventional NeRF [25] has
successfully facilitated the development of 3D-aware mod-
els and reduced computational costs in novel view synthe-
sis tasks, it remains impractical to train a model overfitted
to a single scene with multi-view images [25, 48]. Conse-
quently, various studies have extended NeRF by integrat-
ing it with generative models, i.e., generative NeRF. Gen-
erative NeRF [2, 3, 7, 10, 28, 29, 35] models can be trained
on unposed real-world images, whereas conventional NeRF
necessitates multiple images of a single scene [38, 40, 45].
Moreover, generative NeRF has been employed for obtain-
ing conditional samples through techniques such as class
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label information [15] or text encoding [8, 30, 31, 42].
Despite the convenience and intuitiveness of these ap-

proaches, they possess limitations in image editing and gen-
erating 3D representations of specific inputs, such as out-
of-domain iamges or real-world images. To enable more
practical applications, generative NeRF models have also
incorporated optimization-based GAN inversion techniques
[32, 33, 39, 51] for the 3D representation of particular in-
put images, including out-of-distribution or real-world im-
ages. However, previous approaches have faced a constraint
that necessitates fine-tuning on pre-trained models for spe-
cific images [20, 22, 43, 47]. This requirement hinders the
application of these models to numerous real samples si-
multaneously and renders the process time-inefficient, as it
demands extensive fine-tuning. For example, EG3D [2] and
PanoHead [1] facilitate 3D image reconstruction but neces-
sitate fine-tuning steps and camera parameters during train-
ing, a constraint that often renders them impractical for real-
world datasets. Our approach obviates this requirement,
thereby extending its applicability to a broader range of im-
age datasets.

In this study, we propose a novel zero-shot methodology
for the generation of multi-view images, derived from input
images unseen during the training process. This approach
leverages a 3D GAN inversion technique. Notably, our
model proffers 3D-consistent renderings of unposed real
images during inference, eliminating the need for supple-
mentary fine-tuning.

Our architectural design bifurcates into two distinct com-
ponents: the 3D-generation module and the 3D GAN inver-
sion module. The former is founded on the principles of GI-
RAFFE [28], which successfully amalgamates the compo-
sitional attributes of 3D real-world scenes into a generative
framework. To enhance the precision of 3D real-world re-
construction and improve image quality, we introduce mod-
ifications to the GIRAFFE module, specifically in the de-
coder and neural renderer. The inverter for 3D-aware image
reconstruction, on the other hand, is an encoder which is
trained with images synthesized from the generator. This
strategic approach enables the inverter to accurately map
the input image onto the generator’s manifold, regardless
of the objects’ pose. Example results of our model is dis-
played in Fig. 1. In addition, we show the suitability of the
learning-based inverter design over optimization-based ap-
proaches by showing the limitation of optimization-based
approaches for this specific application, as presented in Fig.
1 of supplementary material.

We subject our model to rigorous evaluation, utilizing
five diverse datasets: Cats, CelebA, CelebA-HQ, AFHQ,
and CompCars. Additionally, we demonstrate the model’s
robustness by inputting FFHQ images into a model trained
on CelebA-HQ.

The primary contributions of this work are as follows:

• We present ZIGNeRF, a pioneering approach that de-
livers a 3D-consistent representation of real-world im-
ages via zero-shot estimation of latent codes. To our
knowledge, this is the first instance of an learning-
based approach in the field.

• ZIGNeRF exhibits robust 3D feature extraction capa-
bilities and remarkable controllability with respect to
input images. Our model can perform 3D operations,
such as a full 360-degree rotation of real-world car im-
ages, a feat not fully achieved by many existing gener-
ative NeRF models.

2. Related Work
2.1. Neural Radiance Field (NeRF)

NeRF is an influential method for synthesizing photo-
realistic 3D scenes from 2D images. It represents a 3D
scene as a continuous function using a multi-layer percep-
tron (MLP) that maps spatial coordinates to RGB and den-
sity values, and then generates novel view images through
conventional volume rendering techniques. Consequently,
NeRF significantly reduces computational costs compared
to existing voxel-based 3D scene representation models
[12, 27, 36, 38, 50]. However, the training method of NeRF,
which overfits a single model to a single scene, considerably
restricts its applicability and necessitates multiple struc-
tured training images, including camera viewpoints [4, 38].

2.2. Generative NeRF

Generative NeRFs optimize networks to learn the map-
ping from latent code to 3D scene representation, given
a set of unposed 2D image collections rather than us-
ing multi-view supervised images with ground truth cam-
era poses. Early attempts, such as GRAF [35] and pi-
GAN [3], demonstrated promising results and established
the foundation for further research in the generative NeRF
domain. Recent works on generative NeRF have concen-
trated on generating high-resolution 3D-consistent images.
The recently proposed StyleNeRF [10] successfully gen-
erates high-resolution images by integrating NeRF into a
style-based generator, while EG3D [2] exhibits impressive
results with a hybrid architecture that improves computa-
tional efficiency and image quality.

However, real-life applications frequently necessitate
conditional samples that exhibit the desired attribute rather
than random samples in data distribution. We adopt GAN
inversion as a conditional method, as opposed to class-
based or text encoding conditional methods, which are
prevalent in 2D generative models [5]. The aforementioned
conditional generation techniques, such as class-based or
text encoding methods, possess limitations. Firstly, the
training dataset must include conditional information, such
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Figure 2. The comprehensive architecture of ZIGNeRF. The 3D generative component is trained to produce photorealistic images consistent
with 3D structures by mapping the latent code and camera pose to a synthetic image. Subsequently, the inverter is trained in conjunction
with the pre-trained generator and discriminator.

as labels or text corresponding to each sample. Secondly,
they cannot provide 3D representation of real-world images
as conditional input. We address these limitations in ex-
isting conditional generative NeRF models by introducing
GAN Inversion into generative NeRF for conditional gener-
ation.

2.3. 3D GAN inversion

With the remarkable progress of GANs, numerous stud-
ies have endeavoured to understand and explore their latent
space to manipulate the latent code meaningfully. GAN in-
version represents the inverse process of the generator in
GANs. Its primary objective is to obtain the latent code
by mapping a given image to the generator’s latent space.
Ideally, the latent code optimized with GAN inversion can
accurately reconstruct an image generated from the pre-
trained generator. The output sample can be manipulated
by exploring meaningful directions in the latent space [37].
Moreover, real-world images can be manipulated in the la-
tent space using GAN inversion.

Several studies have investigated 3D GAN inversion
with generative NeRF to generate multi-view images of in-
put samples and edit the samples in 3D manifolds. Most
previous works fine-tuned the pre-trained generator due to
the utilization of optimization-based GAN inversion meth-
ods. However, additional steps for fine-tuning the generator

for GAN inversion impose limitations in terms of adaptabil-
ity and computational costs.

In this paper, we propose a novel inverter for zero-shot
3D GAN inversion. The proposed inverter can map out-of-
distribution images into the latent space of the generator.
Our model can generate 3D representations of real-world
images without requiring additional training steps. The pro-
posed zero-shot 3D GAN inversion maximizes applicability
since the trained model can be directly applied to out-of-
distribution images.

3. Method
This work seeks to generate multi-view images from an

out-of-distribution image by combining generative NeRF
with GAN inversion. The proposed method, graphically
delineated in Fig. 2, encompasses two distinct phases: the
3D-generation segment and the inverter for 3D-aware im-
age reconstruction. The first phase involves training the
3D-generation component, an architecture based on GI-
RAFFE, augmented by enhancements in the neural renderer
and the discriminator modules to fortify and expedite the
training process. In the second phase, the inverter is trained
with the pre-trained generator. The novel inverter is de-
signed to transform out-of-distribution images into latent
codes within the generator’s latent space. Consequently,
the generator can produce multi-view images of the out-of-
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distribution image using the latent code derived from the in-
verter. Throughout the training of the inverter, we utilize the
images generated from the generator, imbued with 3D infor-
mation, as the training dataset. At test time, the inverter ex-
ecutes zero-shot inversion on real-world images, obviating
the need for additional fine-tuning for unseen images. The
proposed method thereby holds great promise for generat-
ing 3D-consistent multi-view images from real-world input
images.

3.1. 3D Generation

Compositional Generative Neural Feature Field. Our
3D-generator represents a scene with a compositional gen-
erative neural feature field, a continuous function inherited
from GIRAFFE, to represent a scene. This is essentially a
combination of feature fields, each representing an object
in a single scene, with the background also considered an
object. In the 3D-generator, a 3D location, x ∈ R3, a
viewing direction, d ∈ S2, and latent code, z ∼ N (0, 1),
are mapped to a volume density σ ∈ R+ and a high-
dimensional feature field f ∈ RMf , rather than RGB colour
c ∈ R3.

Affine transformation is applied to objects in the scene so
that each object can be controlled in terms of poses, which
include scale, translation, and rotation:

T = {s, t,R} , (1)

where s, t ∈ S indicate scale and translation parameters, re-
spectively, and R ∈ SO(3) determine rotation. The affine
transformation enables object-level control by generating
the bounding box corresponding to T of a single object:

τ = R · sI ·+t, (2)

where I is the 3 × 3 identity matrix. Compositional gener-
ative neural feature field is parameterized with an MLP as
follows:

C((σi, fi)
N
i=1) =

C(fθi(γ(τ
−1(x)), γ(τ−1(d)), zi)Ni=1), (3)

z = [z1s , z
1
a, ..., z

N
s , zNa ], (4)

where γ (·) is positional encoding function [25], which is
applied separately to x and d, and C (·) is the compositional
operator that composites feature field from the N-1 objects
and a background. We then volume render the composited
volume density and feature field rather than directly output
the final image. 2D-feature map, which is fed into neural
renderer for final synthesized output, is attained by volume
rendering function πv ,

πv(C(σ, f)) = F. (5)

Figure 3. Schematic representation of the architecture of the in-
verter deployed in ZIGNeRF.

Neural renderer with residual networks. Our model out-
puts final synthetic image with neural rendering on the out-
put feature map of volume rendering. We observe that the
original neural renderer of GIRAFFE does not preserve the
feature well. Furthermore, the learning rate of the decoder
and the neural renderer is not synchronized; hence the train-
ing of the generator is unstable.

We improve the simple and unstable neural renderer of
GIRAFFE. Our neural renderer replaces 3×3 convolution
layer blocks with residual blocks [11] and employs the
ReLU activation rather than leaky ReLU activation [44] for
faster and more effective rendering. To stabilize the neural
rendering, we adopt spectral normalization [26] as weight
normalization. We experimentally verify that the modified
neural renderer improves the stability of the training and the
quality of the outputs. Our neural renderer, which maps the
feature map F to the final image Î ∈ RH×W×3, is parame-
terized as:

πθ(F) = Î. (6)

Discriminator. As the vanilla GAN [9], the discriminator
outputs probability, which indicates whether the input im-
age is real or fake. We replace the 2D CNN-based discrimi-
nator with residual blocks employing spectral normalization
as weight normalization.
Objectives. The overall objective function of the 3D-
generative part is:

LG, D = LGAN + λLR1, (7)

where λ = 10. We use GAN objective [9] with R1 gradient
penalty [24] to optimize the network.
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Figure 4. Display of 2562 multi-view synthesis applied to facial datasets: CelebA-HQ [16] and AFHQ [6].

3.2. Inverter for 3D-aware Image Reconstruction

To invert a given image into latent codes within the gen-
erator’s latent space, we introduce a novel inverter. This
inverter is designed by stacking the residual encoder block
with ReLU activations, as depicted in Fig. 3. Four linear
output layers are situated at the culmination of the inverter
to facilitate output. These residual blocks extract the feature
of the input image, and each linear output layer estimates
the zobj

s , zobj
a , zbgs , zbga of the input image.

The challenge of 3D GAN inversion involves mapping
multi-view images of a single object into a unique latent
code. To construct a inverter, we opt to use the synthe-
sized image Î as the training data. Given that we already
possess the source parameters of the generated image, the
inverter solely estimates the latent code zpredict of the in-
put image. The generated training images equip the in-
verter to extract the feature of unseen images, which vary in
viewing direction, scale, and rotation. Following the latent
code inference, the pre-trained generator reconstructs the
input image using zpredict and source parameters, which
include camera pose, ξsource, and compositional parame-
ter, Tsource = {s, t,R}:

Iθ(Î) = zpredict, (8)

Gθ(z
predict,Tsource, ξsource) = Îreconst. (9)

As the inverter learns to estimate the latent source code,
we found that the L1 loss between the two latent codes in
latent space was inadequate for reconstructing the scene.
Thus, we opted to employ realistic loss , which is calculated
with output of the discrminator and L1 as an image-level

loss to generate a plausible image. In addition, we incorpo-
rated two perceptual losses, namely the Structural Similar-
ity Index Measure (SSIM) [41] and the Learned Perceptual
Image Patch (LPIPS) [49] loss, to conserve the fine details
of the source image. The inverter can be optimized using
the following function:

LI = Lreal(̂I
predict)

+ λ1Llatent(z
source, zpredict)

+ λ2Lreconst(̂I
source, Îpredict)

+ λ3Lpercept(̂I
source, Îpredict), (10)

where Îpredict indicates the image reconstructed by the pre-
trained generator using zpredict. Lreal denotes the realis-
tic loss, Llatent and Lreconst represent latent-level and image-
level loss, respectively, both utilizing L1 loss. Lpercept signi-
fies image-level perceptual loss, employing the LPIPS loss
and SSIM loss.

3.3. Training Specifications

During the training phase, we randomly sample the la-
tent codes zs, za ∼ N (0,1), and a camera pose ξ ∼ pξ.
The parameters λ1, λ2, and λ3 are set to 10, 100, and 1, re-
spectively, for training the inverter. The model is optimized
using the RMSProp optimizer [34], with learning rates of 1
× 104, 7 × 105, and 1 × 104 for the generator, the discrimi-
nator, and the inverter, respectively. We utilize a batch size
of 32. For the first 100,000 iterations, the generator and the
discriminator are trained, and the inverter is trained for the
next 50,000 iterations. During the training process of the
inverter, the generator and the discriminator remain frozen.
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Figure 5. Visualisation of reconstructed images based on an input car image [46], following compositional operations. These illustrations
highlight the effective disentanglement of the object from the background and the provision of 3D controllability.

Figure 6. Presentation of 2562 synthesized images conditioned on
input FFHQ [18] images, produced by the model trained on the
CelebA-HQ dataset [16].

4. Experiments
ZIGNeRF is evaluated concerning zero-shot feature ex-

traction, 3D controllability, and adaptability. We test on five
real-world datasets: Cats, AFHQ [6], CelebA [23], CelebA-
HQ [16], and CompCar [46]. An additional dataset, FFHQ
[18], is used to demonstrate the robust adaptation capabili-
ties of the proposed model. All input images shown in this
section were not used during the training process, thereby
validating the zero-shot 3D GAN inversion with unseen im-
ages. We commence with a visual validation of the pro-
posed model, examining the similarity between the input
image and the reconstructed images and 3D-consistent con-
trollability. The model is then evaluated using Fréchet In-
ception Distance (FID) [13] as a metric. We conclude with
ablation studies to validate the efficacy of the loss function
in optimizing the inverter.

4.1. Controllable 3D Scene Reconstruction

We visually demonstrate that our proposed model gen-
erates multi-view consistent images corresponding to the
input image. Figure 4 showcases 3D reconstruction on
CelebA-HQ [16] and AFHQ [6], substantiating that the in-
verter successfully extracts facial features irrespective of
gender or skin colour in human faces, and species in ani-
mal faces. Figure 5 exhibits the model’s controllability and

Figure 7. Generating two objects in a single scene. Results exhibit
the compositional scene representation by generating two objects
in a single scene. The inverter transforms two input images into
two sets of the latent codes, and the generator which trained on
single-object scenes synthesizes a single scene including two in-
dependent objects.

object disentanglement with CompCar [46], indicating that
the inverter estimates the latent code of the object and back-
ground effectively. Notably, the proposed model can facil-
itate 3D-consistent 360-degree rotation, a common limita-
tion of generative NeRF methods. We further attest to the
robustness of our model by applying it to FFHQ, as shown
in Fig. 6.

4.2. Extended Operational Results

In this section, we present the application results of the
proposed model through Fig. 7 and Fig. 8, showcasing the
generation of two objects within a single scene and style-
mixed 3D synthesis.

Our model demonstrates a unique ability to generate
multiple objects within a single scene, even when trained on
a dataset consisting primarily of single-object scenes. This
is accomplished by leveraging multiple decoder segments
within our network architecture. Although our empirical
exploration has only been executed on one dataset, the the-
oretical underpinnings suggest a promising generalizability
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Figure 8. Multi-view images with style mixing of two input images. The inverter extracts the latent codes from two independent input
images for generating style mixed images. Each output object is generated by zs of the first image and za of the second image.

of this phenomenon. A testament to the robustness of our
model is its successful exhibition of zero-shot learning ca-
pabilities, as evidenced by an experiment where two Com-
pCars [46] images are synthesized into one image. Like
the generation of individual objects, each object within the
composite scene retains the ability to undergo transforma-
tions such as longitudinal displacement and rotation.

Additionally, we incorporate style mixing in our model
with the application of the inverter structure we proposed,
utilizing the CelebA-HQ and AFHQ dataset [16]. In the
style mixing paradigm that we suggest, our inverter, pro-
ducing two distinct outputs, generates a shape vector from
one image, and an appearance vector from another. These
two vectors are subsequently utilized as input for the gen-
erator to synthesize a novel object. This process further un-
derscores the model’s zero-shot learning capability.

4.3. Quantitative Evaluation

To thoroughly evaluate the efficacy of our proposed
model, ZIGNeRF, we conduct experiments in both condi-
tional and unconditional generation modes. The evaluation
process involves a random sampling of 20,000 real images
alongside 20,000 synthesized images, which is a conven-
tional method to compare generative models. The results

are displayed in Tab. 1.
In the context of the unconditional model, we gener-

ate samples using random latent codes. The training pro-
cess entails 100,000 iterations. Notably, our model, ZIGN-
eRF, significantly outperforms the baseline GIRAFFE [28]
model. As an illustration, for the CelebA(HQ) 2562 dataset,
ZIGNeRF achieves a score of 14.98, substantially lower
than the GIRAFFE’s score of 23.14. This is indicative of
the model’s ability to produce higher-quality images with
fewer iterations.

Turning to the conditional synthesis, the latent codes
estimated by the inverter are employed on randomly sam-
pled real images. The training process for the generator is
conducted over 100,000 iterations, while the inverter train-
ing comprises 50,000 iterations, during which the genera-
tor is kept static. When compared to GIRAFFE, ZIGNeRF
demonstrate superior performance in conditional samples
as well. For instance, in the AFHQ 1282 dataset, our model
attains a score of 14.02, marking a significant improvement
over the GIRAFFE’s score of 35.03.

4.4. Ablation study

In the interest of validating the loss function deployed in
training the inverter, we undertake an ablation study. The
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Method Models
Cats CelebA(HQ) CompCar AFHQ

1282 2562 1282 2562 1282 2562 1282 2562

Unconditional
GIRAFFE 24.01 21.28 19.45 23.14 38.91 40.84 35.03 38.18

ZIGNeRF(ours) 12.31 11.21 11.01 14.98 22.67 22.57 12.81 19.96

Conditional ZIGNeRF(ours) 15.06 16.83 14.77 25.66 25.97 25.41 14.02 28.78

Table 1. Comparative analysis of the FID between our proposed ZIGNeRF and a baseline model. The models were trained on four distinct
datasets with the resolution of 1282 and 2562.

Ablation Losses FID

Llatent 80.08

+Lreconst 17.82

+Lreconst + Lreal 15.53

Full model 14.77

Table 2. FID score of the ablation study. The full model has been
trained with latent loss, reconstruction loss, GAN loss, and per-
ceptual loss.

study scrutinizes the necessity of each loss component: la-
tent loss, reconstruction loss, GAN loss, and perceptual
loss. The imperative nature of each loss function is demon-
strated through its incremental addition to the naive model,
which is trained solely via latent code comparison. Figure 9
illustrates the individual contribution of each loss function.
It is observed that the naive model exhibits limited capa-
bility in reconstructing the input image. The reconstruction
loss Lreconst aligns the reconstructed image with the input
at an image-level. The GAN loss LGAN is observed to en-
hance the realism of the reconstructed image, independent
of improving the input-reconstructed image similarity. The
full model elucidates that the perceptual loss Lpercept plays
a pivotal role in refining the expression of minute attributes,
skin colour, and texture.

Table 2 offers a quantitative testament to the indispens-
able nature of the loss components used in the training ses-
sion of the inverter. It is observed that the Fréchet Incep-
tion Distance (FID) [13] experiences a steady enhancement
with each loss component incrementally added to the naive
model, which originally only employs the latent loss.

5. Conclusion
In this paper, we have proposed ZIGNeRF, an innovative

technique that manifests a 3D representation of real-world
images by infusing a zero-shot 3D GAN inversion into gen-

Figure 9. Ablation study of the loss functions employed in the
training of the inverter within ZIGNeRF.

erative NeRF. Our inverter is meticulously designed to map
an input image onto a latent manifold, a learning process
undertaken by the generator. During testing, our model gen-
erates a 3D reconstructed scene from a 2D real-world im-
age, employing a latent code ascertained from the inverter.
Rigorous experiments conducted with four distinct datasets
substantiate that the inverter adeptly extracts features of in-
put images with varying poses, thereby verifying the 3D
controllability and immediate adaptation capabilities of our
model.

Our novel approach carries the potential for wide
application, given that our pipeline can be generally applied
to other existing generative NeRFs. It is worth noting
that this zero-shot approach is a pioneering contribution
to the field, bringing forth a paradigm shift in 3D image
representation. In future work, we envisage extending the
proposed method by manipulating the inverted latent code
for editing the input image, thereby further enhancing the
capabilities of this innovative model.
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