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Abstract

As 2D-CNNs are growing in image recognition litera-
ture, 3D-CNNs are enthusiastically applied to video ac-
tion recognition. While spatio-temporal (3D) convolution
successfully stems from spatial (2D) convolution, it is still
unclear how the convolution works for encoding tempo-
ral motion patterns in 3D-CNNs. In this paper, we shed
light on the mechanism of feature extraction through an-
alyzing the spatio-temporal filters from a temporal view-
point. The analysis not only describes characteristics of
the two action datasets, Something-Something-v2 (SSv2)
and Kinetics-400, but also reveals how temporal dynamics
are characterized through stacked spatio-temporal convo-
lutions. Based on the analysis, we propose methods to im-
prove temporal feature extraction, covering temporal filter
representation and temporal data augmentation. The pro-
posed method contributes to enlarging temporal receptive
field of 3D-CNN without touching its fundamental architec-
ture, thus keeping the computation cost. In the experiments
on action classification using SSv2 and Kinetics-400, it pro-
duces favorable performance improvement of 3D-CNNs.

1. Introduction
Convolutional neural networks (CNNs) produce success-

ful performance on various image recognition tasks [13].
As the CNN techniques become mature, they are ex-
tended to 3D-CNNs for analyzing videos [2, 3, 35]. Spa-
tial 2D-convolution is straightforwardly enhanced to 3D-
convolution that directly operates on spatio-temporal vol-
ume of a video sequence. 3D-CNNs are thus applied to
versatile tasks of video recognition including action classi-
fication [35], detection [7] and localization [12].

For exploiting temporal dynamics, 2D-CNNs are also
applicable to video sequences in conjunction with tem-
poral modeling modules [15, 19, 24, 26, 27, 38] and tem-
poral processing by optical flow and frame/feature differ-
ence [31, 37, 38]. On the other hand, 3D-CNNs directly
deal with input video sequences in a spatio-temporal man-

ner as is the case with image recognition simply feeding
images into 2D-CNNs. Thus, the 3D-CNNs naturally ex-
tract spatio-temporal characteristics embedded in video se-
quences by using deep architectures extended from 2D-
CNNs. A seminal work of C3D model [35] simply stacks
3D-convolution layers in a similar fashion to VGG [32].
Then, following the great success of various 2D-CNNs, 3D-
CNN models are also constructed based on the established
2D-CNNs as found in I3D [2], X3D [7] and I3D-ResNet [3].

A key process in video recognition is to extract effec-
tive features of temporal dynamics patterns involving mo-
tions and actions. While context and/or temporal reason-
ing is required [30] for understanding complex human ac-
tions, it is fundamental to encode distinctive temporal pat-
terns by means of stacked spatio-temporal convolutions in
3D-CNNs. The temporal information that 3D-CNNs en-
code is analyzed through generating video frames preferred
by C3D models [14] and visualizing neuron response [9] in
a backward fashion. From a performance perspective, var-
ious building blocks in 3D-CNNs are analyzed in [3] and
architectures of 3D-CNNs are explored by [7]. While the
various analyses are conducted in this literature, it is still
less clear how spatio-temporal convolution extracts features
of temporal dynamics patterns in 3D-CNNs.

This paper delves into the spatio-temporal filters used in
3D-convolution, specifically from the perspective of tem-
poral dynamics patterns. As an orthogonal research direc-
tion to the previous analyses [3,7,14], we shed light on pri-
mary temporal filter patterns embedded in optimized 3D-
CNNs. Our analysis interestingly clarifies characteristics
of Something-Something-v2 (SSv2) [11] and Kinetics-400
(K-400) [20] datasets, two standard benchmark datasets on
action classification. More importantly, it provides an in-
sight into the mechanism to encode temporal information
through stacked 3D convolutions, which inspires us to pro-
pose a method for improving temporal feature extraction.
The method involves spatio-temporal filter representation
and temporal data augmentation. We leverage multi-branch
reparameterization [5] to enhance temporal feature repre-
sentation of spatio-temporal filters by using a proper reg-
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ularization derived from our filter analysis. The enriched
form of spatio-temporal filters demands augmentation tech-
niques to endow regularization with training on video se-
quences for enhancing robustness against temporal pertur-
bations. We analyze the proposed model based on the ef-
fective receptive field [28] to attain a better understanding
of how the 3D-CNN works in the spatio-temporal domain.
The contributions of this paper are summarized as follows.
• We conduct an in-depth analysis of pre-trained spatio-

temporal filters to reveal the progressive temporal feature
extraction in 3D-CNNs. It also differentiates SSv2 [11]
and K-400 [20] based on temporal characteristics.

• The analysis induces the proposed methods to improve
temporal feature representation by means of filter refor-
mulation and temporal-enhanced data augmentation.

• The methods are qualitatively analyzed through the lens
of effective receptive field [28] and are empirically eval-
uated on the action classification tasks of SSv2 [11] and
K-400 [20] to exhibit favorable performance.

1.1. Related works

3D-CNN. The success of 2D-CNNs in static image recog-
nition has motivated extensive research efforts in develop-
ing 3D-CNN models for video action recognition [2, 7, 18,
23, 35, 36]. Modern 3D-CNNs are built upon successful
2D-CNNs such as Inception [34] and ResNet [13]; the 2D-
models pretrained on ImageNet [4] are further leveraged to
effectively initialize the 3D-models [2, 3]. Toward com-
putational efficiency, an array of research has been con-
ducted to decompose the 3D convolutions into spatial 2D
and temporal 1D-convolutions [29, 33, 36, 39]. Efficient 3D
architectures are explored in a systematic way through ex-
panding 2D models in [7]. On the other hand, SlowFast
model [8] leverages 3D-CNNs to extracting various tem-
poral dynamics especially in terms of motion speed. We
cope with such temporal variations in a framework of data
augmentation. Various approaches related to 3D-CNNs are
thoroughly compared in [3] on action classification.
Analysis of CNN. Spatial and temporal information are
both crucial for characterizing actions and are encoded by
using 2D and 3D convolutions, respectively. Recent in-
vestigations have been conducted to assess the significance
of 3D convolution over 2D convolution through empirical
comparison experiments [36, 39]. Though they are related
to our empirical evaluation in Sec. 2.2, we provide in-depth
analysis about spatio-temporal filter weights from a tem-
poral perspective (Sec. 2.1). Our analysis is also contribu-
tive to describe characteristics of two benchmark datasets
of SSv2 [11] and Kinetics-400 [20]. Bias toward spa-
tial representation in the Kinetics dataset, so-called static
bias [9, 14, 25], can be explained by the temporal analysis
of spatio-temporal filters. In contrast to [36, 39], our anal-
ysis covers temporal structure of spatio-temporal filters be-

Table 1. I3D-ResNet architectures. Filter size is denoted as
(t, h, w) and an inflated dimension is indicated by tl. The orig-
inal models are given by tl = 3, ∀l ∈ {1, · · · , 5}.

Block output I3D-ResNet-18 I3D-ResNet-50

conv 1 32×112×112 t1×7×7, 64, stride 2

conv 2 32×56× 56

1×3×3 max-pool, stride 2[
t2×3×3, 64
t2×3×3, 64

]
×2

 1×1×1, 64
t2×3×3, 64
1×1×1, 256

×3
conv 3 32×28×28

[
t3×3×3, 128
t3×3×3, 128

]
×2

 1×1×1, 128
t3×3×3, 128
1×1×1, 512

×4
conv 4 32×14×14

[
t4×3×3, 256
t4×3×3, 256

]
×2

 1×1×1, 256
t4×3×3, 256
1×1×1, 1024

×6
conv 5 32×7×7

[
t5×3×3, 512
t5×3×3, 512

]
×2

 1×1×1, 512
t5×3×3, 512
1×1×1, 2048

×3
1×1×1 avg-pool, 1000-dim. FC, softmax

yond the simple alternative of 2D or 3D, which leads to the
proposed methods to improve temporal feature representa-
tion in Sec. 3&4. On the other hand, analyzing convolu-
tion filters is found in a framework of 2D-CNNs for un-
derstanding feature extraction process [41], exploring filter
bases [17, 22] and investigating meta-structures [10]. Our
analysis leads to effective filter formulation by identifying
primary temporal patterns from the spatio-temporal filters.

Video augmentation. Data augmentation provides favor-
able regularization to CNN training for increasing robust-
ness against perturbations of input patterns and thereby en-
hancing generalization performance. It is studied mainly
in a literature of static image recognition, and is also ap-
plied to image frames on video action recognition. Re-
cently, some augmentation techniques are proposed by tak-
ing into account the three-way tensor structure of video se-
quences [21,40]. In this study, we present simple and inter-
pretable augmentation based solely on temporal dynamics
for enhancing temporal feature representation.

2. Analyzing temporal filters

3-D CNNs [18, 35] are composed of spatio-temporal fil-
ters which distinctively contain temporal dimension in com-
parison to ordinary 2-D convolution [13]. We analyze the
filters from a temporal perspective to explore the mecha-
nism how temporal dynamics are encoded by 3D-CNN and
to uncover potential avenues for further improvement.

2.1. Qualitative analysis

In a manner similar to spatial filter analysis [10, 17, 22],
we utilize pretrained 3-D CNN models to provide opti-
mal filter weights which well distinguish temporal pat-
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(a) Pretrained on Something-Something-v2 dataset [11]
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(b) Pretrained on Kinetics-400 dataset [20]
Figure 1. Distributions of the primary temporal filters embedded in I3D-ResNet-50 (Table 1) which is pretrained on (a) SSv2 [11] and
(b) K-400 [20] datasets. The temporal filters are normalized in unit L2 norm to distribute on a sphere. For ease of visualization, the
distributions are projected onto a plane spanned by the average filter and the 1st-differential filter as shown in the top-left chart; the center
filter of [0, 1, 0] is specifically denoted by a triangle maker with magenta color.

terns of actions. Spatio-temporal filters are sampled from
I3D-ResNet-50 [2, 3] pretrained on Something-Something-
v2 (SSv2) and Kinetics-400 (K-400) datasets. The I3D-
ResNet-50 simply inflates spatial convolution filters of
ResNet-50 [13] to spatial-temporal ones of 3(t)×3(h)×3(w);
the network architecture is shown in Table 1.

We extract primary temporal filter patterns by means of
singular-value decomposition (SVD) as follows. Pretrained
filter weight tensor W ∈ RD×C×t×h×w for C-input and
D-output channels is split along channel dimensions into
a set of filter matrices {W c,d ∈ Rt×hw}C,Dc,d=1. A spatio-
temporal filter of t× h×w is unfolded into a matrixW c,d

of t× hw, to which SVD is applied as

W c,d = U c,dΛc,d(V c,d)>, (1)

where U c,d = [uc,d1 , · · · ,uc,dt ] ∈ Rt×t denote the
(normalized) primary temporal filters embedded in the
spatio-temporal filter W c,d with the weights Λc,d =
diag(λc,d1 , · · · , λc,dt ). As the pretrained model is equipped
with spatio-temporal filters of t = 3 (Table 1), the primary
temporal filters {uc,di }

3,C,D
i,c,d are distributed on a sphere.

Figure 1 shows the distributions of uc,di with weights
λc,di at respective layers; there are totally 17 layers across
the blocks of conv 1∼5. To facilitate the interpretation of
temporal patterns conveyed in spherical distributions, we
have developed a three-dimensional Cartesian coordinate
system comprised of three physically interpretable axes:
the average filter ∝ [1, 1, 1]> (vertical), the 1st differen-
tial ∝ [−1, 0, 1]> (horizontal), and the 2nd differential fil-
ter ∝ [−1, 2,−1]> (center of circle). And, the center filter
[0, 1, 0]> is specifically shown as a triangle marker. The vi-
sualization in Figure 1 leads to the following key findings.
• At the shallower layers of conv 1 and conv 2, distribu-
tions are concentrated around the center filter [0, 1, 0]>; par-
ticularly at conv 1 a majority of the temporal filters gather
at the center filter. It indicates that spatio-temporal filters
are degraded into spatial filters at these layers. Thus, the
shallower layers primarily contribute to extracting spatial
features without placing significant emphasis on temporal
dynamics. In conv 2, the distributions slightly shift away
from the center filter toward the average filter [1, 1, 1]>.
• The deeper layers at conv 3∼5 exhibit diverse tempo-
ral patterns by distributing temporal filters across a sphere
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including differential filters. It implies that these deep lay-
ers extract a range of temporal dynamics in contrast to the
shallow layers. As the temporal filters become complicated
for encoding various dynamics, it stands to reason that they
require a larger temporal receptive field. Actually, the dis-
tributions are biased toward the average [1, 1, 1]> and/or 1st
differential [−1, 0, 1]> filters which possess larger receptive
fields along a time axis. In most layers, the temporal filters
are thinly distributed around the 2nd differential (center of
circle), implying effectiveness of 1st differential; it interest-
ingly validates the simple feature difference in TAM [27].
• The temporal filters pretrained on the two datasets of
SSv2 [11] and K-400 [20] exhibit both similar and distinc-
tive behavior across layers. Specifically, conv 1∼3 show
similar distributional patterns, while the deeper layers of
conv 4 and conv 5 exhibit different distributions. On SSv2,
they are distributed rather diversely on a sphere; the dis-
tributions are especially found in circumference indicating
the combination filters of the average and the 1st differen-
tial filters. It suggests that temporal filters are optimized
so as to capture various temporal dynamics present in the
SSv2 dataset. The SSv2 contains various human-object in-
terection via action, intrinsically demanding for distinguish-
ing detailed differences of temporal dynamics patterns. In
contrast, the temporal filters on K-400 are simply distriuted
around the average filter [1, 1, 1]>. The distribution implies
that on K-400 encoding spatial characteristics that are con-
sistent across time is more important than capturing tempo-
ral dynamics. Such a static bias of K-400 is pointed out
in [9, 14, 25]. Our analysis reveals these inherent difference
between the two benchmark datasets through investigating
distributions of temporal filters in the pretrained models. It
is also noteworthy that the similarity in conv 1∼3 across so
different datasets of SSv2 and K-400 can imply the gener-
ality of those behaviors at the shallower layers.

2.2. Quantitative analysis

The above analyses suggest that the spatio-temporal fil-
ters be reconfigured by equipping the shallower layers with
filters of short-time length and the deeper ones with larger-
temporal filters. This is empirically evaluated as follows.

Experimental setting. I3D-ResNet-50 (Table 1) is trained
on mini-SSv2 dataset [3, 11] which is a subset of SSv2 by
randomly picking up half of whole 174 class categories. In
the I3D-ResNet, we construct 3D convolution filters of tl×
3 × 3 at conv l and initialize them by inflating pretrained
spatial filters of 3 × 3 in ResNet-50 [13] into the spatio-
temporal ones of tl × 3 × 3. [2]. The original model [3]
leverages ImageNet-pretrained ResNet-50 to implement 3-
D convolution of 3 × 3 × 3. Input spatio-temporal volume
is composed of 32 video frames sampled every two frames
through data augmentation of random cropping. Procedures
of training and test are shown in a supplementary material.

Table 2. Performance results on various temporal-filter length
{tl}5l=1 in 3D-convolutions. tl indicates the temporal length of
the spatio-temporal filters at conv l as shown in Table 1.

t1 t2 t3 t4 t5 Acc. GFLOPs

orig. 3 3 3 3 3 67.54 240

a 1 3 3 3 3 67.71 233
b 1 1 3 3 3 68.07 212
c 1 1 1 3 3 66.53 184
d 1 1 1 1 3 63.20 143

2D CNN 1 1 1 1 1 38.39 122

e 3 1 1 1 1 59.70 130
f 3 3 1 1 1 62.37 151
g 3 3 3 1 1 64.08 178
h 3 3 3 3 1 66.51 219

b1 1 1 3 3 5 68.83 233
b2 1 1 3 5 5 67.62 274
b3 1 1 5 5 5 67.58 302

c1 1 1 1 3 5 67.80 205
c2 1 1 1 5 5 67.18 247

Performance analysis. Table 2 shows performance results
over various temporal-filter lengths {tl}5l=1 of 3-D convolu-
tion. To validate our analysis in Sec. 2.1 regarding temporal
filters at the shallower layers, we degrade the filters of the
shallower layers to 1(tl)× 3× 3 from the original 3× 3× 3.
It should be noted that the degraded filter of tl = 1 works
as 2-D spatial convolution without extracting any temporal
dynamics. As shown in Table 2a∼d, the filter degradation
contributes to improving both performance and computa-
tion cost until conv 2 (l = 2). This is consistent with the
analysis of Figure 1 that conv 1&2 exhibit simple distri-
butions of temporal filters being biased toward the center
filter [0, 1, 0]>. In general, the shallower layers are vulner-
able to perturbations of input frames/pixels such as by cam-
era shaking and various noises derived from environments,
which make it hard to effectively encode temporal dynam-
ics by using small filters 3 × 3 × 3. Besides, the shallower
layers operate on such a high spatial resolution that they are
sensitive to small high-frequency movements. Those move-
ments are less relevent to target actions since target actions
are mostly composed of low-frequency motions. Thus, it
is beneficial to focus on extracting spatial characteristics of
targets at the first several shallow layers.

The performance, however, is degraded by touching the
temporal filters at deeper layers, which ultimately results
in simple 2D-CNN (ResNet-50). The filter reduction at the
deeper layer significantly drops performance; t5 = 1 deteri-
orates performance from 63.20% (d) to 38.39% (2D CNN).
These results indicate that the temporal filters at the deeper
layers extract temporal dynamics more effectively, as sug-
gested in the analysis of Sec. 2.1.
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We then degrade the temporal filters in a manner from
deep to shallow layers as shown in Table 2e∼h. It is less
effective in comparison to the above approach from shal-
low to deep layers (Table 2a∼d). For example, under the
same computation budget (FLOPs), the degradation only at
conv 5 (h) is outperformed by the shallow one (b); 66.51%
(219GFLOPs) vs 68.07 (212GFLOPs). These results sup-
port our claim that the deeper layers demand sufficient tem-
poral filters to discriminatively encode temporal dynamics.

As shown in Table 2b, the best filter configuration is
given by t1 = t2 = 1 to extract spatial characteristics at
the shallow layers and t3 = t4 = t5 = 3 to let the deeper
layers encode temporal dynamics of so extracted spatial pat-
terns. They respectively contribute to the following two
points. (1) The shallow layers focus on spatial feature ex-
traction to enhance robustness against high-frequency in-
put perturbations that are irrelevant to the target action. (2)
Target action patterns of low frequency are discriminated
at the deep layers by encoding temporal patterns of rather
abstract-level spatial characteristics, i.e., objects. While the
comparison experiments in [36, 39] provide similar results
to Table 2a∼h, our evaluation is distinctively built upon the
detailed filter analysis in Sec. 2.1 which further encourages
us to conduct the following experiments for the deep layers.

The analysis in Sec. 2.1 also implies that the deeper lay-
ers demand larger temporal receptive fields by enlarging
temporal filters. The spatio-temporal filters of longer tem-
poral length allows for effective encoding of low-frequency
dynamics which exhibit less apparent spatial difference in
short-time duration. Besides, it contributes to distinguish-
ing minute difference of those temporal patterns from a fre-
quency viewpoint according to the time-frequency uncer-
tainty principle [1], ∆t∆ω ≥ 1

2 . To empirically validate it,
we enlarge temporal length of filters in the favorable config-
urations of Table 2bc. By enlarging temporal length only at
conv 5 with t5 = 5, we observe considerable performance
improvement as shown in Table 2b1c1. Further enlargement
at conv 3 and/or conv 4, however, degrades performance
as reported in Table 2b2b3c2. The longer temporal length
requires the larger spatial scale (receptive field) for discrim-
inating detailed spatio-temporal patterns. Thus, only conv
5, which has large spatial receptive fields, takes advantage
of the large length tt = 5 for improving performance. From
a perspective of training CNNs, the performance drop may
also be connected to the increased parameter size especially
at conv 4 containing lots of convolution layers (Table 1).

The configuration of Table 2b1 that progressively in-
creases temporal length of spatio-temporal filters produces
the best performance while keeping the same computation
cost as the original one. It is coincident with the filter analy-
sis in Sec. 2.1 with Figure 1 which identifies the progressive
mechanism of (temporal) feature extraction at conv 1∼5.
We apply this configuration in the subsequent analyses.

3. Effective representation of temporal filter

Next, we technically explore effective representation of
spatio-temporal filters in terms of temporal dimension.

3.1. Reparameterization

The filters of longer temporal length would have diffi-
culty in training due to increased number of parameters.
The issue is mitigated by means of a reparameterization
technique [5] to facilitate the training of those filters while
keeping the intrinsic structure. Convolution with a spatio-
temporal filterW of t× 3× 3 is reformulated via multiple
branches (Figure 2a) of various-length filters {Ŵτ}τ as

γconv(X;W ) + β =
∑

τ∈{1,3,··· ,t}

γτconv(X; Ŵτ ) + βτ ,

(2)
where γ and β are affine parameters used in Batch-
Norm [16] and τ indicates a temporal length of the filter
Ŵτ in τ × 3 × 3. A single filter W of t × 3 × 3 can
be reconstructed by simply summing up those filters1 to
W =

∑
τ γτŴτ as shown in Figure 2a. By virtue of multi-

branch training path [13], this reparameterization facilitates
the CNN learning; while in [5] it is applied to spatial filters
of VGG-models [32], we leverage it to reparameterization
of temporal dimension in spatio-temporal filters.

3.2. Regularization

Though the multi-branch representation renders effective
training, it likely brings up a bias toward the temporal center
filter [0, 1, 0]> due to overlap of multiple filters at the center
position as shown in Figure 2a. Such a centric bias degrades
a temporal receptive field of the filter, interfering with fea-
ture extraction of various temporal patterns. To remedy the
bias, we propose a regularization method to suppress the
overlap among multiple filters. As analyzed in Figure 1, the
filters tend to contain components related to the average fil-
ter which causes heavy overlap across different-sized filters.
Thus, we impose high L2 regularization on the average fil-
ter; the L2 regularization is usually applied to any filters as
weight decay of optimizers in deep learning.

A multi-branch filter weight Ŵτ ∈ Rτ×hw is decom-
posed as

Ŵτ = µAτ +U⊥Bτ , (3)

where the average filter µ ∈ Rτ and its complement filters
U⊥ ∈ Rτ×τ−1 are given such as by Figure 2b and

µ =
1√
τ

1τ , U
>
⊥µ = 0 and U>⊥U⊥ = I. (4)

1Filters of different sizes are aligned via padding and any bias terms in
BatchNorms are merged into a bias of convolution operation.
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⇔

BatchNorm
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(a) Reparameterization (b) Regularization

Figure 2. Proposed temporal-filter representation. (a) Reparam-
eterization [5] of spatio-temporal filters of 5(t) × 3(h) × 3(w) by
multiple branches. (b) Regularization on the average filtering.

The matrices Aτ ∈ R1×hw and Bτ ∈ Rτ−1×hw are coef-
ficients for µ and U⊥, respectively. This decomposition
reformulates the L2 regularization of ‖Ŵτ‖2F into

` = η2‖Aτ‖2F + ‖Bτ‖2F = ‖Ãτ‖2F + ‖Bτ‖2F , (5)

where η (≥ 1) is a weight parameter. Larger weight η
imposes higher regularization on the average filter to sup-
press it; η = ∞ completely excludes the average filtering
from the spatio-temporal filter. The reparameterization of
Ãτ = ηAτ simplifies the filter representation to

Ŵτ =
[1

η
µ,U⊥

] [
Ãτ

Bτ

]
=
[1

η
µ,U⊥

]
W̃τ , (6)

` = ‖W̃τ‖2F . (7)

The filter weight Ŵτ is finally reparameterized by W̃τ and
we can simply apply ordinary weight decay to it without
touching CNN architecture nor training procedure; the in-
flation initialization [2] is also applicable to W̃τ and the
spatio-temporal convolution filter is reconstructed by (6).

3.3. Empirical evaluation.

The proposed methods are evaluated as in Sec. 2.2. The
regularization in Sec. 3.2 is applicable not only to the multi-
branch filters Ŵτ in the reparameterizatoin (2) but also to a
(original) single filterW . Table 3 shows performance com-
parison across various regularization weight η . In a case
of a single filter, performance is degraded by suppressing
the component of average filtering with larger η. The result
implies that the average filtering contributes to extract tem-
poral dynamics features by probably enlarging the recep-
tive field. On the other hand, the regularization effectively
works on the reparameterized filters by multiple branches
(Sec. 3.1). Moderate regularization with η ∈ {2, 4} im-
proves performance of η = 1 (no regularization); the best
performance is achieved with η = 2. While being com-
parable with the single filter (η = 1) in this experiment,
the proposed temporal-filter representation with regulariza-
tion is potentially further improved by injecting regulariza-

Table 3. Performance comparison of various temporal filter repre-
sentation on mini-SSv2. η indicates a regularization weight in (6).

η single filter multi-branch filter

1 68.83 68.17
2 67.51 68.82
4 62.90 68.54
∞ 54.83 67.79

tion into the training via data augmentation due to its over-
parameterized representation.

4. Temporal-enhanced data augmentation
We consider augmentation processes working on tem-

poral dynamics, which are simple and interpretable. Sim-
ilaly to 2-D CNNs on static images, input video frames
are usually subject to spatial augmentaion techniques such
as random cropping and random color jittering. While
spatial augmentation techniques are extended for video
sequences [21, 40], our simple augmentations more di-
rectly inject perturbation into temporal dynamics (Figure 3)
for enhancing the robustness againt temporal variations
in video sequences. They are well compatible with the
temporal-filter representation in Sec. 3.

4.1. Random sampling rate

Video sequences are captured at a fixed sampling rate de-
fined by a camera device which is thus variable across video
sequences. It is also connected to target motion speed. Even
the same action can be performed with different speed by
different subjects. In appearance, different motion speed
is regarded as different sampling rates as shown in Fig-
ure 3a. Thus, by changing sampling rates, we can artifi-
cially provide actions of various speed. To enhance robust-
ness against those temporal variations, our data augmenta-
tion is formulated as a technique of random sampling rate to
sample video frames at random frame intervals for building
spatio-temporal volume fed into 3D-CNNs; SlowFast [8]
deals with the various sampling rates in an architectural
way. Given a video sequence F = [F1, · · · , ], we sample
T -frame subsequence starting at the s-th frame as

I = [Fs, Fs+r, Fs+2r, · · · , Fs+(T−1)r], (8)

where a parameter r controls the sampling rate (Figure 3a)
and is randomly drawn for each video sequence.

4.2. Random camera ego-motion

Movements observed in an video sequence can be cat-
egorized into target actions and the other irrelevant back-
ground motions caused by a camera ego-motion. In order
to artificially embed the ego-motion into sequences, spatial
random cropping is combined with spatial shift along time
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(slow motion)

(fast motion)

Shifted crop

(a) Random sampling rate (b) Random ego-motion
Figure 3. Temporal-enhanced data augmentation.

as shown in Figure 3b. Let (x0, y0) denote a position where
an image patch is cropped at the first frame I0, and then
image patches are cropped on the subsequent frames at

(x0 + vxi, y0 + vyi) for Ii, i ∈ {0, · · · , T − 1}, (9)

where (vx, vy) indicates an ego-motion velocity, which is
randomly sampled from N (0, σ) with a hyper-parameter σ
indicating strength of the ego-motion. In the video aug-
mentation technique [21], such a spatial shift of cropped
image patches can be implicitly implemented through lin-
early mixing two augmentations of different (random) spa-
tial cropping. Our shifting, however, is limited in the neigh-
borhood of (x0, y0) to mimic camera ego-motion, while any
spatial interval is employed in [21]. The method is also
different from [6] which applies successive homographic
transform to generate a pseudo video from a single image.

4.3. Empirical evaluation

As in Sec. 3.3, we apply the temporal-enhanced augmen-
tation techniques to train the models of single filter and reg-
ularized multi-branch filter, dubbed as multi-filter.

Table 4a shows performance results by applying aug-
mentation of random sampling rate (Sec. 4.1); it is imple-
mented by uniformly drawing a sampling rate from r ∈
{1, · · · , 4} during training, and then at inference we apply
r = 2 as the averaged sampling rate; we used r = 2 in
the previous experiments. For comparison, we apply fixed
sampling rates of r = 1, 2, 4. There is no significant perfor-
mance improvement across those fixed sampling rates. Par-
ticularly, the larger rate of r = 4 degrades performance as it
provides too sparse sampling to capture the motion patterns
in the mini-SSv2 dataset. On the other hand, our augmenta-
tion considerably improves performance for the multi-filter
model, while being less effective for the single-filter one.

Table 4b presents the performance results of the ego-
motion augmentation, where we apply various σ in the ego-
motion prior N (0, σ). As is the case with Table 4a, the
augmentation does not work for the single-filter model but
renders performance improvement to the multi-filter model.

Table 4. Performance results on mini-SSv2 by applying the pro-
posed data augmentation to various filter representation (Sec. 3).

(a) Random sampling rate

r single filter multi-filter

1 68.62 68.84
2 68.83 68.82
4 65.73 67.06

Unif[1, 4] 68.81 69.69

(b) Random ego-motion

σ single filter multi-filter

0 68.83 68.82

1 68.74 69.00
2 67.93 69.19
4 68.52 68.81

(c) Joint augmentation

r σ original single filter multi-filter

2 0 67.54 68.83 68.82

Unif[1, 4] 2 67.70 68.74 69.98

These results motivate us to apply the two temporal aug-
mentation techniques jointly, as shown in Table 4c. The
joint augmentation further improves performance only of
the multi-filter model, while having no impact on the per-
formance of the single-filter model and the original model
(Table 2orig). In contrast to the single-filter model, the reg-
ularized reparameterization in Sec. 3 facilitates the training
of 3D-CNNs with over-parameterization [5] on which the
augmentation favorably works for improving performance.
These augmentation techniques are simply derived from the
common temporal perturbations frequently found in video
sequences, and thus are interpretable; the hyper-parameters
of η and σ could be tuned based on the prior knowledge
about input videos. Besides, they are naturally compatible
with the other video augmentation techniques [21, 40].

5. Effective receptive field in temporal domain

As shown in Table 4, the two models of single filter
and multi-filter produce different performance. This section
analyzes those models in terms of their effective receptive
field [28] achieved through training in stead of theoretical
ones defined by filter sizes. We measure the effective recep-
tive fields of the 3D-CNNs to understand how they work
on temporal dimension for extracting temporal features; the
computation procedure [28] is detailed in a supplementary
material. For comparison, we also apply the original I3D-
ResNet-50 (Table 2orig) and the simple multi-filter model
(Sec. 3.1) without regularization (η = 1). To ease compari-
son of 3D receptive fields, we marginalize it into 2D-fields
of X-Y and X-T planes in Figure 4a as well as into 1D-field
along time axis in Figure 4b.

While the spatial receptive fields are similarly depicted
like Gaussian shape in Figure 4a, we can find difference in
temporal receptive fields in Figure 4b. The original model
produces the narrowest temporal field. It is enlarged by the
single-filter model which gradually increases temporal fil-
ter length (Table 2b1). The larger temporal receptive field
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filter sizes 3-3-3-3-3 1-1-3-3-5

original single filter multi-filter (η = 1) multi-filter (η = 2)

X-Y

X-T
(a) Marginalized 2-D receptive field

orig.                       [std=2.8]
single filter             [std=3.3]
multi-filter w/o reg. [std=3.2]
multi-filter w/ reg.   [std=3.6]

[frames]

(b) Marginalized 1-D receptive field
Figure 4. Effective receptive fields [28] of 3D-CNNs. (a) 3D receptive field is marginalized into 2-D map. The upper row shows X-Y map
while X-T map is shown in the bottom row. (b) The receptive field is marginalized into 1-D temporal axis, followed by normalization into
unit sum in a manner of a probabilistic distribution. The standard deviation of the distribution is shown in the legend.

Table 5. Performance results on SSv2 [11] and K-400 [20] datasets by using I3D [2] and S3D [39] architecture.

method 3D-CNN backbone temp.-filt. length GLOPs Acc@Mini-SSv2 Acc@SSv2 Acc@Mini-K400 Acc@K400

Orignal I3D ResNet18 3-3-3-3-3 161 64.01 60.41 71.20 68.84
Ours I3D ResNet18 1-1-3-3-5 151 66.03 62.40 73.17 70.56

Original I3D ResNet50 3-3-3-3-3 240 67.54 63.55 75.41 73.58
Ours I3D ResNet50 1-1-3-3-5 233 69.98 65.52 76.43 73.99

Original S3D ResNet50 3-3-3-3-3 148 61.61 63.48 69.94 72.85
Ours S3D ResNet50 1-1-3-3-5 140 65.60 66.02 72.08 73.40

contributes to encoding detailed dynamic patterns of mo-
tion, which leads to performance improvement in Table 2.
As to reparameterization (Sec. 3.1), the naive multi-branch
approach [5] without regularization (η = 1) produces al-
most the same temporal receptive field as the single-filter
model. The regularization with η = 2 suppresses overlap
among multi-branch filters, favorably enlarging the tempo-
ral receptive field; the model provides the largest tempo-
ral field. It endows the 3D-CNN with discriminative power
to well characterize temporal patterns, and works collabo-
rately with the temporal-enhanced augmentation techniques
(Sec. 4) for furhter improving performance (Table 4).

6. Performance evaluation
We finally evaluate performance of the proposed model

on Something-Something-v2 (SSv2) [11] and Kinetics-400
(K400) [20] datasets on action classification of 174 and 400
categories, respectively. The 3D-CNN models are trained
over 100 epochs with mini-batch size of 32 using cosine-
scheduled learning rate which starts with 0.01; the detailed
training protocol is shown in a supplementary material.

We apply ResNet-18 and ResNet-50 as backbones to
construct I3D-CNNs [2], architectures of which are shown
in Table 1. Our model is composed of regularized multi-
branch filters (Sec. 3) with temporal data augmentations
(Sec. 4); it is the same model as that applied in Table 4c. It
is also applied to S3D-ResNet-50 [39] which decomposes
3D filters into spatial and temporal ones; our method is ap-
plicable to the temporal filters. The performance results are
shown in Table 5. The proposed method produces favor-

able improvement over the original model while retaining
the same computation cost. The performance improvements
are more apparent on the dataset of SSv2 than K400 and
with the backbone of ResNet-18 than ResNet-50. The SSv2
dataset relies on rather pure motion patterns [11] while
K400 [20] contains a static bias toward static information as
analyzed in Sec. 2.1. Thus, the proposed method improving
the mechanism of temporal feature extraction works more
effectively on the SSv2 for distinguishing detailed motion
patterns. As to a backbone model, compared with ResNet-
50, ResNet-18 is equipped with larger number of spatio-
temporal convolution at conv 5 to which the longer-length
temporal filters (t5 = 5) are applied. They contribute to
temporal feature extraction more effectively, leading to sig-
nificant performance improvement in I3D-ResNet-18. It is
noteworthy that our method works for the decomposed tem-
poral filters in S3D [39] which reduces computation cost.

7. Conclusion

We have conducted novel analysis of spatio-temporal
filters embedded in pretrained 3D-CNNs from a temporal
viewpoint. The analysis reveals the mechanism that tem-
poral dynamics patterns are encoded progressively through
numbers of spatio-temporal convolution. Based on the anal-
ysis, we propose methods to improve temporal feature ex-
traction in 3D-CNNs without modifying a fundamental ar-
chitecture nor especially increasing computation cost. The
effectiveness of the method is validated through quantitative
and qualitative evaluation on SSv2 and K400 datasets.
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