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Abstract

In the field of 3D scene understanding, 3D scene graphs
have emerged as a new scene representation that combines
geometric and semantic information about objects and
their relationships. However, learning semantic 3D scene
graphs in a fully supervised manner is inherently difficult as
it requires not only object-level annotations but also rela-
tionship labels. While pre-training approaches have helped
to boost the performance of many methods in various fields,
pre-training for 3D scene graph prediction has received
little attention. Furthermore, we find in this paper that clas-
sical contrastive point cloud-based pre-training approaches
are ineffective for 3D scene graph learning. To this end,
we present SGRec3D, a novel self-supervised pre-training
method for 3D scene graph prediction. We propose to
reconstruct the 3D input scene from a graph bottleneck as a
pretext task. Pre-training SGRec3D does not require object
relationship labels, making it possible to exploit large-scale
3D scene understanding datasets, which were off-limits for
3D scene graph learning before. Our experiments demon-
strate that in contrast to recent point cloud-based pre-
training approaches, our proposed pre-training improves
the 3D scene graph prediction considerably, which results
in SOTA performance, outperforming other 3D scene graph
models by +10% on object prediction and +4% on relation-
ship prediction. Additionally, we show that only using a
small subset of 10% labeled data during fine-tuning is suf-
ficient to outperform the same model without pre-training.

1. Introduction

Scene graphs provide a graph-based representation of a
scene, by not only representing the geometric scene objects,
but also their relation among each other. In recent years,
2D scene graphs have seen a wide range of applications in
computer vision and robotics [4, 5, 16, 26]. Consequently,
many approaches for generating 2D scene graphs based on
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Figure 1. SGRec3D Overview. SGRec3D exploits autoencoder-
based pre-training to build a 3D scene graph latent space through
a reconstruction loss. The resulting encoder can, later on, be fine-
tuned for the downstream 3D scene graph prediction.

given input images have been proposed [47, 53, 62]. In the
same way as 2D scene graphs capture structured knowl-
edge about scenes represented through images, 3D scene
graphs can capture the same information for point clouds
or other 3D data structures. Despite the fact that 3D scene
graphs are widely used in computer graphics [19], and de-
spite their great potential for solving computer vision or
robotics tasks [1, 25, 43, 55], relatively little work has been
done to predict 3D scene graphs based on a given 3D scene.

Predicting 3D scene graphs comes with several chal-
lenges on its own. It does not only have to provide a high
level representation of a given 3D scene, but it must also de-
rive this from often noisy and incomplete sensor data. Thus,
3D scene graph generation is difficult to tackle with rule-
based deterministic algorithms. For instance, two chairs of
the same style could have different visual appearances or a
jacket lying on one chair could occlude most of the visible
surface. While first approaches have been proposed to learn
a 3D scene graph based on a 3D point cloud [49,50,64,65],
these approaches require labels to be available, as they per-
form scene graph prediction in a fully supervised manner.
Acquiring data and labels in 3D is very challenging task and
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requires extensive human effort, which is underlined by the
particular scarcity of labeled training data in the domain of
3D scene graphs. Therefore, our goal is to reduce the need
for such labels when learning to predict 3D scene graphs.

In recent years, self-supervised pre-training methods in
3D have shown to be effective in improving results of neu-
ral architectures with a high data demand by utilizing the
available data more efficiently without requiring additional
annotated data [10, 21, 23, 57]. Despite the promising na-
ture of pre-training approaches in low data regimes, self-
supervised pre-training for 3D scene graphs has not been
investigated so far. In particular, we find in this paper that
point cloud-based pre-training approaches are ineffective
for 3D scene graphs (see Sec. 4). To solve this issue,
we propose a new self-supervised pre-training approach tai-
lored for 3D scene graphs using an encoder-decoder-based
method with a graph bottleneck and a graph-based pre-
text task. We choose graph-based 3D reconstruction as
our pretext task which, unlike previous point cloud-based
pre-training approaches, considers the graph information
directly to learn the optimal information flow through the
graph to reconstruct 3D scene point clouds. In contrast to
2D, 3D scene reconstruction remains a challenging prob-
lem, mainly due to the sparsity and non-continuous nature
of 3D point clouds.

Thus, our main contributions are: (i) We propose a novel
self-supervised pre-training method designed for 3D scene
graph predictions. To the best of our knowledge, this is the
first pre-training approach designed for 3D scene graphs.
(ii) We demonstrate how to utilize additional 3D datasets to
boost the effectiveness of our pre-training approach with-
out being dependent on scene graph labels. (iii) We out-
perform fully-supervised methods and our novel pre-train-
ing shows greater effectiveness than other point cloud-based
pre-training baselines. (iv) Our pre-trained method demon-
strates significantly improved label efficiency by requiring
only 5%-10% of scene graph labels to outperform the same
model trained from scratch on a complete labeled dataset.

2. Related Work
Scene graph prediction. A scene graph is a data struc-
ture that represents a scene as a graph, where nodes provide
semantic descriptions of objects in the scene and edges rep-
resent relationships between objects. In computer vision,
scene graphs were first introduced by Johnson et al. [27]
motivated by image retrieval. Subsequent works focused
primarily on the refinement of scene graph prediction from
images [22, 32, 33, 61, 63], while utilizing different meth-
ods such as message passing [58], GCN [28] or atten-
tion [42]. Some works also investigate the incorporation
of prior knowledge into the graph learning problem [9, 46].
Much of the progress is accounted to the introduction of
visual gnome [29], a large scale dataset for connecting lan-

guage and vision which contains scene graph annotations
for images. Chang et al. [8] provide a comprehensive sur-
vey of scene graph generation approaches and their applica-
tions. Other works, instead, apply semantic scene graphs to
image generation [4, 26], and image manipulation [16].

Applications of scene graphs can be also found in the
3D domain where literature presents two main approaches
which explore their potential. Wald et al. [49] introduce
the first 3D scene graph dataset 3DSSG, with focus on se-
mantics with 3D graph annotations, build upon the 3RScan
dataset [48]. Based on this dataset, subsequent works ex-
tended the common principles of 2D scene graph predic-
tion to 3D [49,50]. Other works explore unique approaches
for 3D scene graphs utilizing novel graph neural networks
[64], transformers [37], the use of prior knowledge [65], or
image-based oracle models [52]. Others explore applica-
tions utilizing 3D scene graphs for 3D scene generation and
manipulation [17], the alignment of 3D scans with the help
of 3D scene graphs [44], or dynamic construction of 3D
scene graphs [54, 55] during the exploration of a 3D scene.
In contrast, our approach focuses on a novel pre-training
strategy for scene graph prediction, without requiring addi-
tional scene graph labels.
Pre-training for 3D scene understanding. Deep learning
methods are well known for requiring large amounts of
training data. Since collecting data and providing labels
is costly and time-consuming, pre-training methods have
emerged in the field of scene understanding. In the 2D
domain, for instance, pre-training on existing large-scale
datasets, such as ImageNet [15], is a common practice.
More recently, methods such as masked autoencoders [21]
have demonstrated, that pre-training alone on the target
dataset using a pretext task can improve results by a consid-
erable margin. In 3D, representation learning approaches
demonstrate that using only a fraction of available point
labels can lead to similar results as obtainable with fully su-
pervised methods when pre-trained with a self-supervised
pretext task [10, 23, 24, 57, 66]. However, so far neither of
these works have considered 3D scene graph prediction as
the downstream task. In this work, we will compare existing
pre-training methods designed for point cloud pre-training
with our approach designed for 3D scene graph learning.
3D scene reconstruction. Literature shows a number of
methods able to generate 3D scenes from images [18, 39,
64]. Other works aim to complete a 3D scene from an
incomplete 3D scan [13, 14, 59]. But only few works
attempt to do full 3D scene reconstruction from point
clouds [40], and most methods for 3D reconstruction are
limited to object reconstructions [6, 20, 36, 60] on datasets
like ShapeNet [7] or ModelNet [56]. Methods more sim-
ilar to our approach explore 3D scene generation from
graphs [36, 51], however most methods simplify the task
of 3D generation. Li et al. [30] for instance introduce
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Figure 2. SGRec3D architecture overview. SGRec3D utilizes an encoder-decoder structure for pre-training (bottom-left) using a
reconstruction loss by reconstructing the bounding boxes and shape encodings of objects with supervision from a pre-trained AtlasNet.
The encoder (top-left) generates object and edge embeddings from the input point cloud into a latent graph. The decoder (top-right)
reconstructs the input point cloud from the graph bottleneck. During fine-tuning (bottom-right), the decoder is discarded and the encoder
is fine-tuned to predict the node and edge classes.

GRAINS, a recursive VAE to generate a 3D layout fol-
lowed by object retrieval to synthesize a 3D indoor scene.
Dhamo et al. [17] go beyond object retrieval and attempt to
generate and manipulate 3D scenes by reconstructing ob-
jects individually from a scene graph using a generative
graph-based model. Similar to this work, we design our
decoder to reconstruct the 3D scene from a graph bottle-
neck. However, in contrast to this work, we reconstruct the
input scene, instead of generating plausible object shapes
and layouts.

3. Method

We propose SGRec3D, a novel pre-training method to
learn 3D scene graphs from 3D data in an autoencoder-
like manner, as shown in Fig. 2. Like all autoencoding
approaches, our method consists of an encoder that maps
the input to a latent representation and a decoder that re-
constructs the original input from the latent representation.
But unlike most autoencoder approaches, our method main-
tains a graph representation within the network given a non-
graph input and output. The encoder (see Sec. 3.1), takes as
input a point cloud partitioned using object instances and
their bounding boxes. From this input, the encoder gen-
erates a minimal representation as a 3D scene graph in a
graph bottleneck (see Sec. 3.2), by learning to reconstruct
from this representation the input scene using a decoder (see
Sec. 3.3). This pre-trained architecture can then be fine-
tuned to predict a semantic 3D scene graph G = {N , E},

where nodes N represent object instances within a corre-
sponding 3D point cloud, while edges E express predicates
that form together with object nodes semantic relationships
(see Sec. 3.4). Each edge in the graph can represent zero or
more relationships.

3.1. Encoder

Given a point cloud P of a scene S with class-agnostic
instance segmentation M provided by an off-the-shelf in-
stance segmentation method such as Mask3D [45] or a
dataset, we extract each point set Pi containing instance
i and its axis-aligned or oriented bounding box Bi us-
ing the mask Mi. Moreover, for every instance pair
⟨i, j⟩ ∈ ∥M∥ × ∥M∥, we get the point set Pij using the
union of their respective bounding boxes Bij = Bi ∪ Bj .
Note that the point set Pij contains not only the union of
the masked instances Pi ∪ Pj , but also other points falling
within the volume Bij . This helps to augment the point
cloud with contextual information relating the two objects.
Pi, Bi and Pij serve as input to our scene encoder. The
encoder follows the common principles of scene graph pre-
diction from prior 2D and 3D works [35, 49, 58, 61]. We
construct an initial graph with node features ϕn and edge
features ϕp from the extracted instance and bounding box
features. Each point set Pi is fed into a shared PointNet [41]
to extract features for object nodes. Every point set Pij is
concatenated with a mask which is equal to 1 if the point
corresponds to object i, 2 if the object corresponds to ob-
ject j, and 0 otherwise. The concatenated feature vector is
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then fed into another shared PointNet to extract features for
predicate edges. Additionally, the centers of the point sets
Pi and Pij are normalized before inputting them into the
respective PointNet.

The extracted node and edge features are then arranged
as triplets tij = ⟨ϕn,i, ϕp,ij , ϕn,j⟩ in a graph structure. This
initial feature graph is passed into a GCN [28]. Each GCN
layer lg processes the triplets tij and propagates the infor-
mation through the graph in three steps, with a similar mes-
sage passing procedure to [49]. First, tij is fed into a MLP
g1(·)

(ψ
(lg)
n,i , ϕ

(lg+1)
p,ij , ψ

(lg)
n,j ) = g1

(
ϕ
(lg)
n,i , ϕ

(lg)
p,ij , ϕ

(lg)
n,j

)
(1)

where ψ represents the nodes’ processed features. After this
first pass, the resulting edge feature ϕ(lg+1)

p,ij does not need
any further refinement.
Second, an aggregation function averages the incoming in-
formation from all the connected edges of each node

ρ
(lg)
n,i =

1

Ni

 ∑
k∈Ri

ψ
(lg)
n,k +

∑
k∈Rj

ψ
(lg)
n,k

 (2)

where Ni denotes the number of edges connected to node i,
and Ri and Rj are the set of nodes connected to node i and
node j respectively.
Finally, the resulting node feature ρ(lg)n,i passes into a second
update MLP g2(·) and a residual connection is added:

ϕ
(lg+1)
n,i = ϕ

(lg)
n,i + g2(ρ

(lg)
n,i ). (3)

In the end, the processed features ϕ(lg+1)
n,i , ϕ

(lg+1)
p,ij , ϕ

(lg+1)
n,j

are passed to the next layer of the network.

3.2. Graph bottleneck

Features are further processed through multiple layers
of graph convolutions, propagating them to neighboring
nodes. A final MLP fn(·) is applied to all node features,
and a softmax activation function represents the nodes as
a probability distribution over the node classes

ϕ
(e)
n,i = softmax(fn(ϕ

(ln)
n,i )). (4)

where ϕ(e)n,i is the final encoder feature vector for each node
which is passed into the decoder.

The edge features, instead, are handled by a different
MLP fp(·) and by a class-wise sigmoid activation function
to map the edges to a separate probability distribution for
each possible relationship between object nodes

ϕ
(e)
p,i = σ(fp(ϕ

(ln)
p,i )). (5)

where ϕ(e)p,i is the final encoder feature vector for each edge
which is passed into the decoder.

3.3. Decoder

The goal of our scene decoder is to reconstruct the orig-
inal scene from the bottleneck scene graph representation.
To preserve the layout and object details, we first pass the
low-dimensional features into an embedding MLP which
lifts the latent graph representation to a high-dimensional
feature-space. Then, we further decode the latent graph us-
ing another GCN with the same message passing structure
as the encoder. Due to the low-dimensionality of the bot-
tleneck and the ambiguity of the scene graph, the decoding
step may be affected by information loss. Thus, we address
this problem by introducing an additional skip-connection
between the last GCN encoder layer before applying the
softmax and sigmoid functions and the first GCN decoder
layer by concatenating (⊕) the GCN features with the em-
bedded feature from the bottleneck. For the node and edge
features this is defined as follows

ϕ
(din)
n,i = (ϕ

(e)
n,i ⊕ ϕ

(ln)
n,i ), ϕ

(din)
p,i = (ϕ

(e)
p,i ⊕ ϕ

(ln)
p,i ). (6)

where ϕ(din)
n,i /ϕ

(din)
p,i are the input decoder features for each

node and edge.
Reconstructing a full 3D scene is a highly complex

task, giving the sparsity of 3D data. Therefore, we choose
to reconstruct each object individually rather than the
complete scene. To this end, we combine the 3D bounding
box of each object, predicted by the Box-Head, with
the corresponding object reconstruction provided by the
Shape-Head. For the final scene reconstruction, we place
each generated object within its matching bounding box.

For the Box-Head, we implement an MLP to predict the
box extents [h,w, d] and the center location [cx, cy, cz]. Pre-
dicting the 3D orientation of objects using regression has
shown to be difficult given the non-linearity of the 3D ro-
tation space [38]. Therefore, we predict the object’s orien-
tation angle α separately by means of classifying it into 1
out of 24 discrete bins, rather than regressing the angle di-
rectly. The Shape-Head consists of an MLP that predicts a
1D latent vector which is further processed by the decoder
of AtlasNet [20] pre-trained on ShapeNet [7], which recon-
structs the object from the latent vector.

3.4. Pre-training using scene reconstruction

For pre-training we learn to reconstruct the 3D scene by
predicting the bounding box and the shape of the objects.
The loss for the object-level scene reconstruction is com-
posed of three components: (i) a bounding box regression
loss Lbbox which uses the L1 distance for the bounding box
parameters, (ii) a cross entropy classification loss Langle, and
(iii) anL1 loss Lshape for the shape embedding before apply-
ing the AtlasNet decoder:

Lrec = η1Lbbox + η2Langle + η3Lshape (7)
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where ηi are weighting factors. Note that this loss does not
rely on scene graph labels which allows for the use of ad-
ditional training data from larger 3D data sets, as we will
demonstrate in Section 4.

After pre-training, our model needs to be fine-tuned
on the downstream task of predicting 3D scene graphs.
For this, we discard the decoder and fine-tune the pre-
trained encoder using the scene graph annotations with a
fully supervised loss LSG. It consists of a cross-entropy
loss Lobj for the node classification and a per-class
binary cross entropy loss Lpred for the predicate prediction.
The latter is used to learn different predicates separately
from one another to support multi-predicate relationships.
The combined loss is defined as

LSG = λ1Lobj + λ2Lpred (8)

where λ1 and λ2 are the respective weighting factors.
Further details and documentation of our model architec-

ture, training procedure, chosen loss functions and weight-
ing factors are provided in the supplementary material.

4. Experiments
4.1. Experimental setup

Datasets. To prove the effectiveness of our proposed
method, we evaluate it on real-world 3D scans from the
3DSSG [49] dataset. 3DSSG is currently the only real-
world dataset that provides semantic 3D scene graph an-
notations. Another 3D scene graph dataset is [2], however,
the scene graphs modeled in this dataset focus on hierar-
chical structuring and lack semantic relationship labels. In
contrast, 3DSSG provides 3D scene graph labels for 160
distinct object classes and 27 relationship categories, corre-
sponding to over 1,000 3D indoor point cloud reconstruc-
tions. The 3D scene graphs present in 3DSSG are further
split into smaller sub-graphs spanning a small selection of
objects per scene, yielding over 4,000 samples for training
and evaluation. We follow the previous work [49] and use
the same scene graph and training/evaluation splits first in-
troduced by Wald et al. [48]. The 3DSSG dataset, however,
is a rather small dataset, including only 478 different scenes,
which may be challenging for training large deep learn-
ing architectures. To alleviate this problem, we addition-
ally pre-train on existing indoor object detection datasets
ScanNet [12] and S3DIS [3]. ScanNet and S3DIS are much
larger indoor datasets, including 1513 and 727 annotated
scenes respectively. The available baselines cannot use ad-
ditional datasets since they require ground truth scene graph
annotations. In contrast, our pretext task does not require
these annotations, which makes it possible for us to utilize
additional datasets for pre-training.
Evaluation metrics. Following previous works [49, 50, 58,
61,64], we evaluate object node classification and predicate

Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

3D + MSDN [33] 0.61 0.72 0.86 0.94 0.47 0.53
3D + KERN [9] 0.67 0.77 0.83 0.96 0.51 0.58
3D + BGNN [31] 0.71 0.82 0.87 0.94 0.55 0.60
SGGPoint [64] 0.28 0.36 0.68 0.87 0.08 0.10
3DSSG [49] 0.68 0.78 0.89 0.93 0.40 0.66
Liu et al. [34] 0.74 0.83 0.90 0.96 0.62 0.68
SGFN [55] 0.70 0.80 0.97 0.99 0.85 0.87
Ours 0.80 0.87 0.97 0.99 0.89 0.91

Table 1. 3D scene graph prediction on 3DSSG. Experimental
results for 3D scene graph prediction on 3DSSG. We report the
top-k recall values for object classification, predicate prediction as
well as relationship prediction. For a fair comparison, all works
use ground-truth class-agnostic instance segmentation.

edge prediction separately. To analyze the overall scene
graph prediction performance, we jointly compute the ac-
curacy of relationships consisting of triples formed by two
nodes (subject & object) and their connecting edge (pred-
icate). Since we predict object nodes and predicate edges
independently, we adapt the approach first introduced by
Yang et al. [61] for relationship evaluation. Through this
method, we obtain a scored list of triplet predictions by
multiplying the object node confidences with the predicate
edge probability. For comparison with previous works, we
follow [49, 50, 64] and use the top-k recall metric first in-
troduced by Lu et al. [35] for scene graph prediction. For
objects and predicates, we further do a class-wise evaluation
by splitting the classes based on the frequency of number of
labels in the train set into head, body and tail respectively.
A class-wise evaluation over all categories as well as for
the head, body, and tail splits enables a more precise under-
standing of the prediction performance. For this we use the
same top-k metric formulation, which is also known as the
more precise but less commonly used mR@k metric.

4.2. 3D scene graph prediction

Comparison with fully supervised methods. To show the
impact of our pre-training, we compare it against recent
fully supervised 3D scene graph baselines (SGGPoint [64],
3DSSG [49], SGFN [55] and Liu et al. [34]) and adopted
2D scene graph methods (MSDN [33], KERN [9] and
BGNN [31]). For the 2D scene graph methods, the 2D ob-
ject detector was replaced by a PointNet-based feature ex-
tractor. We note that, to alleviate the severe object class
imbalance in the scene graph prediction task, SGGPoint
only provides a model for 27 object classes and 16 relation
classes in the 3DSSG dataset.

Results in Tab. 1 show that SGRec3D outperforms most
existing fully supervised methods by a large margin, and our
closest competitor SGFN [55] by a considerable amount.
Especially on object node classification SGRec3D outper-
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Figure 3. 3D scene graph visualizations for 3DSSG scene splits. We visualize the top-1 object class prediction for each node and the
predicates with a probability greater than 0.5 for each edge. Ground truth labels are shown in square brackets.

Head Body Tail All

Objects
w/o pre-train 0.88 0.45 0.06 0.30
w/ pre-train 0.92 0.78 0.24 0.45

Predicates
w/o pre-train 0.94 0.83 0.41 0.57
w/ pre-train 0.97 0.96 0.65 0.69

Table 2. Frequency based class evaluation. We sort objects and
predicates into head, body, tail classes based on their occurrence
and compare our pre-training method with the same model not pre-
trained. We compare on the mR@5 metric objects and the mR@3
metric for predicates.

forms SGFN by a large margin (+10%/+7%). For rela-
tionship prediction, we also report favorable results with
a +4% increase to SGFN on both metrics. For the predi-
cate edge prediction, we observe similar results as SGFN.
Given the overall high score for this metric, we assume that
we reached a saturation point for this task on this dataset.
In Fig. 3, we provide predicted 3D scene graphs for three
different scenes. Our method is able to predict accurate
and mostly correct scene graphs for the given scenes. Ob-
jects are predicted well, with most nodes being predicted
correctly and only some nodes being predicted incorrectly,
where our method often chooses an object class of a simi-
lar meaning. Similarly, predicates between objects are also
predicted with a high accuracy with only a few false positive
predictions.
Class-wise evaluation. To further investigate the impact
of our proposed pre-training, in Tab. 2 we provide a detailed
comparison of our method with and without pre-training for
individual classes grouped into head, body and tail based on
their frequency. Additionally, we provide All which is the
average recall over all classes individually also known as
the mR@k metric. The improvement of our pre-training

pre-train Object Predicate

GCN PCL SG R@5 mR@5 R@3 mR@3

STRL [11] ✓ 0.75 0.35 0.94 0.50
STRL [11] ✓ ✓ 0.63 0.23 0.92 0.48
DepthContrast [66] ✓ 0.77 0.36 0.94 0.51
DepthContrast [66] ✓ ✓ 0.60 0.22 0.93 0.50

Ours (no pre-train) ✓ 0.63 0.30 0.94 0.57
Ours (no GCN) ✓ 0.75 0.31 0.94 0.48
Ours ✓ ✓ 0.80 0.45 0.97 0.69

Table 3. Pre-training comparison. We compare SGRec3D with
existing recent point cloud-based pre-training approaches (PCL).
Our novel scene graph pre-training (SG) shows high effectiveness
outperforming point cloud-based pre-training approaches. Adding
a GCN to our method is beneficial since we optimize it during
pre-training, while point cloud-based pre-training approaches do
not benefit from a GCN which is not pre-trained.

over all classes is large with a +27% gain for object clas-
sification and a +24% gain for predicate prediction on the
mR@k metric. We observe, that this improvement origi-
nates mostly from a very large improvement on rare body
and tail classes. The improvement on more frequent head
classes is smaller since the baseline method already pro-
duces good results for frequent categories.
Comparison with point cloud-based pre-training. We are
the first to investigate pre-training designed for 3D scene
graphs by considering the graph nature of scene graphs dur-
ing pre-training. In Tab. 3, we show a comparison with re-
cent point cloud-based pre-training approaches. In contrast
to our method, these approaches do not model the graph
structure of the scene graph during pre-training. We com-
pare with the pre-trained 3D feature encoders from both
STRL [11] and DepthContrast [66]. We choose these two
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Figure 4. Scene reconstruction on 3DSSG. Qualitative results of the reconstructions for four different input scenes. While the reconstruc-
tion does not represent the input scenes perfectly, it is faithful to the input scenes, as object locations are well-preserved. Furthermore, the
shapes look similar and the reconstruction quality is stable.

approaches because they have been proven to be highly ef-
fective in pre-training 3D scene understanding models for
tasks such as 3D segmentation and detection. Similar to
our method, they rely on a PointNet++ feature extraction
backbone and ScanNet as pre-training data. We add two
prediction heads on top of their pre-trained PointNet++
backbones for objects and predicates and fine-tune them
on the 3DSSG dataset. For further comparisons, we add
a GCN between the pre-trained backbone and the predic-
tion heads to make their network architecture very simi-
lar to ours. The major difference is that while our GCN
contains pre-trained weights, their GCN is randomly ini-
tialized because only the 3D feature extractors can be pre-
trained by STRL and DepthContrast. Tab. 3 demonstrates,
that our scene graph pre-training (SG) tailored for 3D scene
graph prediction produces drastically better results than our
point cloud-based pre-training baselines (PCL), with 9%
improvement on the mR@5 metric for objects and 18% on
the mR@3 metric for predicates. We observe that our nov-
elty of a pre-trained graph neural network greatly improves
the pre-training effectiveness of our method (+14% object,
+11% predicate prediction), the same is not true for the
point cloud-based pre-training methods. We assume this
is because, in contrast to our method where the graph lay-
ers are optimized during pre-training, the point cloud-based
approaches do not optimize the graph. Adding the graph
layers during fine-tuning consequently adds a considerable
number of untrained weights which are challenging to train
on a rather small dataset such as 3DSSG.

4.2.1 Scene reconstruction

The benefit of our pre-training is influenced by the ability of
our model to learn the reconstruction pretext task. Since our
downstream task includes learning relationships in scene
graphs, it is crucial that the relationships present in the orig-

Relationship Rule GraphTo3D Ours

left of cx,i < cx,j and iou(bi, bj) < 0.5 0.85 0.92
right of cx,i > cx,j and iou(bi, bj) < 0.5 0.85 0.92
front of cy,i < cy,j and iou(bi, bj) < 0.5 0.79 0.90
behind of cy,i > cy,j and iou(bi, bj) < 0.5 0.79 0.90
higher than hi + cz,i/2 > hj + cz,j/2 0.96 0.96
lower than hi + cz,i/2 < hj + cz,j/2 0.96 0.96
smaller than wilihi < wj ljhj 0.98 0.96
bigger than wilihi > wj ljhj 0.98 0.96
same as iou(bi, bj) > 0.5 1.00 1.00

average 0.90 0.94

Table 4. Rule-based scene generation verification. A simple
rule-based verification of the scene generations from SGRec3D,
for a subset of the predicates in the 3DSSG dataset.

inal scene remain preserved in the reconstructed scene. This
indicates that the model learns transferable knowledge for
the downstream scene graph prediction during pre-training.

Fig. 4 shows some qualitative results for reconstructing
3D scene splits from 3DSSG. In general, our model cor-
rectly reconstructs the layouts of the scenes. In all predicted
scenes, the reconstructed objects are located in similar po-
sitions to the ones in the original scene. Relationships that
describe the relative proximity of objects are clearly pre-
served, such as Close by, Left, Right, etc. Sometimes ob-
jects hanging on walls are generated on the wrong side of
the wall (see Fig. 3a), however relationships like hanging
on, attached to are still maintained in the generation. The
shape of the objects differs in detail compared to the orig-
inal scenes. This is because we do not fine-tune the Atlas-
Net [20] decoder for more stable training. Still, the rough
shape of the objects is preserved and relationships like same
as, bigger than, smaller than are maintained.

In Tab. 4, we provide a quantitative evaluation of the
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Object Predicate Relationship

Dataset R@5 R@10 R@3 R@5 R@50 R@100

3DSSG 0.75 0.83 0.96 0.99 0.88 0.89
S3DIS 0.76 0.85 0.96 0.99 0.89 0.90
ScanNet 0.77 0.85 0.96 0.99 0.89 0.90
S3DIS+ScanNet 0.79 0.86 0.96 0.99 0.89 0.91
S3DIS+ScanNet+3DSSG 0.80 0.87 0.97 0.99 0.89 0.91

Table 5. Pre-training dataset. A comparison of SGRec3D pre-
trained on different datasets. The datasets are ordered by size.

preserved relationships for those predicates where a simple
rule can be approximated. We compare our results with the
results from Graph-to-3D [17]. The reported results confirm
that our method preserves the original and reconstructed
relationships in the scene. With an overall accuracy of 94%
the pretext task has been learned well by the model indicat-
ing an effective pre-training task. As shown in the table, we
outperform Graph-to-3D, with great improvements for front
of/behind of relationships. While Graph-to-3D generates
a scene solely using a scene graph as input, we reconstruct
the scene from 3D using the graph bottleneck. This retains
more context information of the original scene compared
to Graph-to-3D which tries to generate a novel scene.

4.3. Ablations
Pre-training dataset. Our method allows to leverage large-
scale 3D datasets without scene graph labels during pre-
training. In Tab. 5 we investigate the role of a larger pre-
training dataset by reporting the fine-tuned performance of
our method, given different pre-training datasets. We ob-
serve that pre-training on the 3DSSG [49] dataset only,
which is also used for fine-tuning, leads to competitive
results compared to existing methods from Tab. 1. Pre-
training on larger datasets like ScanNet [12] and S3DIS [3]
further improves fine-tuning results. Finally, increasing pre-
training data by combining individual datasets gives the
best fine-tuned model. We can highlight considerable im-
provements in the object classification scores. The predi-
cate scores improve only slightly, which we assume is corre-
lated to a saturated metric. The relationship scores improve
marginally with increasing dataset size, achieving best re-
sults by combining 3DSSG, ScanNet and S3DIS.
Limited fine-tuning data. The goal of our proposed pre-
training is to reduce the need for labeled scene graph data,
which is often hard to annotate. To prove this contribu-
tion, in Tab. 6b we provide an ablation of our pre-trained
model fine-tuned on a fraction of labeled data from 3DSSG
[49]. We observe that reducing the number of labeled sam-
ples during fine-tuning only affects marginally the perfor-
mance on object, predicate, and relationship prediction. For
example, using only a small fraction of the labeled data
(˜10%-30%) results in competitive performance compared
to the works from Tab. 1. Moreover, we would like to em-
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(a) Comparison of SGRec3D with and without pre-training under limited
labeled fine-tuning data.

Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

SGRec3D100% 0.80 0.87 0.97 0.99 0.89 0.91
SGRec3D80% 0.78 0.86 0.94 0.98 0.89 0.90
SGRec3D50% 0.75 0.83 0.93 0.97 0.88 0.89
SGRec3D30% 0.72 0.82 0.92 0.97 0.87 0.88
SGRec3D10% 0.67 0.75 0.90 0.95 0.84 0.85
SGRec3D05% 0.62 0.71 0.89 0.93 0.81 0.83

(b) Affects of limited labeled fine-tuning data for SGRec3D.

Table 6. Limited fine-tuning data. A comparison of SGRec3D
fine-tuned using different quantities of 3DSSG labels.

phasize that even with the 5% of labeled data – around 200
training samples – SGRec3D is able to achieve acceptable
results. In Tab. 6a, we compare the effects of limited labeled
training data for our pre-trained model against the same
model trained from scratch without pre-training. The pre-
trained model outperforms the model trained from scratch
on all data quantities by a large margin for object classifica-
tion and predicate prediction. Furthermore, the pre-trained
model requires only 5%-10% of labeled data to outperform
the model trained from scratch.

5. Conclusion
Pre-training for scene graphs has received little atten-

tion so far, despite its success for a variety of other down-
stream tasks. In this paper we find that existing point
cloud-based pre-training approaches are ineffective for 3D
scene graph prediction. To this end, we present SGRec3D,
a novel self-supervised pre-training method for the down-
stream task of 3D scene graph prediction. To the best of our
knowledge, this is the first approach addressing pre-training
for 3D scene graph prediction. Our experiments show that
SGRec3D significantly improves the predictions of objects
and relationships in 3D scene graphs compared to existing
fully supervised methods. We achieve these results thanks
to our pre-training contribution and the use of additional 3D
datasets for pre-training.We show that even using a small
percentage of limited fine-tuning data, SGRec3D produces
competitive results with recent methods.
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