
SimA: Simple Softmax-free Attention for Vision Transformers

Soroush Abbasi Koohpayegani Hamed Pirsiavash

University of California, Davis
soroush@ucdavis.edu hpirsiav@ucdavis.edu

Abstract

Recently, vision transformers have become very popular.
However, deploying them in many applications is compu-
tationally expensive partly due to the Softmax layer in the
attention block. We introduce a simple yet effective, Softmax-
free attention block, SimA, which normalizes query and key
matrices with simple ℓ1-norm instead of using Softmax layer.
Then, the attention block in SimA is a simple multiplication
of three matrices, so SimA can dynamically change the or-
dering of the computation at the test time to achieve linear
computation on the number of tokens or the number of chan-
nels. We empirically show that SimA applied to three SOTA
variations of transformers, DeiT, XCiT, and CvT, results in
on-par accuracy compared to the SOTA models, without any
need for Softmax layer. Interestingly, changing SimA from
multi-head to single-head has only a small effect on the accu-
racy, which further simplifies the attention block. Moreover,
we show that SimA is much faster on small edge devices, e.g.,
Raspberry Pi, which we believe is due to higher complexity
of Softmax layer on those devices. The code is available
here: https://github.com/UCDvision/sima

1. Introduction

Recently, vision transformers have become very popular.
Compared to CNNs, they achieve better accuracy, however,
deploying transformers in devices with smaller computa-
tional resources is challenging. One reason is that a trans-
former model calls the Softmax layer several times which
calls exp(.) operation consequently. We know that the exp(.)
operation is costly particularly in smaller devices with lim-
ited computational resources. For instance, implementing
exp(.) on FGPA is much more costly compared to imple-
menting simple multiplication or addition operations.

As an example observation, Table A1 of [32] measures
the run-time of each component for a BERT encoder on
V100 GPUs. Softmax consumes more time compared to any
other components including query (Q), key (K), value (V)
operation (Softmax: 453 µs , QKV projections: 333 µs,

QKT : 189 µs). This is remarkable since the FLOPS of Soft-
max is much lower than those other components (Softmax:
0.2 GFLOPS, QKV projections: 25.7 GFLOPS, QKT : 4.3
GFPLOS). Similar observation are made in [56, 63].

We are interested in simplifying the attention mechanism
by removing the Softmax layer. We believe one role of the
Softmax layer is to normalize the attention values so that
tokens can compete with each other. Our main idea is to
enable this competition by normalizing the query and key
matrices with their ℓ1-norm before multiplying them. Then,
removing the Softmax layer results in the whole attention
mechanism to boil down to simply multiplying three matrices
“query”, “key”, and “value”. While ℓ1-norm has been used in
transformers before [22], the way we are using it to simplify
the computational flow of the transformer is novel.

As a bi-product, due to the associative property of mul-
tiplication, there are two possible orderings of multiplying
these three matrices at the test time. Depending on the or-
dering, the computation can be quadratic on the number of
tokens, N , or that of channels, D. Hence, we can reduce the
computation further by dynamically deciding on the ordering
at the test time by comparing N and D without affecting the
training process. Moreover, since we normalize the vectors
before multiplying, our method is numerically more stable
so we use half-precision floating point without overflowing.

The attention mechanism deals with the tokens without
considering their ordering. This is an interesting property
that opens the door to many applications. For instance, the
distribution of the tokens is relatively robust compared to
CNNs when we mask (drop) 75% of the tokens in masking
auto-encoder (MAE [24]). Moreover, the tokens can be seen
as a non-ordered set that can come from various sources
(e.g., multiple cameras or non-camera sensors). Note that
this permutation equivariance property does not exist in some
other models like MLP-Mixer [58]. Hence, instead of using
MLP-Mixer that does not have Softmax by default, we are in-
terested in removing Softmax from the original transformers
to keep this permutation equivariance property.

We perform experiments with our simple attention block,
denoted SimA, by using it in standard vision transformers,
DeiT, CvT, and XCiT. SimA achieves on-par results with

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2607

Figure 1. Comparison on Edge devices: We evaluate performance of a single attention block for each model on 3 different devices:
Raspberry Pi 4 (Quad core Cortex-A72 @ 1.5GHz), NVIDIA Jetson Nano (Quad-core ARM A57 @ 1.43 GHz), and Apple M1. To measure
the effect of exp(.) only, we fix the order of (QKTV) product so that all models have the same dot product complexity. We set N > D for
left and N < D for the right plots. We repeat average of the execution time over 1000 runs. We observe that SimA is faster than other
methods, which we believe is due to the increased complexity of exp(.) operation compared to ℓ1 normalization on edge devices.

SOTA on ImageNet classification, MS-COCO object detec-
tion and segmentation, and also self-supervised learning.

In summary, our SimA attention block does not use Soft-
max, which makes it computationally efficient generally (see
Fig. 1 and Table 3), and on the edge devices specifically.
SimA can dynamically choose to be linear on N or D at the
test time depending on the image resolution or the number
of tokens. Changing Multi-head attention to Single-head
one or changing GELU activation function to ReLU, has a
very small effect on the accuracy of SimA. This makes SimA
simple and effective for various applications.

2. Method

2.1. Background on Vision Transformers:

Self-Attention Block: The original vision transformer
[15] uses the self-attention block introduced in [62]. Self-
attention block gets X ∈ RN×D as the input where N
is the number of tokens and D is the dimensionality of
each token. Then Wq ∈ RD×D, Wk ∈ RD×D and
Wv ∈ RD×D projects X into three N ×D matrices: query
(Q = XWq), key (K = XWk) and value (V = XWv).
We calculate attention matrix A ∈ RN×N defined as
A = Softmax(QKT /

√
D) where Softmax is applied to

each row independently, so each row in A sums to one. Then,
we calculate the output O = AV . Each row of O ∈ RN×D

corresponds to one token and since rows of A sum to one,
each token in a weighted average of the values of all tokens.

Additionally, Multi-Head Self-Attention (MSA) trans-
formers divide Q, K, and V of each token into H heads,
where each head has its own attention over the correspond-
ing head in all tokens. For example, Q = [Q1;Q2; ...;QH]

where Qi ∈ RN×D
H is the query matrix for the i’th head.

Then, we calculate H self-attention for all heads in parallel
and concatenate the outputs to get O = [O1;O2; ...;OH].
Finally, the self-attention block has an additional output

projection Wproj ∈ RD×D, thus the final output of the self-
attention block is OWproj which is of size RN×D.

Cross-covariance Attention Block (XCA): Vanilla self-
attention block has a complexity of O(DN2) which is
quadratic on N . [2, 54] introduce an attention mechanism
that is linear on N . In XCA, we calculate the attention ma-
trix with A = KTQ where A is a D ×D matrix. Next, we
apply Softmax on each columns, so that columns sum to one.
Then we calculate output as O = V A. Note that A is an
attention of channels on each other rather than tokens. Com-
pared to vanilla self-attention (MSA), XCA has complexity
of O(D2N). Since XCA is linear on N , it is more efficient
when N ≫ D and it is less efficient when N ≪ D.

Vision Transformer Block: Vision transformers archi-
tecture contains n consecutive Vision Transformer blocks.
Each block has MSA block followed by a Feed-Forward
Network (FFN) both with skip connection. FFN is a simple
2-layer MLP which projects tokens from D dimension to
4D and again back to D dimensions. FFN uses GELU [28]
as the activation function. Moreover, we use LayerNorm [3]
on each token before forwarding them through MSA or FFN
blocks. The following two updating rules summarize each
block of the vision transformer:

(Step1) X ← X +MSA(LayerNorm1(X))

(Step2) X ← X + FFN(LayerNorm2(X))

2.2. Simple Attention (SimA):

Our main goal is to reduce the computation by removing
the Softmax (exp(.)) layer. We believe one of the roles of
the Softmax layer is to normalize the attention so that each
token is a weighted average of the values of all tokens. This
ensures that the attention values are bounded. Hence, we
introduce an alternative normalization method that does not
need a Softmax layer.

2608

Figure 2. Our Simple Attention (SimA): First, we normalize each channel in Q and K with ℓ1-norm across the tokens, to get Q̂ and K̂.
Next, we can choose either (Q̂K̂T)V or Q̂(K̂TV) depending on the number of input tokens N . Compared to XCA and MSA, our method
has following benefits: (1) It is free of Softmax, hence it is more efficient. (2) At test time we can dynamically switch between (Q̂K̂T)V
and Q̂(K̂TV) based on the number of input tokens (e.g., different image resolution).

In the regular attention block, if a channel in Q and/or K
has large values, that channel may dominate the dot prod-
uct QKT . This results in other channels being ignored in
calculating the attention. We believe this may be one of the
reasons leading to superior performance of the multi-head
attention (MSA) compared to the single-head one. Since in
MSA, the dominating channel can dominate a single head
only leaving the other heads still operational. We propose
a method to take this solution to the extreme where we can
normalize each channel in Q and K across tokens so that
different channels become more comparable. We do this by
simply dividing the values of each channel by the ℓ1 norm
of that channel across all tokens:

Q̂i :=
Qi

|Qi|1
and K̂i :=

Ki

|Ki|1
where Qi is the i’th column of Q (values of the i’th channel
for all tokens) and Q̂ and K̂ are the normalized query and
key matrices. Given this simple normalization method, we
remove the Softmax layer, so the attention block can be
written as:

O = Q̂K̂TV

where O ∈ RN×D. Similar to standard transformers, we use
this block for each head separately, concatenate the outputs,
and finally apply the output projection OWproj .

One can assume Q̂K̂T is the attention matrix that quan-
tifies the effect of a token on another token. Interestingly,
if the query and key vectors have a large angle, the atten-
tion values can become negative, meaning that a token can
affect another one negatively. This is in contrast to regular
transformers where the attention is always non-negative. A
simple pseudo-code is provided in the appendix.

Due to our normalization, the attention values are
bounded between −D and D. The extremes happen when
only a single row of Q and a single row of K are nonzero. In
this case, all other tokens will have zero query and key vec-
tors. One may divide the attention by D to bound it between
−1 and 1. This constant scalar multiplier can be absorbed
into Wv , the projection matrix for V .

The cost of Softmax: Both XCA and MSA use Softmax
for normalization. Softmax needs running exp(.) which is
costly. MSA uses Softmax on a matrix of size N ×N while
XCA uses Softmax on a matrix of size D×D. Hence, the or-
der of exp(.) operations is O(HN2) for MSA and O(HD2)
for XCA. Therefore, Softmax will be bottleneck when in-

2609

creasing the number of tokens (higher image resolutions) in
MSA and number of channels (higher capacity transformers)
in XCA. On the other hand, our attention block does not use
exp(.) operation at all. Moreover, in the last row of Table 1,
we show that changing GELU to ReLU in SimA gets com-
parable accuracy to the main experiment (79.6% vs 79.8%).
This version of SimA does not use any exp(.) operation at
the inference time. The reduction in the computation cost of
Softmax for a single attention block is shown in Fig. 1-left
for N > D and in Fig. 1-right for N < D and Table 3.
This Figure shows the speed-up due to removing Softmax
only and does not include the speed-up due to changing the
order of multiplications. We believe removing the cost of
exp(.) operation can have a large impact particularly in edge
devices with limited resources.

3. Related Work
Vision Transformers: Convolutional Neural Networks

(CNNs) have become ubiquitous as the most commonly used
network architecture for computer vision tasks [10, 27, 30,
36]. Transformers have recently emerged as a promising
alternative to CNNs. Transformers [62] rely entirely on self-
attention mechanism and was originally introduced for NLP
tasks. ViT [15] adapts transformers to obtain convolution-
free architecture for computer vision tasks by dividing each
image in 16 × 16 patches and considering each patch as a
token input. DeiT [60] improves training efficiency of ViT on
smaller dataset. The Scaled Dot-Product Attention module
[62] used by transformers rely on the softmax operation for
normalization. Unlike CNNs/MLP [36, 55, 58, 59] based
architectures, softmax is an important part of transformer
architecture. In this paper, we address replacing the softmax
(exp(.)) operation in the self-attention module of vision
transformers.

Efficient Vision Transformers: Transformers have a
large memory footprint, so deploying them on edge de-
vices with limited resources is difficult. Many works study
efficiency of transformers [5, 6, 34, 71]. LeViT [19] uses
down-sampling in stages to improve efficiency. [47, 67] inte-
grate convolution in transformer. [29, 41] improve the self-
attention efficiency by limiting the attention of each token
to subset of tokens. [45] uses distillation to improve the
efficiency of the network. [17, 46, 53] decrease the num-
ber of tokens by token pruning. [40] apply quantization on
transformers. Although these works limit the computation
generally, softmax or exp(.) function is still required to cal-
culate the attention. Our idea is orthogonal to these methods
since we can replace attention block in any transformer with
our exp(.) free attention block.

Linear Attention: Vanilla attention has O(N2D) compu-
tation and memory complexity, where N is number of input
tokens and D is dimension of each token. Some works target
this issue by replacing vanilla attention with a linear atten-

tion with O(ND2) complexity. XCiT [2, 54] uses attention
across feature channels rather than tokens. Some works use
similarity kernels to approximate softmax, thus it is possible
to have linear complexity by doing ϕ(Q)(ϕ(K)Tϕ(V)) in-
stead of (ϕ(Q)ϕ(K)T)ϕ(V) where ϕ(x) is the kernel func-
tion. [33] uses ϕ(x) = 1 + elu(x), whereas [44, 49] use
Gaussian kernel functions. [70] use SVD decomposition
and [11] use positive random features to approximate soft-
max. [64] approximate attention with a low rank matrix. All
these methods either use exponential function. For example,
SOFT [44] removes Softmax without reducing the number
of exp(.) operations. Our ideas are different since we aim to
remove the costly exp(.) operation. Moreover, the focus of
those methods is to have linear attention with respect to num-
ber of tokens which is not the main focus of this paper. A
recent work in the NLP community, CosFormer [51], passes
Q and K through a ReLU unit and normalizes their product.
It also adds a re-weighting method that improves the locality
of the data using sine(.) and cosine(.) functions. Our idea
is simpler and we apply it to visual recognition rather than
NLP. Moreover, cosine re-weighting in CosFormer requires
4× more FLOPs in K and V dot product compared to ours.

Softmax Approximation: Softmax is an expensive oper-
ation on hardware since it requires exp(.) operation. More
specifically, softmax in transformer architecture contributes
to major part of computation when the input is large [56].
[4] approximates softmax with Taylor expansions, whereas
[16, 18, 23, 78] target designing a hardware architecture to
approximate softmax. Softermax [56] uses a low-precision
implementation of 2x. [74] uses lower precision computa-
tion. [39, 50] use quantized softmax. While these works
approximate Softmax at the hardware, we replace Softmax
completely with ℓ1 normalization at the model architecture.

4. Experiments
We evaluate effectiveness of SimA attention block by

replacing self-attention in three popular vision transformer
families: DeiT, XCiT and CvT. We evaluate our model on
image classification, object detection, image segmentation,
and self-supervised learning.

4.1. Image Classification

Dataset: We train on ImageNet1K [14] and report Top-1
accuracy on the validation set.

Implementation Details: We use PyTorch [48] and
Timm [66] libraries to train our models with a setup similar
to [2,60]. We use AdamW [43] optimizer. We train CvT and
DeiT models with 300 epochs and XCiT models with 400
epochs. We set the batch size to 1024 and weight decay to
0.05. We use cosine scheduling with an initial learning rate
of 5e − 4. We use Stochastic depth drop rate [31] of 0.05.
Data augmentations are the same as those in [60] including
Rand-Augment [13], CutMix [73] and Mixup [75]. Follow-

2610

Table 1. ImageNet classification: We denote replacing Softmax attention with SimA by X → SimA. Softmax column indicates the number
of exp(.) operations in the attention block. N is the number of tokens, D is the token dimension, H is the number of heads, M is the local
window size, and R is the reduction ratio. We also report ResNet50 RA (with RandAug [13]). Models indicated by * use teacher during
training. EfficientNet outperforms our method, but it is a convolutional network and uses more FLOPs at higher image resolution. SOFT also
has exp(.) function in the backbone which is costly. Purple rows are our method while blue rows are comparable baselines. Our method is a
exp(.) free transformer and has on-par accuracy with SOTA transformers. To simplify SimA even further, we investigate two more variations
in yellow rows: (1) Replacing GELU with ReLU, (2) Replacing multi-head attention with single head attention. Interestingly, SimA has
comparable performance even with single head attention and ReLU. Note that the ReLU version does not need any exp(.) operation at the
inference time. Execution time of SimA and other baselines are shown in Fig. 1 and Table 3.

Model params FLOPs Resolution Softmax/#exp Top1-Acc

CNN ResNet18 [27] 12M 1.8B 224 0 69.8
Transformer XCiT-T24/16 [2] 12M 2.3B 224 HD2 79.4
Transformer XCiT-T24/16→ SimA 12M 2.3B 224 0 79.8
Transformer XCiT-T12/8 [2] 7M 4.8B 224 HD2 79.7
Transformer XCiT-T12/8→ SimA 7M 4.8B 224 0 79.4

CNN

ResNet50 RA [13] 25M 3.9B 224 0 77.6
EfficientNet-B5 RA [13] 30M 9.9B 456 0 83.9
RegNetY-4GF [52] 21M 4.0B 224 0 80.0
ConvNeXt-T [42] 29M 4.5B 224 0 82.1

MLP
ResMLP-S24 [59] 30M 6.0B 224 0 79.4
MS-MLP-T [77] 28M 4.9B 224 0 82.1
Hire-MLP-S [21] 33M 4.2B 224 0 82.1

Twin-SVT-S [12] 24M 3.7B 224 HM2N 81.7
CvT-13 [68] 20M 4.5B 224 HN2 81.6Hybrid
CvT-13→ SimA 20M 4.5B 224 0 81.4

Transformer

Swin-T [41] 29M 4.5B 224 HM2N 81.3
PVT-S [65] 24M 4.0B 224 HN2/R 79.8
T2T-ViT-14 [72] 21M 5.2B 224 HN2 80.7
CaiT-XS24* [61] 26M 19.3B 384 HN2 84.1
SOFT-S [44] 24M 3.3B 224 HN2 82.2
DeiT-S* [60] 22M 4.6B 224 HN2 81.2
XCiT-S12/16* [2] 26M 4.8B 224 HD2 83.3
DeiT-S [60] 22M 4.6B 224 HN2 79.8
XCiT-S12/16 [2] 26M 4.8B 224 HD2 82.0
DeiT-S→ SimA 22M 4.6B 224 0 79.8
XCiT-S12/16→ SimA 26M 4.8B 224 0 82.1

Multi-Head/GELU DeiT-S→ SimA 22M 4.6B 224 0 79.8
Multi-Head → Single-Head DeiT-S→ SimA 22M 4.6B 224 0 79.4
GELU → ReLU DeiT-S→ SimA 22M 4.6B 224 0 79.6

ing [2, 61], we train our models with images of resolution
224 and evaluate it using images with a crop ratio of 1.0.
Training DeiT-S or XCiT-S12/16 with 8 RTX 6000 GPUs
takes approximately 100 hours.

We use SimA along with the following three transformer
architectures to show its generalization:

- DeiT: [60] is a well-known transformer architecture
based on ViT [15]. Since we do not use the distillation token
introduced in DeiT, in our setting, DeiT is very similar to
ViT except that it converged faster due to better optimization
parameters. We use DeiT-S which has the following settings:
patch size= 16, embedding dimensions= 384, number of
heads= 6 and layers= 12. Self-attention in DeiT has com-
plexity of O(DN2) which is quadratic on the number of
tokens N .

- XCiT: [2] is a state-of-the-art vision transformer archi-
tecture with a linear attention. XCiT has 2 major differences
compared to DeiT: (1) XCiT has Local Patch Interaction
(LPI) in each block, which consists of one depth-wise 3×3
convolution followed by Batch Normalization, GELU and

another depth-wise 3×3 convolution. (2) XCiT has separate
class attention layers similar to [61]. The CLS token is added
at the end of the initial self-attention stage and class attention
layers are used to aggregate information from image tokens
to the class token. This modification adds extra parameters
and computation to the model.

We replace SimA in three variant of XCiT: XCiT-S12/16,
XCiT-T12/8 and XCiT-T24/16. XCiT-S12/16 has a patch
size of 16, embedding dimension of 384, 8 heads, 12 layers,
and 2 class attention layers. XCiT-T12/8 is similar to XCiT-
S12/16 with a patch size of 8, embedding dimension of 192,
and 4 heads. XCiT-T24/16 is similar to XCiT-T12/8 with
patch size of 16.

- CvT: We apply SimA to CvT [68], which is a SOTA hy-
brid convolution/transformer architecture. CvT has 3 stages.
Each stage has a Convolution Token Embedding layer fol-
lowed by transformer blocks. We use CvT-13 in our experi-
ments which 13 blocks in total.

Results on ImageNet: We replace MSA and XCA blocks
with our SimA block in DeiT, CvT and XCiT respectively,

2611

Table 2. Linear Attention Comparison: We compare SimA with
previous linear attention methods introduced in NLP. We report
ImageNet Top-1 validation accuracy. Note that the focus of these
methods is to have linear attention with respect to the number of
tokens while the main focus of SimA is to remove exp(.) opera-
tion. * CosFormer is originally in NLP. We ran multiple versions
of CosFormer with cosine re-weighting (multiple learning rates
and weight decays) for the vision task, however, none of them con-
verged. Moreover, CosFormer with cosine re-weighting requires
4× more FLOPs compared to SimA in multiplying Q, K, and V
matrices. More details are in the appendix. Execution time of SimA
and SOFT is shown in Fig. 1 and Table 3.

Model params FLOPs Softmax/#exp Top1-Acc

Transformer [62] 13M 3.9B HN2 79.1
Linformer [64] 13M 1.9B HN 78.2
Performer [11] 13M 2.2B ND 76.1
Nyströmformer [70] 13M 2.0B HN 78.6
SOFT [44] 13M 1.9B HN2 79.3
XCiT-T20/16→ SimA 12M 1.9B 0 79.2

XCiT w/ Efficient Attention [54] 22M 4.8B ND 80.9
CosFormer w/o re-weighting * [51] 22M 4.8B 0 76.1
XCiT-S12/16→ SimA 22M 4.8B 0 82.1

Table 3. Execution Time Comparison: We compare execution
time of different attention blocks on 3 different edge devices. SimA
has faster execution time in edge devices due to removing exp(.)
operation. To measure the effect of exp(.) only, we fix the order
of (QKTV) product so that all models have the same dot product
complexity. We set N > D for top table and N < D for the
bottom table. These results are also shown in Figure 1.

D = 64 N = 256 H = 8 N > D

Model Execution Time (ms)

NVIDIA nano Apple M1 Raspberry Pi 4

Vanilla Attention (DeiT) 177.4 35.8 180.6
ELU [33] 144.5 26.2 160.0
SimA 63.6 20.4 51.9

D = 256 N = 64 H = 8 N < D

Model Execution Time (ms)

NVIDIA nano Apple M1 Raspberry Pi 4

SOFT [44] 145.9 36.0 177.4
XCA [54] 144.4 36.1 178.7
ELU [33] 105.2 26.4 160.1
SimA 58.0 20.5 53.2

and train our models on ImageNet. Note that we train our
models from scratch without distillation from a teacher. Re-
sults are in Table 1. In XCiT models, we get compara-
ble results when replacing XCA block with SimA block.
Compared to DeiT-S, our attention block performs on-par
with DeiT-S. Moreover, our method with no Softmax layer,
achieves comparable accuracy (0.2 point lower) compared to
CvT-13. This suggests that one can replace attention block
with SimA in these standard SOTA transformers without de-
grading their performance. Since SimA is exp(.) free, it has
the advantage over regular attention architectures in terms
of efficiency and simplicity.

Comparison to Linear Attention: We compare SimA

with other Linear Attention methods in NLP literature in
Table 2. We train all methods with ImageNet-1K training
set and report Top-1 accuracy on ImageNet-1K validation
set. SimA has better or on-par accuracy compared to other
methods. Additionally, SimA is exp(.) free which is the
main goal of this work.

4.2. Transfer To Object Detection and Semantic
Segmentation

As shown in Figure 1, Table 3, and [56], softmax oper-
ation represents a large fraction of runtime in vision trans-
formers, especially when the image resolution is high. In
object detection and segmentation tasks we usually forward
high resolution images. We demonstrate the transferability
of SimA to these dense prediction tasks by fine-tuning our
ImageNet pretrained model on them.

Dataset: We use MS-COCO [38] dataset for these tasks.
MS-COCO has 118K training images and 5K validation im-
ages with 80 categories. Images are annotated with bounding
boxes and semantic segmentation masks.

Implementation Details: We follow [2, 9, 41] for the
setup and implementation. We use our pretrained model as
the backbone of Mask RCNN [26]. Similar to [2], we use
FPN [37] to extract features from layers 4, 6, 8 and 12 of the
transformer. We use AdamW [43] optimizer with a learning
rate of 1e − 4 and weight decay 0.05. We train our model
for 36 epochs with batch size of 16 on 8 RTX2080Ti GPUs.
Training takes 36 hours.

Results on MS-COCO: We compare our XCiT-S12/16
→ SimA model with other vision transformers and ResNet in
Table 4. We report the performance on the minival set. For a
fair comparison, we limit the comparison to all models which
are initialized with ImageNet1K pretrained backbones and
trained with the same training time budget (3x schedule) on
MS-COCO dataset. In comparison to other transformers, our
method gets on-par performance while it is free of Softmax
overhead on high resolution images or high capacity models
(refer to Fig. 1).

4.3. Self-Supervised Learning

To show the generalizability of SimA, we train our SimA
model on a pretext task for self-supervised learning (SSL).
We use the non-contrastive task called DINO [8] for SSL pre-
training. We train our model on ImageNet train set (1.2M)
without the use of ground-truth labels. DINO training is
relatively expensive since it requires forwarding multi-crop
augmentation through two models. Due to limited resources,
we train our model and the baselines for 100 epochs. To train
our XCiT-S12/16 → SimA model with DINO, we follow
the training configuration of XCiT-S12/16 from the official
repository of DINO [7]. Similar to DINO, we use AdamW
optimizer in PyTorch library with initial learning rate of
0.00025 with cosine scheduling. We use initial weight decay

2612

Table 4. Transfer to MS-COCO dataset: Models with * are pretrained with a teacher on ImageNet. Swin-T has more parameters and
Softmax overhead. XCiT-S12/8 has 4× more tokens. Our method is exp(.) free, thus it is more efficient for high resolution images and high
capacity models (Fig. 1). Execution time of SimA and XCA (XCiT) is shown in Fig. 1.

Detection Segmentation

Backbone params exp(.) APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

ResNet50 [27] 44.2M ✗ 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small [65] 44.1M ✓ 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small [76] 45.0M ✓ 43.4 64.9 47.0 39.6 62.1 42.4
Swin-T [41] 47.8M ✓ 46.0 68.1 50.3 41.6 65.1 44.9
XCiT-S12/16* 44.3M ✓ 45.3 67.0 49.5 40.8 64.0 43.8
XCiT-S12/8* 43.1M ✓ 47.0 68.9 51.7 42.3 66.0 45.4
XCiT-S12/16 44.3M ✓ 45.0 66.7 48.9 40.5 63.6 43.2
XCiT-S12/16→ SimA 44.3M ✗ 44.8 66.5 48.8 40.3 63.2 43.3

Table 5. Self-Supervised Learning: We train SimA attention block with DINO (SSL). Our method achieves performance comparable to
transformer models with Softmax and trained for 100 epochs. Note that methods with different SSL task and higher number of epochs are
not directly comparable. Execution time of SimA and XCA (XCiT) is shown in Fig. 1.

SSL Method Model params epochs exp(.) FLOPs Linear k-NN

ISD [57] ResNet50 25M 200 ✗ 3.9B 69.8 62.0
MoCo v2 [25] ResNet50 25M 200 ✗ 3.9B 69.9 -
MSF [35] ResNet50 25M 200 ✗ 3.9B 72.4 64.9
BYOL [20] ResNet50 25M 1000 ✗ 3.9B 74.3 66.9
MoBY [69] Swin-T 29M 300 ✓ 4.5B 75.0 –

DINO [8] ResNet-50 23M 300 ✗ 4.1B 74.5 65.6
DINO [8] ResMLP-S24 30M 300 ✗ 6.0B 72.8 69.4
DINO [8] ViT-S/16 22M 300 ✓ 4.6B 76.1 72.8
DINO [8] XCiT-S12/16 26M 300 ✓ 4.9B 77.8 76.0

DINO [8] ViT-S/16 22M 100 ✓ 4.6B 74.0 69.3
DINO [8] XCiT-S12/16 26M 100 ✓ 4.9B 75.8 71.6
DINO [8] XCiT-S12/16→ SimA 26M 100 ✗ 4.9B 75.5 71.2

of 0.04 and increase it to 0.4 with cosine scheduling. We
train for 100 epochs with minibatches of size 256. The
training takes approximately 100 hours on four RTX-3090
GPUs. We use similar settings for training our method and
the baseline (XCiT-S12/16).

Results of SSL training: Following [1, 8], we report
k-NN and Linear evaluation metrics for evaluating the SSL
models. For k-NN evaluation, we forward images of training
and validation set through the frozen backbone and extract
features. We report 20-NN on the validation set. For Linear
evaluation, we freeze the backbone and train a linear layer
on extracted features from the frozen backbone and report
Top-1 accuracy on the ImageNet validation set. We adopt a
similar approach to DINO [8] for extracting features from
XCiT architecture. We extract the classification tokens of
the last two class attention layers and global average pooling
of the last two regular attention layers. Each of those 4
vectors is of size 384. We concatenate them and train a linear
layer of size 4 × 384 to 1000 classes of ImageNet1K. We
use similar training settings as DINO to train a linear layer
for both our method and the baseline (XCiT-S12/16). We
train for 100 epochs with SGD optimizer and the following
settings: learning rate: 0.001 with cosine scheduling, batch

size: 1024, and weight decay: 0. Results are shown in
Table 5. Our exp(.) free method performs comparably with
the baselines with 100 epochs of training.

4.4. Single-head vs Multi-head Attention

In the regular attention block, if a channel in Q and/or K
has large values, that channel may dominate the dot product
QKT . We believe multi-head attention (MSA) mitigates this
issue to some degree by containing the dominant channel in
one head only so that the other heads can have reasonable
effect in the final attention. In SimA, by doing ℓ1 normal-
ization of each channel in Q and K across tokens, different
channels become more comparable in the dot product QKT ,
so multi-head attention may not have a large effect anymore.
To evaluate our hypothesis empirically, we train both DeiT-S
→ SimA and DeiT-S with single head attention only. Results
are in Table. 6. Interestingly, we show that with single-head
attention, our method gets comparable results (0.4 point
lower) while the accuracy of DeiT-S drops by 2.8 points.
This suggests that unlike the vanilla attention block, multi-
head attention is not critically important in SimA, which
leads to simplicity SimA even further.

2613

Table 6. Effect of Removing Multi-Head Attention: In single
head variation, our method degrades much less compared to DeiT
probably due to normalization of Q and K.

Model DeiT-S→ SimA DeiT-S
Attention Heads 6 (Multi-Head) 1 (Single) 6 (Multi-Head) 1 (Single)

ImageNet Top-1 acc. 79.8 79.4 (-0.4) 79.8 77.0 (-2.8)

4.5. Replacing GELU with ReLU
Similar to Softmax function, GELU activation function

also uses exp(.) operation, which is costly. We replace all
GELU activation functions in DeiT-S→ SimA with ReLU.
We observe that DeiT-S→ SimA with ReLU gets accuracy
of 79.6 which is only 0.2 points lower than DeiT-S→ SimA
with GELU activation function. Note that SimA with ReLU
does not use any exp(.) operation at the inference time,
leading to further efficiency of the model. Results are in
Table 1 (yellow rows).

4.6. Effect of ℓ1 Normalization
To see the effect of ℓ1 normalization, we train our model

without normalizing Q and K. We use XCiT-S12/16 →
SimA with the same hyperparameters as our main experi-
ment in Section 4.1. Note that without normalization, the
range of QKT can be from−∞ to +∞. None of our several
trials converged as the training becomes unstable and results
in a frequent NaN loss. Moreover, we replace ℓ1 with ℓ2
normalization, results in 2.9 points drop in accuracy (82.1%
vs 79.2%).

4.7. Visualization
Since in SimA, we multiply the dot product Q̂K̂T di-

rectly with V without any Softmax layer, the Q̂ and K̂ with
larger magnitute will have more effect in the output of the
block. Hence, we believe this magnitude can highlight the
important tokens or image regions. This can be seen as a
form of explanation or saliency map. First, we extract Q̂
and K̂ in the last layer of transformer (layer 12). Then, we
calculate the ℓ2-norm of Q̂ along the channel dimension to
get a single non-negative scalar for each token. We reshape
this N×1 vector to the image shape, up-sample it to original
image size, normalize it to range [0, 1], and overlay it on the
image as a heatmap. We repeat the same for K̂. As shown
qualitatively in Fig. 3, such a visualization highlights the
important regions of the image.

5. Conclusion
We introduced SimA, a simple attention block that does

not involve exp(.) operation, to reduce the computational
cost of transformers particularly at edge devices. SimA
performs normalization on key and query matrices before
multiplying them, enabling dynamically switching between
O(DN2) or O(D2N) depending on the number of tokens

Figure 3. Our method (SimA): Standard attention passes QKT

through Softmax before multiplying with V . However, we multiply
Q̂K̂T directly with V . Hence, in our case, the magnitude of Q̂K̂T

should identify which tokens are more important (their information
flows to the next layers). We show that this magnitude is correlated
with the importance of tokens. We extract Q̂ and K̂ from layer
12 of transformer. We get ℓ2-norm of each token for Q̂ and K̂,
normalize it to range [0,1] and overlay it as a heatmap on the image.
We show the same visualization for DeiT in the supplementary for
completeness.We provide more examples in the appendix.

(e.g., image resolution). Our extensive experiments show
that while reducing the cost of inference, SimA achieves
on-par results compared to SOTA methods on various bench-
marks including ImageNet classification, MS-COCO object
detection and segmentation, and self-supervised learning.
Moreover, a single-head variation of SimA, which is even
simpler, achieves results on-par with SOTA multi-head
attention models. We believe SimA can encourage research
in this direction leading to easier adoption of transformers
on edge devices with limited resources.

Acknowledgments: Acknowledgement: This work is
partially funded by NSF grant 1845216 and DARPA Con-
tract No. HR00112190135. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies. Moreover, we would like to
thank K L Navaneet, Vipin Pillai, Kossar Pourahmadi for the
valuable discussions and proof-reading the paper.

2614

References
[1] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed

Pirsiavash. Compress: Self-supervised learning by compress-
ing representations. Advances in Neural Information Process-
ing Systems, 33:12980–12992, 2020. 7

[2] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bo-
janowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Na-
talia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit:
Cross-covariance image transformers. Advances in neural
information processing systems, 34, 2021. 2, 4, 5, 6

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
2

[4] Kunal Banerjee, Rishi Raj Gupta, Karthik Vyas, Biswajit
Mishra, et al. Exploring alternatives to softmax function.
arXiv preprint arXiv:2011.11538, 2020. 4

[5] Jason Ross Brown, Yiren Zhao, Ilia Shumailov, and Robert D
Mullins. Dartformer: Finding the best type of attention. arXiv
preprint arXiv:2210.00641, 2022. 4

[6] Han Cai, Chuang Gan, and Song Han. Efficientvit: Enhanced
linear attention for high-resolution low-computation visual
recognition. arXiv preprint arXiv:2205.14756, 2022. 4

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Py-
torch implementation of dino. https://github.com/
facebookresearch/dino. 6

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 9650–9660, 2021. 6, 7

[9] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox
and benchmark. arXiv preprint arXiv:1906.07155, 2019. 6

[10] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 4

[11] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 4, 6

[12] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing
Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins:
Revisiting the design of spatial attention in vision transform-
ers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 9355–9366.
Curran Associates, Inc., 2021. 5

[13] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 702–703, 2020. 4, 5

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 4

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 4, 5

[16] Gaoming Du, Chao Tian, Zhenmin Li, Duoli Zhang, Yong-
sheng Yin, and Yiming Ouyang. Efficient softmax hardware
architecture for deep neural networks. In Proceedings of the
2019 on Great Lakes Symposium on VLSI, pages 75–80, 2019.
4

[17] Mohsen Fayyaz, Soroush Abbasi Kouhpayegani,
Farnoush Rezaei Jafari, Eric Sommerlade, Hamid Reza Vaezi
Joze, Hamed Pirsiavash, and Juergen Gall. Ats: Adaptive
token sampling for efficient vision transformers. arXiv
preprint arXiv:2111.15667, 2021. 4

[18] Yue Gao, Weiqiang Liu, and Fabrizio Lombardi. Design and
implementation of an approximate softmax layer for deep
neural networks. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2020. 4

[19] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing
for faster inference. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12259–12269,
2021. 4

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020. 7

[21] Jianyuan Guo, Yehui Tang, Kai Han, Xinghao Chen, Han
Wu, Chao Xu, Chang Xu, and Yunhe Wang. Hire-mlp:
Vision mlp via hierarchical rearrangement. arXiv preprint
arXiv:2108.13341, 2021. 5

[22] Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min
Hu. Beyond self-attention: External attention using two linear
layers for visual tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022. 1

[23] Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H Oh,
Yeonhong Park, Yoonho Song, Jung-Hun Park, Sanghee Lee,
Kyoung Park, Jae W Lee, et al. Aˆ 3: Accelerating atten-
tion mechanisms in neural networks with approximation. In
2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 328–341. IEEE, 2020.
4

[24] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. arXiv preprint arXiv:2111.06377, 2021. 1

[25] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-

2615

ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 7

[26] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 6

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4, 5, 7

[28] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 2

[29] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim
Salimans. Axial attention in multidimensional transformers.
arXiv preprint arXiv:1912.12180, 2019. 4

[30] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[31] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European conference on computer vision, pages 646–661.
Springer, 2016. 4

[32] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and
Torsten Hoefler. Data movement is all you need: A case
study on optimizing transformers. Proceedings of Machine
Learning and Systems, 3:711–732, 2021. 1

[33] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Confer-
ence on Machine Learning, pages 5156–5165. PMLR, 2020.
4, 6

[34] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and
Chinmay Hegde. On the computational complexity of self-
attention. arXiv preprint arXiv:2209.04881, 2022. 4

[35] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed
Pirsiavash. Mean shift for self-supervised learning. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 10326–10335, 2021. 7

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 2012.
4

[37] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2117–2125, 2017. 6

[38] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[39] Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran Liu,
and Jingbo Zhu. Towards fully 8-bit integer inference for the
transformer model. arXiv preprint arXiv:2009.08034, 2020.
4

[40] Jing Liu, Zizheng Pan, Haoyu He, Jianfei Cai, and Bohan
Zhuang. Ecoformer: Energy-saving attention with linear
complexity. arXiv preprint arXiv:2209.09004, 2022. 4

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 4, 5, 6, 7

[42] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 5

[43] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4, 6

[44] Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu,
Weiguo Gao, Chunjing Xu, Tao Xiang, and Li Zhang. Soft:
Softmax-free transformer with linear complexity. Advances
in Neural Information Processing Systems, 34, 2021. 4, 5, 6

[45] Wenhao Lu, Jian Jiao, and Ruofei Zhang. Twinbert: Distill-
ing knowledge to twin-structured bert models for efficient
retrieval. arXiv preprint arXiv:2002.06275, 2020. 4

[46] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish
Prabhu, Mohammad Rastegari, and Oncel Tuzel. Token pool-
ing in vision transformers. arXiv preprint arXiv:2110.03860,
2021. 4

[47] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former, 2021. 4

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
4

[49] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz,
Noah A Smith, and Lingpeng Kong. Random feature attention.
arXiv preprint arXiv:2103.02143, 2021. 4

[50] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh.
Fully quantized transformer for machine translation. arXiv
preprint arXiv:1910.10485, 2019. 4

[51] Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei,
Baohong Lv, Junjie Yan, Lingpeng Kong, and Yiran Zhong.
cosformer: Rethinking softmax in attention. arXiv preprint
arXiv:2202.08791, 2022. 4, 6

[52] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollár. Designing network design spaces.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10428–10436, 2020. 5

[53] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision trans-
formers with dynamic token sparsification. Advances in neu-
ral information processing systems, 34, 2021. 4

[54] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and
Hongsheng Li. Efficient attention: Attention with linear com-
plexities. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 3531–3539, 2021.
2, 4, 6

2616

[55] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 4

[56] Jacob R Stevens, Rangharajan Venkatesan, Steve Dai, Brucek
Khailany, and Anand Raghunathan. Softermax: Hardware/-
software co-design of an efficient softmax for transformers. In
2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 469–474. IEEE, 2021. 1, 4, 6

[57] Ajinkya Tejankar, Soroush Abbasi Koohpayegani, Vipin Pil-
lai, Paolo Favaro, and Hamed Pirsiavash. Isd: Self-supervised
learning by iterative similarity distillation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9609–9618, October 2021. 7

[58] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-
mixer: An all-mlp architecture for vision. Advances in Neural
Information Processing Systems, 34, 2021. 1, 4

[59] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu
Cord, Alaaeldin El-Nouby, Edouard Grave, Gautier Izac-
ard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al.
Resmlp: Feedforward networks for image classification with
data-efficient training. arXiv preprint arXiv:2105.03404,
2021. 4, 5

[60] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 4, 5

[61] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with
image transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 32–42, 2021.
5

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 4, 6

[63] Ihor Vasyltsov and Wooseok Chang. Efficient softmax approx-
imation for deep neural networks with attention mechanism.
arXiv preprint arXiv:2111.10770, 2021. 1

[64] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 4, 6

[65] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense predic-
tion without convolutions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 568–
578, 2021. 5, 7

[66] Ross Wightman. Pytorch image models, 2019. 4
[67] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang

Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions
to vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
22–31, October 2021. 4

[68] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang
Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions

to vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22–31,
2021. 5

[69] Zhenda Xie, Yutong Lin, Zhuliang Yao, Zheng Zhang, Qi Dai,
Yue Cao, and Han Hu. Self-supervised learning with swin
transformers. arXiv preprint arXiv:2105.04553, 2021. 7

[70] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh. Nys-
trömformer: A nyström-based algorithm for approximating
self-attention. 2021. 4, 6

[71] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10819–10829, 2022. 4

[72] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zi-Hang Jiang, Francis E.H. Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from
scratch on imagenet. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
558–567, October 2021. 5

[73] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 4

[74] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. Q8bert: Quantized 8bit bert. In 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cogni-
tive Computing-NeurIPS Edition (EMC2-NIPS), pages 36–39.
IEEE, 2019. 4

[75] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017. 4

[76] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu
Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-
former: A new vision transformer for high-resolution image
encoding. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 2998–3008,
October 2021. 7

[77] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan
Zhou. Mixing and shifting: Exploiting global and local de-
pendencies in vision mlps. arXiv preprint arXiv:2202.06510,
2022. 5

[78] Danyang Zhu, Siyuan Lu, Meiqi Wang, Jun Lin, and
Zhongfeng Wang. Efficient precision-adjustable architecture
for softmax function in deep learning. IEEE Transactions on
Circuits and Systems II: Express Briefs, 67(12):3382–3386,
2020. 4

2617

