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Abstract

We present a fresh perspective on shot noise corrupted
images and noise removal. By viewing image formation as
the sequential accumulation of photons on a detector grid,
we show that a network trained to predict where the next
photon could arrive is in fact solving the minimum mean
square error (MMSE) denoising task. This new perspective
allows us to make three contributions: i. We present a new
strategy for self-supervised denoising, ii. We present a new
method for sampling from the posterior of possible solu-
tions by iteratively sampling and adding small numbers of
photons to the image. iii. We derive a full generative model
by starting this process from an empty canvas. We call this
approach generative accumulation of photons (GAP). We
evaluate our method quantitatively and qualitatively on 4
new fluorescence microscopy datasets, which will be made
available to the community. We find that it outperforms its
baselines or performs on-par.

1. Introduction
Scientific imaging techniques such as fluorescence mi-

croscopy have to limit the amount of light used to avoid
damaging or destroying their sample [13]. As a result, the
recorded images inevitably suffer from a certain degree of
noise which has to be addressed in the downstream analy-
sis. Images can be subject to a variety of different types [18]
of noise which can be alleviated by various technical means
(e.g. [7]). However, there is a type of noise which is physi-
cally inevitable for most imaging setups in low-light condi-
tions. It is referred to as Poisson shot noise.

Shot noise is the result of the particle nature of light.
Even high-end scientific detectors and cameras that can ac-
curately count the precise number of photons hitting each
pixel cannot record a noise-free image. For a given light

intensity the number of photons arriving at the detector is
itself inherently random and follows a Poisson distribution.
The effect is especially severe in microscopy applications,
operating in low-light conditions.

The last decade has seen a number of deep learning-
based computational methods designed to reduce noise after
images have been recorded in order to allow for improved
analysis of the data [18]. One of the first proposed methods,
known as content-aware image restoration (CARE) [36], is
based on training convolutional neural networks (CNNs) to
learn a mapping from noisy images to clean images. Unfor-
tunately, the method requires pairs of corresponding noisy
and clean images during training, which can be hard to ac-
quire in practice, rendering it inapplicable in many situa-
tions. However, other works have expanded on this line of
research, enabling training with noisy image pairs [20] and
even with unpaired noisy images, e.g. [17, 3, 5, 29].

While achieving impressive results, these supervised and
self-supervised methods share a common shortcoming: De-
noising is inherently an ill-posed problem and given an im-
age corrupted by a substantial amount of noise, it is not gen-
erally possible to recover the true underlying clean image.
In fact, there is a posterior distribution of possible solutions
that all might have led to the original noisy observation.
When we view denoising as a regression problem like [36]
aiming to learn a mapping to the clean image, we are in fact
learning a mapping to a compromise between possible so-
lutions, which may itself look different (often being more
blurry) from real clean images.

This problem has been explored by Prakash et al. [28,
27], who proposed the idea of diversity denoising based on
a variational autoencoder [16] (VAE). Instead of producing
a single solution for each noisy image, Prakashet al. are able
to sample possible solutions from an approximate posterior
distribution of clean images.
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Figure 1. Generative accumulation of photons (GAP): Starting with an empty canvas, our method repeatedly predicts a map of proba-
bilities of where the next photon might arrive and uses it to randomly place photons. We show the process for the Neuro-PC and Conv-PC
datasets. Photon images have been down-sampled for better visibility.

Here, we take an entirely new perspective, focusing on
shot noise and the denoising of shot noise corrupted im-
ages. Instead of viewing shot noise as a secondary corrup-
tion process applied to a clean image, we understand image
formation as the sequential accumulation of photons and see
any measured shot noise-affected image as a result of this
process. We call this approach generative accumulation of
photons (GAP).

We train a CNN to take a shot noise-affected image as
input and predict a probability distribution over where the
next photon might arrive. We show that, for normalized
images, predicting the next photon position is identical to
denoising the image.

Based on this insight, we derive a novel method of train-
ing a self-supervised model for image denoising. Addition-
ally, by understanding image generation as the accumula-
tion of photons, we describe a new method for diversity de-
noising: we iteratively predict the distribution of the next
photon position and randomly sample photons accordingly.
Finally, by starting with an empty photon-free canvas, we
are able to derive a full generative image model. The pro-
cess is illustrated in Figures 1 and 2.

We introduce four new shot noise-corrupted microscopy
datasets for evaluation that will be made available to the
community. We evaluate our method quantitatively and
qualitatively and find that it yields competitive results.

2. Related Work
2.1. Supervised denoising

Supervised denoising methods usually train CNNs us-
ing pairs of noisy and clean images to learn a mapping be-
tween the two. A common choice for the loss function is
the mean square error (MSE) between the prediction and
clean ground truth. Considering that there is a distribution
of possible solutions, minimising the MSE loss corresponds
to finding the expected value. Unfortunately obtaining clean
ground truth data can be challenging or impossible for many
applications and so supervised methods are often not appli-
cable in the context of scientific imaging.

Lehtinen et al. introduced Noise2Noise [20], a partial so-

lution to this problem. They showed that it is possible to
replace the clean ground truth target with a second noisy
version which might be more readily available. A network
trained with this type of data will still find the same MMSE
solution. While this presented a big step forward with re-
spect to applicability, Noise2Noise still requires training
pairs, which have to be collected for this purpose.

2.2. Self-supervised blind-spot denoising

Self-supervised blind-spot methods [17, 3, 12] suggest a
training strategy that can do without paired training data,
i.e. allowing training directly on the data that should be
denoised, while still obtaining the same MMSE solution.
The main idea is to block out individual pixels in order to
use them as noisy targets (similar to Noise2Noise). These
strategies rely on the assumption that imaging noise is con-
ditionally pixel-independent given the underlying clean sig-
nal, making it not possible to predict the noise in a pixel
from its surroundings. The downside of this approach is
that, when making a prediction for a pixel, the network can-
not make use of the pixel value itself, thus it is not making
optimal use of the available information.

Our photon-based self-supervised denoising strategy is
related to the blind-spot idea in that it removes part of the
input image to use it as the target. However, instead of re-
moving pixels, we are only removing individual photons,
which means we are not facing the same problem of disre-
garded information.

2.3. VAE-based denoising

Another approach to image denoising has been sug-
gested in [28]. The core idea is to use a variational au-
toencoder to describe the distribution of noisy images. By
including a statistical model of the imaging noise as part of
the decoder, the method allows us to: i. sample from an ap-
proximate posterior distribution of possible clean images,
and ii. to sample clean images from scratch, functioning as
a full generative model.

An extended method with a more powerful network ar-
chitecture was presented in [27] under the name HDN. We

1529



see this method as our main competitor as it can be trained
from unpaired noisy data and, similarly to our method, can
function as a generative model.

Unlike GAP which produces an MMSE denoising result
in a single step, HDN produces MMSE results by repeated
sampling and averaging from the posterior distribution.

2.4. Generative image models

Generative image models aim to describe a probability
distribution over images, a highly challenging task, due to:
i. the high dimensionality of the random variable (the num-
ber of pixels) and ii. due to the complex higher-order cor-
relations between pixel values at different locations. As
a result of ii. the distribution cannot easily be factorised
into lower order terms and attempts to factorise using meth-
ods such as Markov random fields (MRFs) [21] have led to
overly simplistic results that do not realistically describe the
image distribution.

In recent years, a number of approaches to this prob-
lem have been highly successful. Latent variable mod-
els, such as generative adversarial networks (GANs) [8]
and VAEs [16], or normalising flows [30], describe diffi-
cult distributions indirectly by starting with an easily mod-
elled high dimensional latent variable (usually following a
normal distribution) which is then deformed using convolu-
tional neural networks (CNNs) to describe the distributions
of interest.

A different approach to this is autoregressive modelling,
as proposed by Van Oord et al. [35]. By viewing image gen-
eration as a sequential process in which the pixels of an im-
age are thought to be generated one-at-a-time conditioned
on all previous pixels. In this setup, the whole model can be
formulated as a product of 1D conditional distributions over
each pixel’s intensity value. Our method can be viewed as
an autoregressive approach as we model image generation
as a sequential process. However, we sample images by
sequentially placing individual photons instead of drawing
pixel values.

Finally, the current state-of-the-art approach to image
modelling, denoising diffusion models [11], follows a simi-
lar approach by describing image generation as a sequence
of steps. The process is inspired by physics and considers
an image as a particle in a high dimensional space, diffus-
ing away from its original position according to some noise
distribution. To generate an image the denoising diffusion
approach reverses the diffusion process by applying a se-
quence of denoising steps.

Denoising diffusion models iteratively reverse a dif-
fusion process on clean images which typically involves
Gaussian noise. This noise can be applied directly to the
image [33, 11], or instead to a latent representation of the
image corresponding to a pre-existing autoencoder [31]. In
both cases, the diffusion noise distribution is unrelated to

the noise distribution of the training data. The diffusion
model learns to sample from the noisy training data distribu-
tion and so its samples contain this noise. In contrast, GAP
learns to sample from a noisy training data distribution and
to denoise this distribution. In addition, every iteration of
GAP results in a physically valid noisy image.

Recent works have explored generalisations of diffusion
models to broader families of corruption processes. Bansal
et al. [2] focused on deterministic image corruptions. Daras
et al. [6] focused on image corruptions which are linear
with respect to the clean image. GAP focuses on shot noise,
which is neither deterministic nor linear.

3. Method

CNN

+

Empty or Noisy
input

Possible next 
photon position

Photon image

Sampled photons

Output

Figure 2. Sampling algorithm: Starting with a noisy or empty
image, we repeatedly predicts a map of where the next photon
might arrive and use it to sample a small number of photons.

3.1. Image formation and shot noise

When we record an image, we usually project light
onto a digital sensor, such as a CMOS or a CCD chip.1

These chips contain many detector elements measuring the
amount of light arriving at different locations on the chip. In
our simplified model we assume that each of these detector
elements corresponds to one pixel of the final image. When
measuring the amount of light in each pixel, we treat light
as discrete particles called photons. In an ideal case with a
perfect detector, each pixel value in the final image corre-
sponds to the number of photons that fell onto the pixel.

The result of this process is a shot noise corrupted image
x = (x1, . . . , xn), where the photon count xi in each pixel
i, is independently drawn from a Poisson distribution

p(xi|si) =
sxi
i exp(−si)

xi!
, (1)

where si refers to the expected number of photons hitting
the pixel i during the exposure, i.e. to the light intensity

1Some imaging technologies, especially those capable of counting pho-
tons, work by scanning the sample and recording one pixel at a time. Since
this does not affect our model we will focus our explanation on camera-
based systems for simplicity.
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at the pixel – the quantity we were originally interested in
measuring. We will refer to the vector s = (s1, . . . , sn) as
the signal or as a clean image.

Since photons are hitting each pixel independently given
a signal, we can describe the probability of observing a
noisy image x given a signal s as

p(x|s) =
n∏

i=1

p(xi|si). (2)

We can now think of image formation as a two-step process.
We can imagine an image being created by first drawing a
clean image s from a distribution p(s) and then applying
shot noise by drawing photon counts from Eq. 2 to create
the shot noise-corrupted version.

3.2. The denoising task

Given noisy observation x, denoising is defined as find-
ing an estimate ŝ for the unknown clean image s.

However, considering the process of image generation
described above, finding the true signal may not be pos-
sible since many clean images can lead to the same noisy
observation. We can use Bayes’ theorem to write down a
posterior distribution over possible clean images for a given
noisy observation

p(s|x) ∝ p(x|s)p(s). (3)

Deep learning-based approaches (e.g. [36, 17]) often
view denoising as a regression problem and use CNNs to
try to directly learn a mapping from x to s. When such
methods are trained with a mean squared error (MSE) loss
function the optimal solution is the expectation

ŝ =

∫
p(s|x)s ds. (4)

We call this the minimum mean squared error (MMSE) so-
lution. This is a sensible way to find an estimate, but we
should be aware that it constitutes a compromise between
all possible s.

3.3. Image generation from photon sequences

Here, we take an alternative view on image generation.
Instead of thinking of our pixel values as being drawn from
a Poisson distribution, we will derive an equivalent descrip-
tion, viewing image generation as a sequential process. Re-
membering that our observation x is created by photons hit-
ting our detector, we can imagine that it was created by an
ordered sequence of photons i = (i1, . . . , iT ), where it is
the index of the pixel where photon t hit the detector. The
index t simply refers to the position of the photon in the se-
quence, with the first photon arriving at t = 1 and the last
one at t = T .
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Figure 3. Photon splitting: We propose a new way of generat-
ing training pairs that requires only noisy data. We split the noisy
image by randomly assigning photons to the input or target image.
The number of photons assigned to the input is drawn from a bi-
nomial distribution, with a parameter p controlling the noise level.
Remaining photons are assigned to the target.

Assuming a known sequence of photons, we compute the
resulting image by counting the number of photons hitting
each pixel as

xi =

T∑
t=1

1(it = i), (5)

where 1(it = i) is the indicator function.
Considering a given signal s and a known number T of

photons, we can compute the probability of a sequence i as

p(i|s, T ) =

{∏T
t=1 p(i = it|s) T = |i|

0 T ̸= |i|
, (6)

with the probability being 0 where the length |i| of the se-
quence does not match the number of photons T . Since the
photons hit the detector independently, their position in the
sequence does not matter and we can rewrite the probability
as a product over pixels as

p(i|s, T ) =

{∏n
i=1 p(i|s)xi T = |i|

0 T ̸= |i|
. (7)

where the probability p(i|s) for a photon to hit a partic-
ular pixel i, given the signal, should be proportional to the
light intensity at the pixel. Thus, we can compute it as the
normalised signal at that pixel

p(it = i|s) = si∑n
j=1 sj

. (8)

However, if the clean signal is unknown the distribution
will no longer factorise as easily as Eq. 7. Instead, we have
to compute the probability of a sequence as

p(i|T ) =

{∏T
t=1 p(i = it|i1, . . . , it−1, T ) T = |i|

0 T ̸= |i|
,

(9)
where the distribution p(i = it|i1, . . . , it−1, T ) of the next
possible photon location now depends on all previous pho-
tons. The order in which photons i1, . . . , it−1 arrived does
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not provide any information regarding the next photon po-
sition. By additionally considering that the next photon po-
sition does not depend on total photon number T nor on the
order of previous photons, we can write

p(i = it|i1, . . . , it−1, T ) = p(i = it|xt−1), (10)

where xt−1 is the observed image at step t− 1 according to
Eq. 5.

Equation 10 refers to the distribution over the next pos-
sible photon locations given a photon image xt−1. Before
taking a closer look at how it can be computed, we would
like to point out its significance. Together, Eq. 9 and Eq. 10
provide not only a way to calculate the probability of a se-
quence but also an iterative way to sample a sequence of
photons and therefore images xT . Furthermore, for large
T , we can expect xT to approach the clean image s, when
scaled correctly, so that Eq. 9 and Eq. 10 hold the key to the
generation of clean images as well.

3.4. Predicting the next photon location is MMSE
denoising for normalised signals

Let us now take a closer look at the distribution of pos-
sible next photon locations p(i = it|xt−1). We can rewrite
Eq. 10 by marginalising over the unknown signal and using
Eq. 8 as

p(i = it|xt−1) =

∫
p(s|xt−1)p(it = i|s,xt−1) ds (11)

=

∫
p(s|xt−1)

si∑n
j=1 sj

ds. (12)

We can see that the result is a weighted average of the
possible normalized signals. We should expect that the dis-
tribution will be high entropy for small t, i.e., when we have
not yet observed many photons, and that it should become
more concentrated and low entropy for large t. For very
large t, the distribution should approach a normalised ver-
sion of the signal (Eq. 8), because xt will give us more and
more information on the underlying signal.

Interestingly, Eq. 12 closely resembles Eq. 4. In
fact, if we were to consider only normalized signals with∑n

j=1 sj = 1 the two equations are identical, meaning that
the task of predicting the next photon location is identical
to denoising the image in an MMSE sense.

We will use a CNN to approximate fθ(xt−1) ≈ p(i =
it|xt−1), where θ are the network parameters. In sec-
tion 3.5, we will discuss how we can train the CNN to
achieve this task.

3.5. Learning to predict the next photon location

Based on the insight from section 3.4, we know that any
model trained for MMSE denoising can approximate the
distribution over the next photon location p(i = it|xt−1).

Starting with normalised clean training images sk, the tra-
ditional way of creating training pairs is to simulate the cor-
responding noisy version xk. We can then train a denoiser
network using a standard quadratic loss function, with xk

as input and sk as target.
However, in many cases clean data is unavailable. Con-

sidering the task of predicting the next photon location sug-
gests an alternative self-supervised approach by viewing the
problem as a classification task learning the categorical dis-
tribution of possible photon positions. By using a softmax
layer over pixels at the output of our network to ensure that
outputs sum to one, we can use the standard cross-entropy
loss. In principle, this would require only individual photon
positions as target for each training image, just as classi-
fiers are frequently trained using individual class labels for
each training example. We could easily create such training
pairs from unpaired noisy images xk by randomly remov-
ing a single photon and using it as target. The corresponding
cross entropy loss is

L(θ) = −
m∑

k=1

n∑
i=1

ln fi(x
k
inp; θ)x

k
tar,i, (13)

where m is the number of training images, xk
inp is the training

image with one photon randomly removed and xk
tar is a one-

hot representation of the removed photon position.
However, we require training data at multiple noise lev-

els to enable our network to predict an accurate approxi-
mation of p(i = it|xt−1) at different times t. To achieve
this, we use a control parameter p and split the image xk

into two parts, xk
inp and xk

tar. We can think of this process
as simulating a shorter exposure time during image acqui-
sition. Considering that xk was recorded with a certain ex-
posure time τ , we can imagine what would be the result if
we had instead recorded two images consecutively, with the
first image being exposed for pτ and the second being ex-
posed for (1− p)τ . Considering, that the underlying signal
remained fixed during the entire time, each of the photons
that make up xk would end up in the first image with prob-
ability p and in the second image with probability (1 − p).
To efficiently sample a split for parameter value 0 < p < 1,
we can determine each pixel value xk

inp,i by drawing from
binomial distribution using p and xk

i as the distributions pa-
rameters, for success probability and number of trials, re-
spectively. We can then compute the number photons in the
target image as xk

inp,i = xk
i − xk

inp,i. By changing the value
p we can control the number of photons that are on average
assigned to the input or target image respectively. The pro-
cess is illustrated in Figure 3. We use a randomly selected
p for each training patch to cover all levels of noise. We
show in the Supplementary material that the loss formula-
tion in Eq. 13 can still be used to maximise the likelihood
of the training data even when xk

tar is not a one-hot encoding
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of a single photon position but an image that contains an
arbitrary number photons. In practice, we use a normalized
variant that still maximizes likelihood of the data

L(θ) = −
m∑

k=1

1

n|xk
tar|

n∑
i=1

ln fi(x
k
inp; θ)x

k
tar,i, (14)

where |xk
tar| is the sum of photons in xk

tar.

3.6. Inference

MMSE denoising: To compute the MMSE denoising result
ŝ for a noisy input image x, we can simply apply our trained
CNN. As shown in section 3.4, the resulting probability
distribution corresponds to the MMSE estimate. However,
since our network uses a final softmax layer, the output can
only tell us about the normalized pixel intensities and not
about the absolute ones. To obtain a scaled version, that is
comparable to the results from N2V2 or HDN, we multiply
our output with the number of photons in the input image.
Diversity denoising: To obtain a sample from the poste-
rior of clean images, given a shot noise corrupted input, we
use the iterative procedure illustrated in Figure 2. Starting
with the original image, we repeatedly apply our network to
obtain the distribution for the next photon position and add
photons drawn from this distribution. Even though Eq. 9
contains a product over individual photons and we should in
principle draw only a single photon at a time, we find that
we can add multiple photons simultaneously while main-
taining acceptable quality. In practice, we add 10% of the
current photon count in each step, increase the total num-
ber of photons exponentially. A more detailed description
of photon sampling can be found in the Supplementary ma-
terials.
Image generation: To obtain samples from our generative
model, we follow the same process as diversity denoising,
but start with a blank image.

4. Experiments
4.1. Network architecture and training

Here, we will only give a brief overview of the archi-
tecture and training procedure used for the experiments on
microscopy data. A more detailed description can be found
in the Supplementary material.

For all our experiments on microscopy datasets, we use
a modified UNet [32] consisting of 6 levels, with a residual
block at each level and skip connections. We use 28 feature
channels in the first level and double the number of fea-
ture channels at each subsequent level. All our networks are
trained using the ADAM [15] optimizer for 100 epochs. We
use randomly cropped patches of 256×256 pixels, which
are augmented 8-fold, using random flips and transpose op-
erations. We use a batch size of 32.

4.2. Baselines

Supervised denoising uses the same network architecture
as our method except for the softmax layer at the end. It
is trained with the same hyperparameters but an MSE loss
function. We use 8-fold data augmentation.
N2V2 uses the implementation from et al. [12], with default
hyper parameters and the default 64×64 training patch size.
HDN uses the implementation from Prakash et al. [27],
with default hyper parameters and the default 64×64 train-
ing patch size. HDN requires a model of the imaging noise,
which is usually trained from data. Instead, because we
know our data contains pure shot noise, we added an an-
alytical Poisson noise model, accounting for shot noise.
HDN256 uses the implementation from Prakash et al. [27]
but with increased network complexity to allow for a fairer
comparison to our method. Specifically, we increase the
dimensionality of the latent variables from 32 feature chan-
nels to 70, and the number of deterministic filters in the hid-
den units from 64 to 140. The method uses 256×256 pixel
training patches. We use the same noise model as for HDN.

4.3. Photon counting datasets

While a number of denoising datasets are available in the
microscopy domain (e.g. [38, 9]), none of them show purely
shot noise corrupted data. To address this gap, we introduce
four new quantitative datasets, including High-SNR ground
truth data and one additional qualitative dataset that does
not contain ground truth.

We use two photon-counting datasets that will be made
available to the community. As a result, the recorded pixel
intensities give a very accurate approximation of the pho-
tons hitting each pixel during the exposure.
The Conv-PC dataset We image 5 fields of view (FOV)
repeatedly, 512 times at a resolution of 512 × 512 pixels.
Each of the individual frames contains a substantial amount
of shot noise. By summing the 512 images for each FOV,
we obtain the high-SNR version. Four FOVs were used as
training data for supervised denoising, the remaining one
was used as test data. This amounts to a total 512 × 4 =
2048 noisy images.
The Neuro-PC dataset contains images of mouse neurons.
The dataset is created from a z-stack of 2048× 2048 pixels
by using 2 × 2 binning in x- and y-direction direction and
4 times binning in the z-direction. We divided the images
into non-overlapping 320×320 regions and rejected empty
ones. To produce the corresponding low-SNR versions we
reduced the photon count to simulate a 1000-fold shorter ex-
posure by using a binomial distribution with p = 0.001. We
use every fourth frame as test set and keep the rest as train-
ing set for the supervised baseline. All in all, this amounts
to 133 images of size 320×320, 33 of which are test images.
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Figure 4. Qualitative denoising results: We show MMSE denoising results for all datasets and methods. All baselines except for the
supervised one have been trained purely on low-SNR input data.

4.4. Single molecule localisation microscopy

Single molecule localisation microscopy (SMLM) [4]
data is produced differently from photon counting data but
is subject to the same type of shot noise corruption. It uses
a large set of images of the same field of view to detect and
localise individual fluorescent emitters in each image. The
resulting emitter locations are then stored in a list and can
be binned in x and y to produce a 2D histogram/image con-
taining the number of emitters in each bin/pixel.

The NPC-SM dataset was derived from single molecule
localisation data published by Löschberger et al. in [23].
It shows the arrangement of the gp210 protein around the
nuclear pore complex (NPC).

The MT-SM dataset was derived from single molecule lo-
calisation data published by Jimenez et al. in [14]. It shows
the arranged cells labeled for microtubules. To create the
dataset, we binned the detected emitter locations using a
bin size of 28nm × 28nm to produce the high-SNR data.

4.5. Denoising performance on microscopy images

To evaluate the denoising performance of our method we
train one network for our method and one for each baseline
(N2V2, HDN, and HDN256). Since these methods do not
require clean data, we can train them on the full low-SNR
data, including the section used for testing. The supervised
baseline, which requires clean training data, is trained only
on the designated training section of the data. Quantitative
and qualitative results can be found in table 1 and Figure 4.

Our method is on-par or outperforms the baselines and
even the supervised approach. The reason for this might
be that, depending on the data split, supervised methods
might suffer from a mismatch between training and test dis-
tributions, which might be especially the case for the Conv-
PC dataset where test and training data consist of different
FOVs showing slightly different patterns.

Table 1. Average PSNRs in dB (higher is better). We show results
for microscopy datasets (top) and natural images [25] (bottom)
at different peak photon levels λpeak (higher values correspond to
less noise). Best results are bold. Best un/self-supervised results
are underlined.

Superv. N2V HDN HDN256 Ours
NPC-SM 39.09 39.00 39.01 38.73 39.17
MT-SM 36.59 36.17 34.32 36.43 36.64
Conv-PC 20.42 23.85 23.77 24.32 24.84
Neuro-PC 31.74 32.61 32.41 32.56 32.63

Supervised Un/self-supervised
λpeak DnCNN VBP PURE-LET IVBM3D Ours
1 21.56 22.2 20.49 21.33 22.12
2 22.67 23.25 21.35 22.18 23.15
4 23.76 24.38 22.27 23.23 24.21
8 24.88 25.6 23.29 24.36 25.37
20 26.63 27.39 24.88 26.06 27.01

4.6. Denoising performance on natural images

We additionally evaluate our method on the BSD68 [25]
dataset and compare our method to the strongest baselines
published in [22]. In Table 1, we show numbers for two su-
pervised methods: VBP [22] and DNCNN [37], as well as
two unsupervised methods IVBM3D [1], PURE-LET [24].
More baselines and training details can be found in the sup-
plementary material. Our method outperforms all baselines
that can cope without paired data (un/self-supervised).

4.7. Diversity denoising

In Figure 5, we qualitatively evaluate the performance
of our method for diversity denoising, that is, its ability to
sample diverse possible clean images from single noisy in-
put. To show the full range of possible results, we trained
our method on the high-SNR data of the Conv-PC dataset.

We generate six different shot noise corrupted versions
of an image at different noise levels/photon numbers and
use them as input for the sampling procedure described in
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Figure 2, to generate three possible clean versions for each
noisy input image. Noisy images with low photon counts
can be explained by a broad range of possible clean im-
ages and yield highly diverse results. Increasing the pho-
ton count of the input image, the differences in the sampled
clean images become more and more subtle.
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Figure 5. Diverse solutions for shot noise removal: GAP models
can be used to remove shot noise by taking the noisy image as
starting point and sequentially adding additional photons, until a
clean image is produced. Less noisy inputs lead to less diverse
predictions as more information about the clean image becomes
available. The last column depicts a zoomed in region indicated
by the dashed box. Arrows highlight differences in the samples.

Low SNR High SNROurs Low SNR High SNROursHDN256HDN256

Figure 6. Comparison of sample quality: We show randomly
selected generated samples for the Conv-PC and MT-SM datasets
compared to randomly cropped real high- and low-SNR patches.

4.8. Image generation performance

Finally, we evaluate our method for the use as a gen-
erative image model. We are especially interested in the
setting where only low-SNR data is available for training
and want to investigate how the distribution of the gener-
ated images will compare to the clean high-SNR data. We
train our model as well as the HDN and HDN256 base-
lines on the low-SNR data for each dataset. We generate
10000 images of 256×256 pixels using our method (Fig-
ure 2) and HDN256. We then compute the FID [10] score
against 10000 random crops of the augmented high SNR-
data. We compute the scores using the clean FID [26].

Table 2. We show the FID score [10] of 10k generated images
compared to 10k random crops of high-SNR data. Note that all
methods have been trained on low-SNR training data.

64x64 pixels 256x256 pixels
HDN Ours HDN256 Ours

NPC-SM 146.48 146.92 204.34 95.32
MT-SM 130.20 138.72 132.55 84.49
Conv-PC 200.70 134.20 163.28 86.82
Neuro-PC 111.23 115.06 77.90 64.16

For a fair comparison against the HDN baseline, trained
on 64×64 pixel patches, we compute the FID using 64×64
pixel patches against 64×64 crops of the high-SNR data. To
compare against our method, we use random 64×64 crops
from the 256×256 pixel patches generated by our method.
Quantitative results can be found in Table 2. Qualitative re-
sults for 256×256 patches are shown in Figure 6. We find
that our method visually outperforms HDN and HDN256
and consistently achieves lower FID scores for 256×256
patches. For the smaller 64×64 patches FID results are less
clear. We believe, that this is due to the fact, that larger
structures are not captured at this patch size, and that our
high-SNR data contains residual noise, which seems to be
better represented by HDN.

5. Discussion and Conclusion
We have introduced a new perspective on shot noise-

affected imaging, which we believe, might open the door
to new applications in areas of microscopy where only shot
noise-affected data is available. We also believe that our
method can be extended to be used in a conditional setting
for image-to-image translation, such as the prediction of flu-
orescence channels from bright-field images – a topic that
has received much attention in the recent years [19, 34].
While our method is currently limited to data purely af-
fected by shot noise, we hope that future work can extend
the approach to be applicable in a more general setting. Fi-
nally, we applied GAP to two natural image datasets (see
Supplementary material) with encouraging visual results,
suggesting that GAP might be applicable as a generative
model beyond microscopy.
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