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Abstract

Out-of-distribution (OOD) detection is essential to en-
sure the reliability and robustness of machine learning mod-
els in real-world applications. Post-hoc OOD detection
methods have gained significant attention due to the fact
that they offer the advantage of not requiring additional
re-training, which could degrade model performance and
increase training time. However, most existing post-hoc
methods rely only on the encoder output (features), log-
its, or the softmax probability, meaning they have no ac-
cess to information that might be lost in the feature extrac-
tion process. In this work, we address this limitation by
introducing Adaptive Temperature Scaling (ATS), a novel
approach that dynamically calculates a temperature value
based on activations of the intermediate layers. Fusing this
sample-specific adjustment with class-dependent logits, our
ATS captures additional statistical information before they
are lost in the feature extraction process, leading to a more
robust and powerful OOD detection method. We conduct
extensive experiments to demonstrate the efficacy of our ap-
proach. Notably, our method can be seamlessly combined
with SOTA post-hoc OOD detection methods that rely on the
logits, thereby enhancing their performance and improving
their robustness.

1. Introduction
Applying deep learning-based neural networks in real-

world settings, particularly in safety-critical domains, is of-
ten hindered by a significant challenge: the model must
handle object classes or scenarios that were not seen during
training. For example, an autonomous car could experience
a fire brigade operation or a sorting system for food could
be confronted with metal pieces that accidentally entered
the sorting stream, but also effects such as dirty lenses, sen-
sor failures, or adverse weather conditions can negatively
impact the model performance. These samples, known as
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Figure 1. Improvement of the average FPR95 metric (false posi-
tive rate at 95% recall) for seven post-hoc OOD detection meth-
ods (MSP [14], ODIN [23], MLS [12], Energy [24], ReAct [32],
DICE [34], and ASH-B [6]) with the proposed Adaptive Temper-
ature Scaling (ATS) for ResNet18 trained on CIFAR-100.

out-of-distribution (OOD) data, have the potential to cause
problems due to misclassification and erode the trustworthi-
ness of ML models. Consequently, the detection and han-
dling of OOD samples are crucial in extending the applica-
bility of ML models to real-world settings [13, 16, 25].

A simple and desirable solution would be if trained neu-
ral networks (NNs) for classification tasks would exhibit
high uncertainty (uniform activation over all classes, low
confidence) when presented with samples that do not be-
long to the training distribution. Unfortunately, this is typ-
ically not the case, even for inputs that are completely un-
recognizable [29] or irrelevant [26]. The inability of NNs to
reliably detect and handle OOD samples in this way means
that other methods for OOD detection must be developed,
which is akin to adding an additional binary ’OOD’ flag to
the network output.

OOD detection methods should ideally fulfill two prop-
erties: i) They should be post-hoc, meaning they do not
require re-training of the NN, which would incur addi-
tional training costs and could furthermore lead to perfor-
mance degradation of the model for in-distribution (ID)
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samples [45], ii) They should be sample-free, i.e., not re-
quire OOD samples to be calibrated, as a typical feature of
out-of-distribution samples is that they are not previously
known (otherwise they could have been considered during
the training process of the original network).

Current OOD detection methods fulfilling these two cri-
teria typically utilize the softmax probability [14], log-
its [12, 24], or features from the penultimate layer [35] to
compute a score that allows distinguishing between ID and
OOD samples. However, these methods essentially assume
that a single layer at the end of the neural network contains
sufficient information to effectively detect OOD samples,
despite their diverse range of patterns, characteristics, and
properties. More recent works have experimented with us-
ing one or multiple intermediate layers to derive a score for
OOD detection, e.g. [10, 31, 40, 48], omitting the final layer
of the network. This comes with the risk of overlooking
valuable cues, as only the logits of the network hold class-
specific information.

We address these limitations with Adaptive Temperature
Scaling (ATS), a method that leverages both class-agnostic
and class-dependent information from intermediate layers
and from the model output, respectively, to enhance OOD
detection capabilities. To this end, ATS extracts a sample-
specific temperature parameter based on the intermediate
layer activation enabling temperature scaling and effec-
tively combining information across the entire NN. ATS
overcomes the limitation of relying on i) a fixed tempera-
ture parameter derived from OOD data [9, 23], ii) a single
information source [12, 14, 24], or ii) intermediate-layer in-
formation without class-specific cues [10, 31, 40]. ATS can
be applied to all SOTA post-hoc methods that derive their
score for OOD detection from the model output to improve
their performance and make the method more robust, as can
be seen by the improved false positive rate in Fig. 1.

Our core contributions are threefold:

• We propose a novel OOD detection method utiliz-
ing intermediate feature maps and temperature scaling
to enhance state-of-the-art OOD detectors and make
them more robust.

• Our findings reveal the significance of features from
all network layers, demonstrating that the sensitivity
to OOD data varies across different layers and types of
OOD data.

• We conduct extensive evaluations on widely used
datasets (including 3 ID datasets and 11 OOD
datasets), verifying the benefits of our ATS approach.

2. Related Work
The field of out-of-distribution (OOD) detection has seen

a surge in research interest in recent years, leading to the

development of various methodologies, e.g., classification-
based [12,14,24,38], distance-based [22,30,35,36], density-
based [1, 22, 27, 51], and reconstruction-based methods [5,
46, 50]. For a detailed survey, we refer the interested reader
to [45]. In the following, we emphasize the major concepts
and notable contributions of post-hoc and sample-free OOD
detection methods.

Hendrycks et al. [14] introduced the maximum softmax
probability (MSP) as an initial baseline for OOD detection,
where the maximum softmax probability is used as the de-
tection score. Building upon this, ODIN [23] improved
the MSP score by incorporating fixed temperature scal-
ing and input perturbation. Furthermore, other approaches
have leveraged the logits for OOD detection. Hendrycks
et al. [12] introduced the maximum logit score (MLS) and
KL-Matching, utilizing the minimum KL-divergence be-
tween the softmax output and the mean class-conditional
distribution as a score to distinguish between ID and OOD
samples. On the other hand, Liu et al. [24] introduced the
energy score, calculated based on the logits, to effectively
identify OOD samples. ReAct [32] showed that the acti-
vation pattern of ID and OOD samples in the penultimate
layer differs and improved the energy score by activation
clipping. DICE [34] and ASH [6] further improved the en-
ergy score by weight and activation sparsification, respec-
tively. KNN [35] analyses the nearest-neighbor distance
in the embedding space (penultimate layer) for OOD de-
tection. ViM [39] combines information from the feature
space and the logits to preserve class-agnostic and class-
dependent features, respectively. All these OOD detection
methods utilize either the penultimate layer, the model out-
put, or both to calculate their OOD score and thus neglect
information from shallow layers.

In order to improve the robustness of OOD detection to
the diverse patterns, features, and properties of OOD sam-
ples, recent research has explored the utilization of inter-
mediate layers. Two approaches have emerged: (i) selecting
the optimal layer [48] and (ii) aggregating information from
multiple layers [7, 22, 31, 40].

Yu et al. [48] proposed a method for selecting the opti-
mal layer for OOD detection based on the ID dataset and
deriving the OOD score from that layer. The OOD score is
based on the average L2-norm of the layer activation, and
the optimal layer is selected based on the ratio of ID and
synthetic OOD data. Methods such as [7] use feature maps
from intermediate layers as input for an auxiliary OOD clas-
sifier. The usage of an auxiliary model implies that train-
ing on OOD or synthetic OOD data is required. Methods
that utilize multiple intermediate layers typically calculate
scores for each layer and aggregate the layer-specific scores
to distinguish between ID and OOD samples [10, 22, 31].
Methods such as GRAM [31] and MDS [22] utilize the
Gram matrix and the Mahalanobis distance from class cen-
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Figure 2. Overview of our Adaptive Temperature Scaling (ATS) method: At test-time (inference), ATS utilizes a per-sample specific
temperature derived from the intermediate layer activation to scale the logits. The per-sample temperature uses the empirical cumulative
distribution function (eCDF), which is precomputed on the training set in the calibration phase. ATS can be seamlessly combined with
various OOD detection methods that leverage their OOD score from the logits, effectively enhancing the distinguishability between in-
distribution (ID) and out-of-distribution (OOD) samples.

troids to obtain a per-layer score, respectively, to handle
OOD samples. Haroush [10] formulated the OOD detec-
tion as statistical hypothesis testing considering intermedi-
ate layers. One different approach is HDFF [40], which uses
techniques from hyperdimensional computing to derive a
score for OOD detection. All these approaches derive their
scores from intermediate layer activations only, not consid-
ering the class-dependent logits.

In contrast, our approach distinguishes itself by leverag-
ing both class-agnostic features from multiple intermediate
layers (shallow to deep) and class-dependent information
from the model output.

3. ATS: Adaptive Temperature Scaling

Our approach for OOD detection, Adaptive Temperature
Scaling (ATS), is outlined in Figure 2. The core idea is
to perform temperature scaling of the logits (Sec. 3.1) us-
ing a sample-specific temperature derived from the inter-
mediate layer activations (Sec. 3.2). The temperature ex-
traction step is designed to return low temperatures for in-
distribution samples while returning high temperatures for
out-of-distribution samples. After that, any scoring function
that is based on the model output can be used to distinguish
between in-distribution (ID) and out-of-distribution (OOD)
samples (Sec. 3.3).

Definitions & Notations. We consider OOD detection for
an image classification model. Let X be the input space
(typically, X = RC×H×W ) and Y = {class1, ..., classK}
be the output space of a supervised classification problem
and let furthermore XID ⊂ X be the space of in-distribution
samples (the space of OOD samples is the complement
of the ID subspace, XOOD = X ′

ID). We have a deep
neural network, denoted as f : X −→ R|Y|, which has
been trained in a supervised manner on the training dataset
Din = {(xi, yi)}N

i=1. The samples in Din are drawn from the
joint data space XID × Y .

Problem Statement. Ideally, a deep NN should know
what it does not know when it is deployed in the real world,
such that it is able to warn if a given sample is outside the
distribution it was trained on, on top of correctly classifying
ID samples. Consequently, when deployed, the model’s ob-
jective is twofold: i) accurately classifying ID samples and
ii) correctly identifying OOD samples. The OOD detection
is a binary classification problem with a scoring function
that describes how likely a given sample x is from the ID
space, x ∈ XID. The main objective in OOD detection re-
search is to develop a scoring function that effectively dis-
tinguishes between ID and OOD samples.
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3.1. Temperature Scaling

Typically, confidence values for the different classes are
calculated using the softmax probability, where the softmax
Si(x) is defined as

Si(x) =
exp(fi(x))∑K

k=1 exp(fk(x))
. (1)

Temperature scaling scales the logits before applying the
softmax by 1/T , such that

Si(x, T ) =
exp(fi(x)/T )∑K

k=1 exp(fk(x)/T )
, (2)

where T is the temperature parameter. Prior works have
established temperature scaling for knowledge distilla-
tion [17], confidence calibration [9], and also OOD detec-
tion [23]. ODIN [23] utilized a fixed temperature derived
from an OOD validation dataset in combination with in-
put perturbation to improve OOD detection. However, this
fixed scaling does not generalize well across different OOD
data sources, considering their diverse characteristics.

3.2. Adaptive Temperature Scaling

Our key concept is to calculate a sample-specific tem-
perature. A temperature that adapts to the input sample by
utilizing information from multiple intermediate layers im-
proves the robustness of a neural network. This concept
is based on the idea that intermediate layer activations can
be a good indicator for OOD detection and should thus be
able to outperform a pre-computed, fixed temperature. It
should also generalize well because it is able to dynami-
cally adapt to new (previously unseen) types or examples
of OOD data. We denote the activation response of the l-th
layer of the classification model f for a given input x by
zl ∈ RCl×Hl×Wl , where Cl, Hl, and Wl refer to the num-
ber of channels, height, and width, respectively. The mean
layer activation of a given feature map zl is calculated as

µl(x) =
1

ClHlWl

Cl∑
c

Hl∑
h

Wl∑
w

max(zl(c, h, w), 0), (3)

where zl(c, h,w) is the c-th, h-th, w-th element of the given
feature map. In other words, µl is the mean over all values,
ignoring negative values, and represents the mean activation
of the l-th layer after ReLU activation.

We then estimate how likely it is that a mean layer acti-
vation µl(x) is drawn from the same distribution as the cor-
responding mean activation from the training dataset. To do
so, we pre-calculate the empirical cumulative distribution
function (eCDF) from the in-distribution training dataset
Din as

F̂l,Din(τ) =
1

N

∑
xi∈Din

1µl(xi)≤τ , (4)

where 1 is the indicator function. Pre-computing the eCDF
is done in an initial, post-training calibration phase, as illus-
trated in Figure 2.

During testing, we apply this eCDF to calculate the p-
value pl from the mean layer activation µl(x) of the given
sample x by:

pl(x) = 2min
(
F̂l,Din(µl(x)), 1− F̂l,Din(µl(x))

)
, (5)

where we perform a two-sided test (giving rise to the lead-
ing constant of 2) since outliers can be on both sides of the
mean layer activation. Using the eCDF to transform the
mean layer activation µl is important since all layers have
different ranges, and otherwise, some layers would domi-
nate the temperature calculation.

The sample-specific temperature T̂ (x) is determined by
aggregating all layers via Fisher’s method [8]:

T̂ (x) = −2

L∑
l

log(pl(x)). (6)

This results in low temperature values for ID and high tem-
perature values for OOD samples.

3.3. Out-of-Distribution Detector with ATS

After the logits have been scaled with the sample-
specific temperature T̂ (x), we can apply any scoring func-
tion G(f(x)) that relies on the logits f(x) (or, by extension,
the softmax probabilities) in order to perform the OOD de-
tection. The OOD detector H is then defined as

H(x, λ) =

{
ID if G(f(x) / T̂ (x)) ≥ λ

OOD otherwise,
(7)

where λ is a threshold parameter to distinguish between ID
and OOD samples.

The threshold is typically chosen such that a high frac-
tion of ID data (e.g., 95%) is correctly classified. Given that
the classification of a sample is calculated using the argmax
function and the softmax function does not change the rel-
ative ordering of values in the logits, the network’s classi-
fication performance is unaffected. ATS can be combined
with all state-of-the-art methods that rely on the final out-
put of the model (logits or softmax probabilities), such as
MLS [12], ReAct [32], DICE [34], and ASH [6]. We do not
require re-training the model (post-hoc), prior knowledge
of OOD data (sample-free), or any hyperparameter tuning.
Furthermore, temperature scaling does not impact the clas-
sification performance of ID samples. These characteristics
make ATS highly applicable for real-world applications.

4. Experiments
Comprehensive experiments have been conducted to

evaluate our method. Detailed information regarding the
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experimental setup can be found in Sec. 4.1. In Sec. 4.2,
we use CIFAR [20] and also the large-scale dataset based
on the ImageNet benchmark, commonly used in the litera-
ture [15, 24, 33] and various OOD datasets. Sec. 4.3 pro-
vides an in-depth analysis of why our method proves to be
effective and valuable in the context of OOD detection.

4.1. Experimental Setup

Datasets. The conventional approach for constructing
OOD detection benchmarks involves designating a com-
plete dataset as the in-distribution (ID) dataset and gath-
ering several datasets that are unrelated to any ID cate-
gories as OOD datasets [44]. We conducted our stud-
ies on three ID datasets (CIFAR-10/100 [20] and Ima-
geNet [4]) and eleven OOD datasets (SVHN [28], Tex-
tures [3], iSUN [43], LSUN [47], LSUN-Crop [47],
Places365 [49], MNIST [21], Fashion-MNIST [41], iNat-
uralist [37], SUN [42], and NINCO [2]).

Setup for CIFAR. We evaluate CIFAR-10 and CIFAR-
100 [20] as ID datasets using the default split with 50000
training and 10000 test images, respectively. We consider
eight commonly used benchmark datasets: SVHN [28],
Textures [3], iSUN [43], LSUN [47], LSUN-Crop [47],
Places365 [49], MNIST [21], and Fashion-MNIST [41].
We test on two standard architectures: i) ResNet18 [11] and
ii) DenseNet-101 [18]. Both models are trained with a batch
size of 64 for 100 epochs. The initial learning rate is 0.1 and
decreases by a factor of 1× 10−1 at 50, 75, and 90 training
epochs. We use the SGD optimizer with a momentum of 0.9
and a decay rate of 1 × 10−4. Parameters for ReAct [32],
DICE [34], and ATS (our approach) are pre-computed from
the entire training set.

Setup for ImageNet. We also evaluate our method on the
large-scale ImageNet [4] dataset. The OOD datasets used
are based on [19], who provided a subset of the follow-
ing four datasets where all the overlapping categories with
ImageNet-1k are removed. The four subsets are: iNatural-
ist [37], SUN [42], Places365 [49], and Textures [3]. We
additionally added the NINCO [2] dataset, which contains
5879 manually selected images with no overlap with the
ImageNet-1k dataset, as well as Fashion-MNIST [41] as an
extreme OOD dataset. We use a ResNet-50 [11], trained on
ImageNet-1k. The trained weights are provided by Pytorch.
To pre-compute training set statistics, 200000 images are
randomly sampled from the training set.

Intermediate layer selection. We uniformly select inter-
mediate layers across the entire network. This eliminates
the need for tuning the layer selection for either the ID
dataset, the OOD data, or the network architecture, ensuring

a simple and consistent process that does not require manual
adjustments of parameters relating to layer selection.

Evaluation metric. Following the common protocol, e.g.,
[6, 12, 14, 32, 34], we report the false positive rate at re-
call 95% (FPR95) and the area under the receiver operating
characteristic curve (AUROC).

Test time and evaluation. At test time, all images are re-
sized to 32× 32 for CIFAR [20]. For ImageNet, all images
are resized to 256 × 256 and center cropped to 224 × 224
For evaluation, we apply our approach to recent post-hoc
OOD detection methods: MSP [14], ODIN [23], MLS [12],
Energy [24], ReAct [32], DICE [34], and ASH-B [6] and
compare the performance with and without ATS.

4.2. Results

CIFAR evaluation. In Table 1, we report the perfor-
mance of OOD detection methods over eight OOD datasets
with and without ATS for a ResNet18 trained on CIFAR-
100 [20]. As shown in the table, our method reduces the
FPR95 of the baseline methods on average by 29.62%. We
also see that ATS improves the performance of all base-
line methods on seven out of eight OOD datasets. For
Places365 [49], we are not able to extract useful information
from the intermediate layers, see additional investigations in
Sec. 4.3. The best method with ATS (ReAcT+) provides, on
average, an FPR95 that is 20.93% lower than the best non-
ATS baseline method (DICE [34]). When enhanced with
ATS, the baseline methods exhibit a noteworthy improve-
ment in performance, particularly when detecting far-OOD
data such as MNIST [21] or SVHN [28].

Table 2 presents the average performance across var-
ious OOD datasets, including SVHN [28], Textures [3],
iSUN [43], LSUN [47], LSUN-Crop [47], Places365 [49],
MNIST [21]. The evaluation is based on CIFAR-10 and
CIFAR-100 [20] as the ID dataset, using ResNet18 and
DenseNet as the backbone architectures. The performance
increase on CIFAR [20] is consistent across multiple exist-
ing methods and network architectures we considered.

ImageNet evaluation. Table 3 presents the performance
of the baseline methods, both with and without ATS, on
the ImageNet benchmark. Remarkably, ATS reduces the
FPR95 of the baseline methods on average by 7.91%.
Specifically, methods such as MSP [14], ODIN [23], and
MLS [12] benefit significantly from ATS, as they exhibit
relatively lower baseline performance. Even for methods
that already achieve a very strong baseline performance,
i.e., ReAct [32], DICE [34], and ASH [6], our ATS can
still improve the results. We attribute the slightly less sig-
nificant improvement on high baselines to two key factors:
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Method

OOD-Dataset
SVHN Textures iSUN LSUN LSUN-Crop Places365 MNIST fMNIST Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

MSP 73.74 84.24 73.57 85.34 74.15 83.00 74.32 81.88 83.11 68.81 75.33 82.28 75.02 81.56 87.30 60.59 77.07 78.46
MSP+ 94.55 28.33 87.76 56.01 93.18 34.12 93.96 32.60 99.47 2.21 71.05 86.98 98.83 6.23 99.23 3.22 92.25 31.21

ODIN 88.99 58.27 73.32 85.53 83.90 74.44 83.22 75.83 94.52 30.04 73.33 86.13 98.24 6.82 97.07 17.21 86.57 54.28
ODIN+ 94.66 28.50 83.68 65.83 91.35 45.97 91.87 46.60 98.60 8.34 64.01 91.85 99.62 0.17 98.77 6.09 90.32 36.67

MLS 80.77 82.17 74.10 87.23 82.66 73.10 82.90 71.94 93.49 39.36 78.26 80.15 86.34 65.86 95.02 33.04 84.19 66.61
MLS+ 94.55 28.22 87.75 55.96 93.18 34.04 93.97 32.51 99.47 2.20 70.95 87.01 98.84 6.15 99.24 3.15 92.24 31.15

Energy 80.90 83.02 73.89 88.26 82.99 72.94 83.24 71.45 94.05 36.18 78.21 80.99 86.89 64.74 95.38 31.20 84.45 66.10
Energy+ 91.53 35.64 81.62 65.51 90.73 39.17 92.02 37.24 99.33 3.17 56.77 93.93 99.31 1.44 98.64 6.14 88.74 35.28

ReAct 83.98 80.35 87.82 62.13 87.96 60.96 87.17 62.36 93.32 37.00 78.43 80.55 86.75 67.96 94.42 36.76 87.48 61.01
ReAct+ 95.13 25.05 91.74 41.42 93.46 31.65 94.15 29.73 99.29 3.18 67.20 89.29 99.11 3.24 98.99 4.21 92.39 28.47

DICE 82.17 71.04 74.40 81.91 85.69 65.96 86.09 65.57 98.39 8.59 79.26 76.22 97.26 14.12 97.93 11.75 87.65 49.40
DICE+ 94.20 30.41 87.33 56.26 94.43 27.78 95.36 24.59 99.45 2.47 73.01 84.58 99.24 3.54 99.18 3.68 92.78 29.16

ASH-B 87.64 60.00 86.64 62.50 85.48 66.30 85.20 66.31 96.70 19.90 75.89 82.54 93.94 36.59 96.10 24.55 88.45 52.34
ASH-B+ 95.65 22.72 91.17 43.63 92.77 34.34 93.64 32.73 99.44 2.50 66.86 89.75 99.44 1.38 99.07 3.90 92.25 28.87

Table 1. Performance of OOD detection methods for a ResNet18 backbone trained on CIFAR-100. Method+ denotes that our ATS is
applied on top of the method (i.e., rows with gray background). ↑/↓ indicate that larger/smaller values are better. The best and second-best
results for each OOD dataset (i.e., each column) are shown in bold or underlined, respectively. All values are reported as percentages.

First, the relevant information from the images (both ID
and OOD) is only becoming available (through extraction)
in the later layers of the network, making the information
in the intermediate layers less relevant for OOD detection
(see Sec. 4.3). Second, the standard benchmark datasets
such as iNaturalist [37], Places [49], and Textures [3] over-
lap with ImageNet [4], as pointed out by the authors of
NINCO [2]. Our findings demonstrate that utilizing infor-
mation from the intermediate layer can also enhance perfor-
mance on large-scale datasets like ImageNet. Notably, the
improved robustness against far-OOD samples is particu-
larly pronounced, showcasing the efficacy of incorporating
information from several layers in OOD detection methods.

4.3. Ablation Study

Intermediate layer selection. Figure 3 shows the impor-
tance of intermediate layers in the temperature calculation
of a ResNet18 model trained on CIFAR-100 [20]. We
evaluate the performance using the first l layers (left plot
of Fig. 3) and the last l layers (right plot of Fig. 3) for
the sample-specific temperature calculation. Our findings
demonstrate that the optimal layer configuration varies de-
pending on the specific OOD dataset. Detecting outliers
from SVHN [28] or iSUN [43] is best done using shallow-
layer activations. On the other hand, for outlier detection
from LSUN-Crop [47], utilizing activations from deeper
layers yields better results. The performance decline of
ATS on Places365 [49] can be attributed to the semantic
and intrinsic similarities and overlaps between samples in
Places365 [49] and the CIFAR [20] in-distribution classes.
For a more in-depth analysis, we refer readers to the sup-
plementary material.

Figure 4 shows the importance of intermediate layers
in the temperature calculation of a ResNet50 trained on
ImageNet-1k [4]. For the large-scale ImageNet bench-
mark, we see that for all OOD datasets (iNaturalist [37],
SUN [42], Places [49], Textures [3], NINCO [2]) except
for Fashion-MNIST [41], deeper layers are more impor-
tant for temperature calculation. We posit that the differ-
ence in the impact of intermediate layers on OOD detec-
tion performance between ImageNet [4] and CIFAR [20]
can be attributed to two factors. First, ImageNet [4] is a
more complex dataset than CIFAR [20], which implies that
shallow layers in the network extract more general features
that are less useful for distinguishing near-OOD samples.
Second, the OOD datasets used in our evaluation exhibit
greater statistical and semantic similarity to ImageNet [4],
making shallow layers less important. As a result, the im-
provement achieved by our ATS on strong baselines, such
as ReAct [32], DICE [34], and ASH [6], is not as substantial
for ImageNet [4] as it is for CIFAR [20] performance. How-
ever, it is also evident that the first layers are important for
far-OOD samples such as those from Fashion-MNIST [41],
making existing methods more robust against extreme OOD
outliers while only moderately impacting OOD detection
performance for near-OOD samples.

Three points are clearly observable: i) that the best layer
depends on the ID vs. OOD dataset (in accordance with
existing OOD detection methods that also leverage inter-
mediate layers [7, 31, 40]), ii) combing intermediate layer
information improves the performance, and iii) selecting
intermediate layers across the model depth improves ro-
bustness against the diverse characteristics and properties
present in both ID and OOD samples. These findings not
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Method
CIFAR-10 CIFAR-100

AUROC FPR95 AUROC FPR95
↑ ↓ ↑ ↓

R
es

N
et

18

AT-only 89.16 36.73 86.67 40.53

MSP 91.69 55.49 77.07 78.46
MSP+ 96.93 14.21 92.25 31.21

ODIN 94.64 24.35 86.57 54.28
ODIN+ 96.14 16.60 90.32 36.67

MLS 94.01 33.50 84.19 66.61
MLS+ 96.91 14.24 92.24 31.15

Energy 94.07 32.96 84.45 66.10
Energy+ 94.54 23.00 88.74 35.28

ReAct 70.61 77.12 87.48 61.01
ReAct+ 86.59 45.84 92.39 28.47

DICE 75.51 62.22 87.65 49.40
DICE+ 89.06 38.90 92.78 29.16

ASH-B 68.12 75.14 88.45 52.34
ASH-B+ 84.84 48.67 92.25 28.87

D
en

se
N

et

AT-only 91.00 29.33 87.30 41.30

MSP 92.59 49.71 77.66 78.37
MSP+ 98.04 9.62 93.96 25.74

ODIN 96.17 18.61 84.96 58.70
ODIN+ 97.92 10.08 94.12 24.17

MLS 95.66 21.54 83.87 64.47
MLS+ 98.04 9.63 93.96 25.70

Energy 95.72 20.88 83.93 64.12
Energy+ 97.03 12.65 90.90 32.75

ReAct 96.36 19.64 80.83 70.18
ReAct+ 98.10 9.31 92.96 24.65

DICE 96.74 14.92 84.48 51.88
DICE+ 97.93 10.16 93.56 26.85

ASH-B 97.34 12.86 89.90 40.72
ASH-B+ 97.67 10.35 93.04 25.85

Table 2. Average performance over the OOD datasets SVHN [28],
Textures [3], iSUN [43], LSUN [47], LSUN-Crop [47],
Places365 [49], MNIST [21], and Fashion-MNIST for CIFAR-10
and CIFAR-100 as ID data, considering two architectures. AT-
only denotes the results when the per-sample temperature is used
directly as the OOD detection score. Method+ (highlighted rows)
denotes that our ATS is applied on top of the method. Detailed
results can be found in the supplemental material.

only validate our proposed methodology, particularly the
hyperparameter-free layer selection, but also provide op-
portunities for future research in also selecting the best N
layers for the temperature calculation dynamically based on
the input sample.

Adaptive Temperature only. We evaluate the perfor-
mance of using the sample-specific temperature directly
(considering only information of intermediate layers) as
the OOD detection score compared to ATS (combin-

Model Method
ImageNet

AUROC FPR95
↑ ↓

R
es

N
et

50

MSP 82.95 66.52
MSP+ 89.57 42.73

ODIN 87.46 49.65
ODIN+ 88.90 40.77

MLS 85.86 62.86
MLS+ 89.56 42.75

Energy 85.53 63.52
Energy+ 79.94 63.52

ReAct 90.33 43.75
ReAct+ 90.62 38.13

DICE 87.55 46.52
DICE+ 88.38 42.69

ReAct+DICE 88.75 42.43
ReAct+DICE+ 88.28 41.96

ASH-B 92.69 34.05
ASH-B+ 91.61 33.43

Table 3. Average performance over the OOD datasets iNatural-
ist [37], SUN [42], Places [49], Textures [3], NINCO [2] and
Fashion-MNIST [41], where the ID data comes from ImageNet.
Method+ (highlighted rows) denotes that ATS is applied on top of
the method. See supplemental material for detailed results.

ing information from intermediate features and class-
dependent logits). In Table 2 the method ”AT-only” shows
the average performance over SVHN [28], Textures [3],
iSUN [43], LSUN [47], LSUN-Crop [47], Places365 [49],
and MNIST [21] for CIFAR [20] as ID data, utilizing the
per-sample temperature directly to distinguish ID and OOD
samples. Our findings indicate that the performance of the
per-sample temperature on its own is not particularly strong.
However, when combined with the class-dependent logits
through ATS, we observe a significant improvement in per-
formance across all settings. In summary, leveraging infor-
mation from all layers of the network, rather than relying on
parts, leads to a better and significantly more robust perfor-
mance of the OOD detection method.

Computational Efficiency. Our approach results in a
modest computational overhead: 6.18% for ResNet18,
11.94% for ResNet50, and 4.71% for DenseNet100. This
minor increase in computational cost is justified when
weighed against the notable performance gains and en-
hanced robustness. A comprehensive breakdown of this
runtime analysis is available in the supplementary material.

4.4. Limitations

As a post-hoc method, ATS’s effectiveness relies on the
quality of the intermediate features and the method used for
their extraction. ATS exhibits less performance improve-
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Figure 3. Evaluation of intermediate layer importance for temperature calculation on ResNet18 using CIFAR-100 as the in-distribution
dataset and various OOD datasets: SVHN [28], Textures [3], iSUN [43], LSUN [47], LSUN-Crop [47], Places365 [49], MNIST [21], and
Fashion-MNIST [41]. Left figure: The first l layers are used for the adaptive temperature calculation and we plot the AUROC for different
l. Right figure: The last l layers are used for the adaptive temperature calculation and we plot the AUROC for different l.
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Figure 4. Evaluation of intermediate layer importance for temperature calculation on ResNet50 using ImageNet as the in-distribution
dataset and various OOD datasets: iNaturalist [37], SUN [42], Places [49], Textures [3], NINCO [2] and Fashion-MNIST [41]. Left
figure: The first l layers are used for the adaptive temperature calculation and we plot the AUROC for different l. Right figure: The last l
layers are used for the adaptive temperature calculation and we plot the AUROC for different l.

ment on OOD datasets where the relevant information is
predominantly present in deeper layers, as observed in the
case of SUN on the ImageNet benchmark (see Sec. 4.3).
Still, ATS enhances the robustness of the considered meth-
ods, especially against far-OOD samples, which are crucial
to detect due to their potential impact and the erosion of
trust in ML systems when not recognized. Consequently,
ATS contributes to the overall improvement and practical
applicability of OOD detection methods.

5. Conclusion

In this paper, we present a simple yet highly effective
extension to existing logit-based post-hoc OOD detection

methods that works by adaptively scaling the logits with a
per-sample temperature calculated from intermediate layer
activations. ATS, our proposed method, can be seamlessly
applied to all OOD detection methods that utilize the model
output for the OOD score calculation. We conduct ex-
tensive experiments and evaluations on widely used OOD
benchmarks, demonstrating the favorable performance of
ATS. The results highlight the simplicity and effectiveness
of ATS in enhancing OOD detection capabilities across dif-
ferent methods and datasets.
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