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Abstract

In spite of the significant progresses in monocular or
multi-view image based 3D face reconstruction research,
recovering 3D faces from videos, which contains rich dy-
namic information of facial motions, still remains as a
highly challenging problem. First, most prior works fail
to generate accurate and stable 3D faces on videos, es-
pecially for recovering subtle expression details. Further-
more, existing dynamic reconstruction approaches have not
fully considered the temporal dependency of facial expres-
sion transitions, which is based on the dynamic muscle ac-
tivation system under a local region of the skin. To tackle
the aforementioned challenges, we present a framework for
dynamic 3D face reconstruction from monocular videos,
which can accurately recover 3D facial geometrical repre-
sentations for facial action unit (AU). Specifically, we de-
sign a coarse-to-fine framework, where the "coarse” 3D
face sequences are generated by a pre-trained static recon-
struction model; and the “refinement” is performed through
a Transformer-based network. We design 1) a Temporal
Module used for modeling temporal dependency of facial
motion dynamics; 2) an Spatial Module for modeling AU
spatial correlations from geometry-based AU tokens; 3) fea-
ture fusion for simultaneous dynamic facial AU recognition
and 3D expression capturing. Experimental results show
the superiority of our method in generating AU-aware 3D
face reconstruction sequences both quantitatively and qual-
itatively.

1. Introduction

Human facial motion analysis has been an emerging
field of study in computer vision, psychology and cogni-
tive science, which has a great potential in a wide range
of application fields, such as human-computer interaction,
movie animation, video games, communication, etc. A
plethora of computer vision studies have been conducted
over the past decades to capture and analyze facial mo-
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tions from images or videos. With the first 3D morphable
model (3DMM) proposed by Blanz et al. [6], 3DMM-based
face modeling and reconstruction have gained sustained at-
tention, which focus on recovering 3D facial meshes with
plausible identity and expression details given 2D images
or videos. In general, 3D face reconstruction from 2D
data via a pre-constructed 3DMM can be treated as a re-
gression problem of estimating 3DMM parameters of cam-
era, head pose, identity, expression, texture and illumina-
tion for different people and environment. In earlier re-
searches, 3DMM fitting algorithms are proposed to opti-
mize the 3D parameters sequentially using detected 2D fea-
tures, such as [19,21,44]. As the development of deep learn-
ing models and algorithms, many regression-based methods
have been designed for solving the 3D parameters simul-
taneously, such as 3DDFA [20, 63, 64], RingNet [47] and
Deep3DFaceRecon [ 1]. Such deep-learning based meth-
ods can produce well-aligned 3D faces to the given image,
but still lack sufficient expressiveness to capture subtle or
extreme expressions. Responding to the increasing demand
for generating high quality 3D faces that entails person-
specific and expression-specific geometrical details, recent
researches have made efforts to create fine-grained expres-
sion bases [36, 56] or predict high-frequency displacement
maps [2, 3, 17,56] to refine expression details. However,
image-based 3D face reconstruction algorithms mentioned
above may fail to apply well on video data in a frame-
by-frame manner, since it may lead to unsteady, unnatu-
ral and jittered results, especially when there are frequent
expression transitions or mouth movement in daily commu-
nication videos. A few works have provided solutions to
video-based 3D face reconstruction, by predicting common
identity parameters shared among frames [50] and enforc-
ing temporal smoothness of expression parameters between
consecutive frames [26,50]. In [18], a dynamic neural ra-
diance fields model conditioned on expression latent codes
is learned to represent 4D facial avatars from an input face
video. However, the training methodologies utilized in ex-
isting methods ignore the inherent 3D nature of facial dy-
namics, which is driven by the muscle contraction or relax-
ation under the skin. Therefore, they still struggle to capture
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facial expressions dynamics in time, such as the associativ-
ity and cooperativity between local expressions.

According to Facial Action Coding System (FACS) [14],
which defines a taxonomy of facial movements in a local
area as 32 action units (AUs) driven by muscle contrac-
tion, all observable facial movements can be expressed by
the combinations of multiple AUs. In this paper we pro-
pose a framework for dynamic 3D face reconstruction from
videos, which can recover AU-interpretable geometrical de-
tails. We design a Transformer-based structure, which can
autoregressively produce expressive 3D facial mesh given
former frames and AU labels. Our major original contribu-
tion can be summarized as:

* we propose the first AU-aware dynamic 3D face recon-
struction framework that learns facial motion dynam-
ics and spatial correlations from combined geometric
and appearance features.

* we combine a Transformer-based Temporal Module
and Spatial Module for dynamic 3D AU representa-
tion, which can encode the long-term AU occurrence
dependency and the history of 3D face motions to au-
toregressively predict a sequence of 3D facial expres-
sions. It achieves temporally stable and accurate 3D
face capturing on videos.

* Our model simultaneously generate dynamic 3D face
sequences and 3D AU activation trajectories, and our
model achieves SOTA 3D AU recognition accuracy
and better reconstruction accuracy in expressions.

2. Related Works
2.1. Dynamic 3D Face Reconstruction

Capturing and predicting a dynamic process of 3D fa-
cial motion from RGB videos remains as a highly chal-
lenging problem, where substantial efforts in computer vi-
sion area have been dedicated to tackle this problem. FML
[50] method learns person-specific identity model and ap-
pearance model from each input sequence. The Head-to-
Head approach [26] trains a model for 3D face tracking and
video-based rendering, and the latter model performs face
video synthesis in a recurrent way. In [ 18], they present dy-
namic neural radiance fields for reconstructing 4D faces in
short portrait video sequence of a person. The 3D geom-
etry of faces is encoded as a low-dimensional morphable
model that provides explicit control over pose and expres-
sions over time. Learning the dynamic neural radiance
fields is the conditioned on the dynamically changing fa-
cial expressions and later volume rendering is leveraged to
generate the synthesized portrait videos. New applications
arise in this area. For instance, generating a 3D talking
head from videos has become a emerging research topic,

which emphasize on capturing the expression changes, es-
pecially mouth movement in a speech video. To generate
accurate and natural talking patterns of the mouth in 3D
space, Ye et al. [57] proposed a dynamic network that takes
video and audio together as a multi-modal input, and regress
for the identity and expression coefficients of a 3DMM.
In [58], they train a general mapping from the input audio
to 3DMM-based facial expression and head pose parame-
ters. Combining them with the face video of a person, this
model can generate high-quality 3D talking head and a syn-
thesized video through rendering. In [61], the representa-
tions of talking human faces video are modularized into the
spaces of speech content, head pose, and identity respec-
tively, which are implicitly learned in a construction-based
framework.

2.2. 3D AU Representation & Recognition

Facial AU recognition from RGB images or videos have
been extensively studied in computer vision area. In [7],
Cao et al. collected a 3D face database — FaceWarehouse,
that contains facial scans of 150 individuals with 19 kinds of
expressions. A set of 3D blendshapes are constructed, with
each representing 3D skin deformation of a facial AU. Simi-
lar blendshapes models are proposed in FaceScape [56] and
ICT [33]. The major advantage of 3D facial blendshapes
over PCA bases lies in the semantic meaning of blend-
shapes related to AU. Therefore, blendshape models can be
used for controllable facial expression generation and ani-
mation [38,49,51, 53]. Except for 3D AU synthesis, AU
detection from 3D data like 3D scans, 3D point clouds, or
3DMMs have been actively studied by researchers. Given
a target 3D mesh or scan, one of the most intuitive way is
to train classifiers based on the extracted mesh surface fea-
tures for 3D AU detection [4, 10,25,31,48,62]. Similarly,
for 3D point cloud data, Reale et al. [45] trained a network
to directly extract 3D point cloud features and support AU
detection. Ariano et al. [1] propose a method of 3D AU de-
tection by using 3DMM coefficients. However, little work
has been devoted to connecting the AU characteristics with
the task of 3D face reconstruction.

2.3. Transformers in Vision Tasks

The Transformer [52] model, as a strong alternative
model to RNNs and CNNss, has shown its promising perfor-
mance in the area of Natural Language Processing (NLP),
due to the attention mechanism. Vision Transformer (ViT)
[13] is first introduced to perform image classification task
[32]. Since then, transformer-based structure have been ap-
plied to various vision tasks such as object detection [41],
image segmentation [12], image generation [24, 46], etc.
In addition, transformers have been exploited in learning
the representation of 3D human bodies for 3D motion re-
construction [35], prediction [39], tracking [23, 65] or syn-
thesis [5,43]. For face-related tasks, Transformers have
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Figure 1. Overview of our AU-aware dynamic 3D face reconstruction method: (1) feature encoding module:

pre-trained frame-

based 3D face reconstruction model from DECA [17], frozen during training, generate coarse 3D mesh sequences from images. (Blue)

Video feature extractor.

Mesh feature extractor. (2) The extracted features will be feed into a

, which consists of

learnable AU label embedding layer, Periodic Positional Embedding layer and an Autoregressive Transformer module. The output will be

the temporal embeddings z§- for each frame. (3) The coarse mesh sequence are also feed into a

, which

is designed for learning the spatial correlations among AUs from 3D geometry. The output will be spatial embeddings z7 , for each AU
indexed by k. (4) The temporal and spatial embeddings z} and zj , are combined for 3D reconstruction head and 3D AU classification

head.

shown its superiority over other model structures in image-
based [22,28,30,55] and video-based [1,60] expression/AU
recognition. In spite of the progresses of applying Trans-
formers on 3D human data, such as Mesh Transformer [35]
and point-cloud Transformer [15], using Transformer for
capturing 3D facial expression dynamics is not fully stud-
ied yet. In [16], a Transformer-based seq2seq structure
is designed to autoregressively animate a sequence of 3D
face meshes from an input audio file. Besides, a light-
weight Transformer-based framework is proposed in [31]
to perform multi-modal 2D+3D facial expression recogni-
tion. In [31], a single 3D facial scan together with a RGB
image are feed into the transformer model to fuse multi-
modal features. Our proposed method, which differs from
[16,31], aims at recovering dynamic 3D facial expression
from videos with an autoregressive Transformer structure,
through encoding the context of 3D facial movement.

3. Method
3.1. Method overview

Our model conducts a dynamic refinement for frame-
based 3D face reconstruction results on videos. As show
in Fig. 1, our framework can be divided into three parts.
Given input video frames{I;, - - - , I}, we first apply a pre-
trained 3D face reconstruction model frame-by-frame to
generate the coarse 3D mesh sequences S = {S1,---,SL}.
The frame-based reconstruction model does not consider fa-
cial expression dynamics in time and cannot present sub-
tle motions in terms of 3D facial AU intensities. To ad-
dress these problems and produce the refined 3D recon-
struction sequences § = {S,---, 5L} on videos, we de-
sign a Transformer-based structure that takes video frames,

coarse mesh sequences and AU annotation sequences as in-
put. Since we are targeting at capturing both the temporal
dependencies of facial motions and the spatial correlations
among different AUs, the designed Transformer module
consists of a Temporal model in an autoregressive manner,
and a spatial model, which implicitly represents the spatial
correlations among AUs from the face geometry. The work
flow of our method contains the following steps:

(1) Data preparation: obtaining coarse 3D face meshes with
a static frame-based 3D face reconstruction model;

(2) Extracting frame-based appearance features and coarse
geometry features with a backbone model,;

(3) Predicting 3D temporal embeddings on sequences with
Autoregressive Transformer layers; Predicting 3D spatial
embeddings with spatial Transformer layers.

(4) Combining the 3D temporal and spatial embeddings for
the final prediction head, which contains a classification
head for predicting AU occurrence probabilities and a re-
gression head for generating refined 3D mesh sequences.
We introduce each step in detail in Section 3.2 ~ 3.5.

3.2. Feature Extraction

Coarse 3D Face Reconstruction We apply the pre-
trained DECA [17] model for static 3D face reconstruction
on every single video frame. The DECA encoder (a ResNet-
50 CNN) predicts a set of 3D parameters given an image
I, including the identity parameter 3 € R'%9, expression
parameter @ € R5?, albedo parameter o € R??, lighting
parameter I € R?7, pose parameter & € RS and camera
parameter ¢ € R?. With a differentiable rendering layer,
the reconstructed 3D face can be projected to image plane
to generate a synthetic face image I. Our model aims at
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optimizing for the 3D expression part by exploiting the ex-
pression dynamics in videos.

Feature encoding For an input sequence of images
{I;}%_,, we refer to the Video Swin Transformer [37] as
the backbone model, denoted as £Z for extracting frame-
based appearance features { fI 1 fI € REXWXCr  For
the coarse 3D mesh sequences {S M j=1 generated in Sec-
tion 3.2, we define a motion encoding layer £° to extract
only the expression features in 3D space, defined as

[P =E5(8; - 8; ) (1)

where S represents the subject neutral face. Then the tem-
poral feature and spatial feature are concatenated and feed
to the Temporal Module: f; = concat(flatten(ff), fJS)

3.3. Temporal Transformer

A shown in Fig. 1, the concatenated video feature and
3D mesh feature are feed into the Temporal Module, which
is for capturing the temporal dependencies of facial motions
in terms of AU occurrence. The Temporal Module consist
of three parts: a learnable AU-label Embedding layer, a Pe-
riodic Positional Embedding layer for injecting frame or-
der information, and an Autoregressive Transformer Mod-
ule for predicting temporal representations of AUs.

AU-label Embedding Given the AU label y™V*! for N
AUs, we project the AU labels of each frame y;,j €
{1,---, L} toad-dimension vector h; through a linear pro-
jection function, defined as:

Wiy +bj=1,--- L
T A A 2)
b",7=0
where j = 0 represents the begin token and W" ¢ R¥*V

and b" € R¥*! represent the weight matrix and bias.

Periodic Positional Encoding Consider that the AU la-
bels could be quite consistent in a sequence, we refer to the
method in [16] to add a Periodic Positional Encoding (PPE)
to the AU embedding vectors, indicating the temporal order.

The PPE is expressed by the function below.
PPE(;,5) = sin((j mod P)/(10000)%/*)
. NRNC)
PPE(; ;1) = cos((j mod P)/(10000)%/¢)

where the ¢ is the dimension index and P is a hyper-
parameter defining the period. The AU embedding vector
h; will be added to the PPE before feeding them to the Au-
toregressive Transformer layer, expressed as:

hj=h;+ PPE(j),j=1,-,L 4)

Autoregressive Transformer
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Figure 2. Autoregressive Transformer in Temporal Module.

Autoregressive Transformer To fuse the facial AU dy-
namics with the encoded mesh and video features in a input
sequence of length 7', we refer to the transformer decoder
architecture used in the GPT models and design an module
that autoregressively predict the temporal embeddings for
refining the 3D mesh. We formulate the problem as

L
pU=i Ry, fiYie) = [T p(Elhag, f<p) (5)
j=1

where z§ represent the output temporal embeddings for
j—th frame, and we model this distribution with the devised
Autoregressive Transformer (denoted as 781) as shown in
Fig. 2. In each layer of T, there is a Multi-Head self-
attention layer (MHS) and a Multi-Head cross-attention
(MHC) layer, inserted with residual connections and layer
normalization(LN). The processing of our model 7 can be
written as:

self-attn: le(l) = LN(MHS(Q'A”*,K’A“*,V'A”*l) +hy_y)

cross-attn: le(z) = LN(MHC(QF”( ),Kﬁgl) ; Vﬁ’m) + ’Alz(l))
FFN: by = FEN(A{?),1 =1,--- | N,

Output:z} = hy,

(6)
where [ is the layer index and we can concatenate Ny layers
in total.

3.4. AU-Spatial-Correlation Module

In addition to the temporal dependencies encoded in the
facial motion dynamics, we are also interested in modeling
the spatial correlations of AUs in 3D geometry, for refin-
ing 3D facial motions based on a single or combinations of
AUs. As mentioned in FACS [14], AUs can be positively
or negatively correlated, such as cheek raiser (AU6) and lip
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corner raiser (AU12) are positively correlated. This rela-
tionship can be expressed more intuitively in 3D geometry,
reflected as the overlapping or opposite vertex movement
in a certain facial area. As shown in Fig. 1, we designed a
Transformer-based structure as the spatial correlation mod-
ule, denoted as 7':92, that takes 3D local features as input
and predict spatial embeddings z7 for each frame.

Geometry-based AU tokens The AU Spatial Correla-
tion Module takes geometry-based AU tokens as input,
which are generated by applying multiple pre-defined ver-
tex masks {Mg“};_, to the coarse 3D mesh {S;}7,,
where N is the number of AUs. The geometry-based AU-
tokens vy, are expressed by

vy = MLP(M" ® (S; — S

where we use a MLP module to project dense vertex move-
ment to N AU tokens.

Spatial Correlation Module We propose to apply a
Transformer Encoder structure, which takes the discrimina-
tive AU tokens as input and models AU correlations implic-
itly with Multi-Head self attention layers. The processing
of the spatial module is described below.

self-attn: vf") = LN(MHS(Q"'=", K=, V') 4 v)
FFN: Ay = FEN(v{"), 1 =1,--- , Ny

Output: 2z, = v,k

®)

3.5. 3D Face Refinement & AU classification

We combine the output temporal embedding z¢ and z*
and feed them to subsequent regression head and classifi-
cation head. The regression head, denoted as a motion de-
coder D, is used for generating AU-aware 3D facial mo-
tions. As mentioned in Section 3.1, the refined 3D recon-
struction sequence S = Sy, ,5; will be produced by
adding the predicted AU-based motions to the subject neu-
tral face S, expressed by

N

k

In the mean time, the classification head is used to predict
AU occurrence probability {py}_, for each frame in the
sequence, which is implemented as N linear projection lay-
ers.

pj.r =Sigmoid[(W7)T (
k=1,---

Z; + zjs',k')]v

10
7N7j:17"'7 ( )

3.6. Training and Inference

Training: During training, we adopt the teacher-forcing
scheme for the autoregressive transformer, where it takes
ground-truth AU label as input. The loss function for train-
ing the full model contains two part: the 3D reconstruction
loss build upon weak supervision; the 3D AU classification
loss, which is expressed as a weighted multi-label binary
cross-entropy loss. Overall, we optimize the following loss
function

L= A'Lquzmq + Alkalm!c + AsmoothLsrnooth + AauLau
1D
with the photometric image 10ss L;,4, the projected land-
mark loss Ly, «, the temporal smoothness 10ss Ly, 00t1 and
the 3D AU classification loss L.
1. Photometric loss & landmark loss. With the predicted
refined mesh Sj as mentioned in Eq. 9, we use the pose R,
camera s, t;, texture d; and lighting parameter -y; produced
by the coarse reconstruction model to generate rendered fa-
cial image I ; and projected facial landmarks c;.

X;=sxPr+R;+ 5+t

. (12)
= I;,c; = Renderer(X;,0;,7;)

Then Ly, and L;,,, are calculated to measure the pro-
jected landmark error and the image intensity difference,
which are expressed as:

2 L
Aj Ol = Lifla 12 ¢
zm : 7lek = 7 cj—c’
- LZ 14T p el

13)

where A; are pre-computed 2D skin mask for face region
and c¢; are ground-truth 2D landmark location.
2. Temporal smoothness loss: The temporal smoothness
is adopted to generate smooth sequential result, and are ex-
pressed as the inter-frame difference between the temporal
embedding.

smooth

Z 125 —

3. 3D AU classification loss: we define a loss function
based on the cross-entropy between the ground-truth label
;.5 and predicted AU occurrence probability p; :

zja (14)

L

Lau = - lOg p],

j=1 k:l
(15)

Inference During inference, we do not have access to the
ground-truth AU labels, our model will autoregressively
predict the AU probability and refined 3D face for the in-
put sequence.
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Figure 3. Reconstruction result comparison of our model and state-of-art face reconstruction models on input image sequences (5 frames
are displayed): 3DDFA [20], DENRMVS [3], DECA [17] and EMOCA [9] on BP4D [59] dataset.

4. Experiments

The proposed method is trained ans evaluated on three

public benchmark dataset, BP4D [59], DISFA [40], Multi-
face [54]. The BP4D [59] dataset is a spontaneous database
containing 328 sequences from 41 subjects performing dif-
ferent facial expressions. Each subject is involved in 8
expression tasks, and their spontaneous facial actions are
coded by binary AU labels. Around 140k frames with AU
occurrence labels are employed for training & evaluation.
The DISFA dataset contains recorded videos for 27 sub-
jects and we can extract around 130k frames. Each frame is
annotated with AU intensity label ranged from O to 5. The
annotations for 8 AUs are available. We follow the proto-
cols used in [8,22] and select frames with AU intensity > 2
as positive samples and the rest as negative. On BP4D and
DISFA, subject-exclusive three-fold cross-validation exper-
iment protocol is employed for AU detection evaluation.
Multiface is a large-scale, multi-view dataset containing
high-resolution synchronized 2D & 3D videos of facial per-
formances collected from 13 subjects. As the full Multiface
is very large, we use a small subset (10 expressions for 3
subjects, 30 videos in total) only for evaluating dynamic 3D
reconstruction error.
Implementation details: We uniformly sample the image
frames in all benchmark datasets and divide them into short
clips of 20 frames in every two seconds, i.e., L = 20.
So the frame rate is unified for all the data. For the two
transformer-based model, we set the number of layers to
3, i.e., Ng = 3. The network is optimized using Adam
with learning rate Ir = 5e — 5. The network is trained
for 20 epochs. Hyper-parameters used in Eq. 11 are set to
>\img =2, Aimk = 2, Asmooth = 1, Aau = O.

Evaluation protocol: We perform both qualitative and
quantitative evaluation of the refined 3D face reconstruction
quality. On Multiface, we use the provided 3D mesh se-
quences as ground-truth and find out the correspondence be-
tween the reconstructed mesh vertices to the closest ground-
truth mesh surface. The reconstruction accuracy is evalu-
ated in terms of vertex-to-plane mean square error (MSE)
and standard deviation (SD). To validate the claim “AU-
aware reconstruction”, we also evaluate AU classification
performance. We employ the Fl-score for each AU as the
metric, ie., F1 = 2EL \where P is precision and R is

R+P’
recall, and compare with SOTA AU classification methods.

4.1. Qualitative Evaluation

We first show a visual comparison of 3D face re-
construction results on a short video clip (5 consecutive
frames as displayed for each clip) in Fig. 3, comparing
with existing methods including 3DDFA-v2 [20], DFNR-
MVS [3]DECA [17], EMOCA [9]. Our proposed method
focus on recovering local facial motions caused by AU acti-
vation. As shown in Fig. 3, our dynamic reconstruction ap-
proach better captures subtle motions related to AUs, such
as eye-brow frowning (clipl), nose wrinkling (clipl) and
mouth dimpling (clip2). We provide more qualitative eval-
uation results on sequences in the supplementary material.

4.2. Quantitative Evaluation

We quantitatively evaluate the 3D reconstruction accu-
racy on Multiface (subset) and AU detection performance
on the test fold of BP4D and DISFA. For reconstruction
comparison, we compare with DECA [17] and EMOCA [9],
since we all use the FLAME [34] mesh topology. For
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Figure 4. Comparison on Multiface [54] dataset: DECA [17], EMOCA [9] and our model are compared with ground-truth mesh.

Table 1. Reconstruction accuracy evaluation on Multiface.

Methods Mean (mm) SD
DECA [17] 1.865 1.405
EMOCA [Y] 1.624 1.234
| Ours: Spatial | 1587 | 1.245 |
Ours: Temporal + Spatial 1.503 1.127

AU recognition, we compare our model with different
types of AU-detection methods, including geometry-based
(DECA [17], EMOCA [9], Kuang et al. [27]), appearance-
based (FAU [22], LP-Net [42], SRERL [29]) and com-
binatory ones (Biomechanics-AU [8]). The performances
for Multiface, BP4D and DISFA are provided in Table. 1,
Table. 2 and Table. 3. The 3D models DECA [17] and
EMOCA [9] cannot be directly applied to AU detection, so
we train a subsequent MLP block that takes reconstruction
coefficients as input and predict the AU probability.

Comparisons on MultiFace We run our model and
DECA [17], EMOCA [9] on 30 videos of Multiface with
different expressions. With the predicted mesh sequences,
we first apply the Iterative-Closest-Point(ICP) algorithm to
find the correspondence between reconstructed and ground-
truth meshes. Then we calculate the vertex-to-surface MSE
and standard deviation (SD), as shown in Table. 1. With
the same mesh topology, our Temporal + Spatial model
achieves uniformly lower reconstruction error on different
regions of the face (as SD is also lower), which indicates
that integrating AU knowledge into the model helps to re-
fine local geometric details in a dynamic expression. Com-
pared to EMOCA, which is specially designed for expres-
sion recognition, our AU-aware model reduces the 3D error
by 7.45%. We visualize the reconstruction result in Fig. 4.

Comparisons on BP4D We first compare the AU detec-
tion results for 12 AUs on BP4D dataset. As shown in Ta-
ble. 2, we marked the highest F1 score for each AU and the
average F1 score. Furthermore, we also specifically mark
the dynamic models which take sequences as input, with
a “*” prefix. For fair comparison, we provide two evalu-
ations of our proposed model: (1) the model with Spatial
Module only, which can be considered as a static model
without considering the temporal dependency; (2) the dy-
namic model with both Temporal Module and Spatial Mod-

ule. Among the listed existing methods, our model is simi-
lar to Biomechanics-AU [8] in terms of combining 3D mesh
features and images features for dynamic AU prediction.
On average, our final dynamic model achieves 1.9% im-
provement in F1 score compared to Biomechanics-AU [8].
Our model also show its superiority over appearance-based
methods (SRERL [29], LP-Net [42], FAU [22]). Although
our Spatial Module does not achieve SOTA performance
compared to SOTA static model such as FAU [22], our fi-
nal model is still superior to FAU [22], by further consider-
ing the temporal dependencies of AUs. Most importantly,
we use the AU detection performance to illustrate that our
model successfully integrate AU dynamics and correlations
into the 3D face reconstructed process. We select three ex-
isting 3D face reconstruction models which focus on captur-
ing accurate facial expressions. Compared to DECA [17],
upon which we build our model, we achieve significant AU
performance improvement (around 10%). The method pro-
posed by Kuang et al. [27] integrate AU correlations in
learning 3D face models, but only apply to single images.
In conclusion, our Spatial Module and Temporal Module
both contribute to significant AU classification improve-
ment. Our final model achieve SOTA accuracy on AU4,
AU10, AU17, AU24.

Comparisons on DISFA  We conduct similar experiments
on DISFA dataset as BP4D and compare with three different
types of models, as shown in Table. 3. Compared to the only
dynamic model Biomechanics-AU [&], our final model lifts
the average F1 score by 2.9%. Although our average perfor-
mance is slightly worse than the SOTA model FAU [22], but
for most AUs our model generate much better prediction,
such as AU6 (13.9% 1), AU9 (20.2%71), AU12 (14.1%1). 1t
shows that our model is promising in applying to some AUs
that are hard to directly distinguish from image features.

4.3. Ablation Study

To further prove the effectiveness of each module and the
necessity of combining mesh feature with image feature, we
conduct ablation study with different combinations of input
data and Transformer Modules, as presented in Table. 4. We
explore 7 different cases in total on BP4D and DISFA and
analyze their performance.

* Video input + Temporal Module 7*: when only taking
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Table 2. Comparing the F1-score of AU recognition on BP4D between proposed method and state-of-art methods

Method AUl AU2 AU4 AU6 AU7 AUI0 AUI2 AUI4 AUI5S AUI7 AU23 AU24 [ Avg.
DECA [17] + MLP 545 401 532 547 708 740 712 518 426 662 510 414 | 561
EMOCA [9] + MLP 541 512 574 454 737 642 775 558 443 678 535 447 | 575
Kuang et al. [27] 552 570 537 667 718 764 797 598 441 601 53.6 460 | 60.8
***** SRERL [29] 469 453 556 771 784 835 876 639 522 639 471 533 | 621 |
LP-Net [42] 434 380 542 771 767 838 872 633 453 605 481 542 | 610
FAU [22] 517 493 610 778 795 829 863 676 519 630 437 563 | 642
| *Biomechanics-AU [8] 574 526 646 793 815 827 856 679 473 580 470 449 | 641 |
| Ours: Spatial 56.8 59.5 648 702 795 762 804 617 446 606 485 582 | 634 |
*QOurs:Temporal + Spatial 545 562 67.1 723 814 849 875 614 438 673 525 64.3 | 66.0

Table 3. Comparing the Fl-score of AU recognition on DISFA
between proposed method and state-of-art methods

Method AUl AU2 AU4 AU6 AU9 AUI2 AU25 AU26 | Avg.
DECA+MLP 447 405 552 505 480 664 770 507 | 541
EMOCA +MLP 445 412 548 505 489 678 785 511 | 547
~ SRERL 457 478 596 470 456 735 843 436 | 559
LP-Net 299 247 727 468 496 729 938 650 | 56.9

FAU 461 486 728 567 500 721 908 554 | 615

“Biomechanics-AU  41.5 449 603 515 503 704 913 553 | 582

Ours: Spatial 46.8 489 456 720 688 845 61.4 51.3 | 60.0

*Qurs: Temporal

. 477 505 482 706 702 862 625 527 | 61.1
+ Spatial

Table 4. Ablation study with different combinations of input data
and Transformer Modules. Average F1 scores for AU classifica-
tion on BP4D and DISFA are provided. In the second column,
the 7* and 7 denote the temporal module and spatial module
correspondingly. The last row represents our final model.

Input Transformer Modules | BP4D | DISFA

Video only Tt 59.8 56.2

| Meshonly Tt | 60.1 | 546 |
Mesh only T3 62.6 | 564
Mesh only TH+ T3 63.1 | 58.8

| Mesh+Video ~ T7°¢ | 616 | 589 |
Mesh + Video T3 63.4 | 60.0
final: Mesh + Video T +T5 66.0 61.0

video features, the Spatial Module for AU correlation
will not be applicable since it relies on AU tokens gen-
erated from 3D meshes. In this case, the network is
trained fully depending on appearance features. The
2-nd row in Table. 4 indicates that the AU classifica-
tion performance on both dataset decrease a lot.

* Mesh input + 7% or 7% or 7* +7°: when only taking
coarse mesh sequences as input, we explore three cases
with activating a single Transformer module or both of
them. Correspondingly, using 7% or 7 will determine
the emphasis, on motion dynamics or on AU spatial
correlations. The results from row3 to row5 in Table. 4
shows that using Spatial Module for encoding AU cor-
relations helps to generate better AU predictions than
using 7 only. In addition, when we combine the tem-
poral embeddings and spatial embeddings, we can ob-

tain performance improvement over Mesh + 7 (0.5%
1 for BP4D, 2.4% 1 for DISFA).

* Mesh + Video input + 7% or 75 or 7t + 7°: we can
draw similar conclusion as the second case. Through
combining dynamics modeling and AU spatial correla-
tion modeling, we can get notable better results: (2.6%
1) on BP4D and (1.0% 7) on DISFA, comparing with
only using 7.

We can also observe that under the same network struc-
ture, it’s essential to combine geometrical mesh features and
video appearance features to achieve better AU detection
performance. Based on the results in {row2, row3, row6} or
{row5, row8}, using the coarse input mesh sequences only
may fail to provide sufficient geometric representation for
each AU but feature combination addresses this problem.

5. Method Limitation

For the Temporal Module used for modeling the facial
dynamics, the captured temporal dependency may not be
stable and universally applicable due to two reasons. (1)
The input to the autoregressive transformer are AU occur-
rence embeddings. However, the binary AU sequence can
only reflect simple dynamics of AU state shift (0 — 1 or 1
— 0). (2) The performance of the dynamic model can be
impacted by different fps.

6. Conclusion

In this paper, we presented an AU-aware dynamic 3D
face reconstruction approach, for capturing AU-based facial
motion dynamics and spatial correlations and refine the re-
constructed 3D face geometry. We design a Temporal Mod-
ule based on autoregressive transformer and a AU-Spatial-
Correlation Module, for modeling the temporal dependency
and spatial correlations of local facial motions. Experimen-
tal results prove the effectiveness of both two modules in
terms of improved reconstruction of facial motions and bet-
ter AU detection performance. In application, our model
can be directly applied to simultaneous dynamic 3D face
reconstruction and AU detection.
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