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Abstract

Aerial image haze removal deals with improving the visi-
bility and quality of images captured from aerial platforms,
such as drones and satellites. Aerial images are commonly
used in various applications such as environmental moni-
toring, and disaster response. These applications usually
require cleaner data for accurate functioning. However, at-
mospheric conditions such as haze or fog can significantly
degrade the quality of these images, reducing their con-
trast, color saturation, and sharpness, making it difficult to
extract meaningful information from them. Existing meth-
ods rely on computationally heavy and haze density (light,
moderate, dense) specific architectures for aerial image de-
hazing. In light of these limitations, we propose a novel
lightweight and consolidated approach for aerial image de-
hazing. In this approach, we propose Density Aware Query
Modulated Block for learning weather degradations in in-
put features and guiding the restoration process. Further,
we propose Cross Collaborative Feed-Forward Block for
learning to restore varying sizes of the structures in the in-
put images. Finally, we propose Gated Adaptive Feature
Fusion block to achieve inter-scale and intra-feature atten-
tive fusion, effective for aerial image restoration. Exten-
sive analysis on benchmark aerial image dehazing datasets
and real-world images, along with detailed ablation studies
validate the effectiveness of the proposed approach. Fur-
ther, we have analysed our method for other restoration
task such as underwater image enhancement to experiment
its wide applicability. The code is available at https:
//github.com/AshutoshKulkarni4998/C2AIR.

1. Introduction
Aerial imagery is an important tool for various applica-

tions such as surveillance [31, 32], urban planning, disaster
management, and military reconnaissance. However, the
images captured from an aerial platform can often be de-

Figure 1. First Row: For different densities, the existing meth-
ods require separately trained models vs proposed method which
consists of a consolidated model. Second Row: Graphical illustra-
tion of the computational complexity and performance of the pro-
posed method with existing state-of-the-art methods in terms of
GFLOPs (on image size 256 × 256) vs PSNR (on RICE dataset).
The proposed consolidated method achieves better performance
with lesser computational complexity.

graded due to the presence of atmospheric haze with various
densities, which can reduce the visual quality and make it
difficult to discern important details. Therefore, the devel-
opment of an efficient and effective aerial image dehazing
model is crucial for improving the performance of depen-
dent application significantly.

For aerial image dehazing, existing handcrafted ap-
proaches utilized virtual point clouds [28], dark-channel
prior [10, 28], frequency correlation [44], etc. However,
such hand crafted methods perform better on specific set
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of images and do not generalize well on real-world sce-
narios. The recent advancements in deep learning architec-
tures boosted the research in the direction of image restora-
tion [16, 17]. Specifically, using the adaptive capabilities
of convolutional neural networks (CNNs), the researchers
have proposed improved approaches for aerial image dehaz-
ing. These approaches include generative adversarial net-
works (GANs) [30], unsupervised learning [29], etc. Huang
et al. [12] proposed a synthetic aperture radar (SAR) prior
based approach for aerial image dehazing, which has a lim-
itation of prior dependency. For eliminating the data prior
dependency, [15] proposed a transformer based approach
for aerial image dehazing, but imposes higher computation
burden and lower runtime. All the above-mentioned learn-
ing based methods utilize separate training checkpoints for
different densities of haze.

In brief, the existing aerial image dehazing approaches
have certain limitations: 1) Single-Domain Applicability:
Existing methods utilize separately trained models for de-
hazing images with different densities. 2) Computational
Complexity: The existing approaches possess high com-
putational complexity, making them inapplicable in practi-
cal scenarios. Therefore, there is a need of dehazing model
that has less computational complexity, making it suitable
for real-world applications, and generalizes well to differ-
ent types of aerial images, ensuring better performance and
accuracy.

To circumvent these limitations, we propose a novel
lightweight and consolidated approach for aerial image de-
hazing, having only 1.7M trainable parameters (half of the
existing method [5]), and requiring only single checkpoint
model for restoring images with different densities of haze.
In contrast to existing method [12], the proposed method
does not require any additional data as prior information.
Next, the existing methods do not have provision for learn-
ing density-related features, whereas the proposed network
adopts learning of such features through the proposed Den-
sity Aware Query Modulation block. This block allows the
proposed network to remove various haze densities present
in aerial images in a consolidated manner. It is notewor-
thy that the proposed method requires only single trained
checkpoint. Further, state-of-the-art aerial image dehaz-
ing approach AIDNet [15] directly passes inter-stream in-
formation, making it prone to passing irrelevant degraded
features. Unlike AIDNet [15], we give provision to the
proposed network for fusing the inter-stream features in an
adaptive manner, and propagate most relevant features with
the proposed Adaptive Gated Feature Fusion block. Further,
in contrast to previous approaches which do not consider
multi-receptive learning in their basic blocks, we propose a
Cross Collaborative Feed-Forward blocks to focus on multi-
receptive information, essential for restoring images. The
main contributions of this work are enlisted as:

• First consolidated approach for aerial hazy image
restoration, which is a single trained model to restore
images with various densities of haze, and has less
computational complexity than existing methods (re-
fer Figure 1 for overview).

• A Density Aware Query Modulated (DAQM) Block
is proposed for adapting to various densities of haze
present in aerial images (Sec. 3.1).

• A Cross Collaborative Feed-Forward (CCF) Block
equipped with multi-kernel feature extractors is pro-
posed to capture varying sizes of structures in the aerial
images (Sec. 3.2).

• An Adaptive Gated Feature Fusion (AGFF) Block is
proposed for fusing and propagating relevant informa-
tion within the proposed network (Sec. 3.3).

Substantial experiments on synthetic and real world images,
along with detailed ablation studies, verify the effective-
ness of the proposed method for hazy aerial image restora-
tion. We further evaluate the applicability of the proposed
method by experimenting on other image restoration task,
such as underwater image enhancement.

2. Literature Review
Initial efforts were focused on haze removal from out-

door images using hand-crafted priors, as reported in sev-
eral studies such as [1, 7, 10, 36, 37, 47]. He et al. [10]
introduced DCP which is a baseline prior relevant to haze
for obtaining coarse-level depth information to de-haze the
image. However, it exhibited a halo effect near com-
plex edge structures and failed to produce satisfactory re-
sults in the sky regions. Salazar-Colores et al. [34] im-
proved upon DCP by combining it with mathematical mor-
phology operations like erosion and dilation to efficiently
compute transmission maps. In recent years, researchers
[2,5,18,27,33,35,40,41,45] have developed convolutional
neural networks (CNNs) for transmission map estimation
followed by atmospheric scattering models for achieving
haze removal. Cai et al. [2] proposed a deep network that
estimates the transmission map and uses an atmospheric
scattering model for haze removal from the image. Dong
et al. [5] proposed a multiscale boosted decoder based on
dense connections. Zhao et al. [45] proposed a two-stage
framework with weakly-supervised learning and unpaired
adversarial learning. Jia et al. [13] utilized a network by
leveraging meta attention, and Liu et al. [26] proposed a
feature extraction-based method for integrating all charac-
teristic information for haze removal in a multi-branch man-
ner. Chen et al. [4] proposed the adaptation of network
trained on synthetic data to enhance performance on real-
world data. Li et al. [20] proposed a compact multi-scale
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Figure 2. Representation of the proposed network for aerial image haze removal.

feature attention and multi-frequency representation learn-
ing network trained in unsupervised manner.

Various techniques have been developed, especially for
haze removal from aerial images. For example, Zhang
et al. [44] proposed a correction technique that correlates
multi-level color bands. Liu et al. [24] utilized virtual cloud
points, while Long et al. [28] utilized DCP proposed by He
et al. [10] for removing haze from real-world images. Guo
et al. [9] employed residual learning strategies and chan-
nel attention modules for fast network convergence and ef-
fective channel correlation. Pan [30], proposed a model
with local-to-global spatial attention for cloud and haze re-
moval. Grohnfeldt et al. [8] used a cGAN with the fusion
of SAR prior and multi-spectral image data for cloud re-
moval. Huang et al. [12] used RGB and SAR prior infor-
mation for aerial image de-hazing with dilated convolution
based GAN. Mehta et al. [29] proposed SkyGAN, a GAN
framework incorporating hyper-spectral images (HSI) guid-
ance for aerial image de-hazing. However, these methods
lack in capturing the long range dependencies. This issue is
mitigated with advancements of transformer architectures.

Transformers have gained popularity over CNNs due to
their ability to capture long-range dependencies. They have
been used in computer vision through Vision Transform-
ers (ViT) [6], which employ flattened patches of images
while training. Image processing transformers have also
been used for low-level vision tasks, as demonstrated by
[3], who showed how pre-training on large datasets can im-
prove performance. UFormer [39] uses a U-Net like struc-
ture with transformers for image restoration tasks. [15] pro-
posed a transformer-based network for aerial image dehaz-
ing, which extracts transformer embeddings in a spatially

attentive manner. However, this approach requires sepa-
rately trained models and higher computational cost. Fur-
ther, these explained methods do not consider various den-
sities of haze present in the aerial images as they do not
contain feature processing blocks required for generaliza-
tion, which is addressed in the proposed method.

3. Proposed Aerial Image Dehazing Method
The main aim of the proposed method is to restore

the visibility in aerial images containing different densi-
ties of haze in a consolidated manner (single checkpoint
model) while maintaining low computational complexity.
To achieve this, we propose: (a) Density Aware Query
Modulation Blocks (DAQM) to deal with the degradation-
relevant feature extraction, (b) Cross Collaborative Feed-
forward Blocks (CCF) to learn multi-receptive features, and
(c) Adaptive Gated Feature Fusion Block (AGFB) to col-
lect and adaptively fuse the features from both the streams
in network. In the following sections, we provide a detailed
explanation of the proposed blocks. Proposed network ar-
chitecture is illustrated in Figure 2.
Overall Pipeline: The input image is passed through Den-
sity Extraction Block (DEB), whose output (Fdensity , de-
noted by red arrows in Figure 2) is provided to each DAQM
block. Then, the input image is passed through initial con-
volution layer which is then further passed through two-
stream interconnected network. The first stream processes
the input in the original scale, and the second stream ex-
tracts features in a multi-scale manner. The streams are
fused with the proposed Adaptive Gated Feature Fusion
blocks. Finally, outputs of both the streams are concate-
nated and passed through a final convolution block, after
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which it is added with the input to get a haze removed im-
age. The architecture configurations are provided in the
supplementary material.

3.1. Density Aware Query Modulated Block

Aerial images are often degraded by haze in varying den-
sities, ranging from thin to moderate and thick. To effec-
tively restore such images, it is necessary for the deep learn-
ing network to adapt the varying density of haze present in
the images. Inspired by application of transformers in nat-
ural language processing (NLP) [6, 38, 39, 42, 46], where
from the embedding of a word (query) from the input text,
the importance of every other word embeddings (keys) in
the same text (importance with respect to query) is mea-
sured and an updated embedding is created by merging their
information. Inspired from such update strategy, we corre-
spond the queries as density extracted information, where
the output features can be obtained with relevance to the
extracted density features. To achieve this, we propose the
Density Aware Query Modulated blocks (DAQM) detailed
as follows.

Let Fin be the input features to the DAQM. The DAQM
block involves initial extraction of query (Q), key (K) and
value (V ) from the layer normalized tensor (FLN

in ) by ap-
plying 1×1 convolutions followed by 3×3 depth-wise con-
volutions for encoding non-local and channel-wise spatial
context. The density features Fdensity are extracted from
the input hazy image using a Density Extraction Block
(DEB) (see Figure 2). DEB contains a series of 3×3 con-
volution layers. This is intended to gradually increase the
receptive field and learn diverse features from the input im-
age. The earlier convolutional layers learn edges and tex-
tures affected with different densities of haze whilst the
later (deeper) layers learn the global density features, due
to gradual increase in receptive field. Precisely, it captures
patterns in the input image that correlates with varying lev-
els of haze density. The extracted density features are then
fed into the Density Aware Query Modulation Block, where
they are fused with the extracted queries through concate-
nation to get QM . Later, the modulated query (QM ), key
(K) and value (V ) projections are reshaped (denoted as
QM

R ,KR, VR) to maintain low computational complexity in
order of feature channels instead of spatial dimensions [42].
We further obtain the output of DAQM block (FDAQM ) as:

FDAQM (Fin,Fdensity) = Fin+C1(<(VR�δ(QM
R �KR)))

(1)
where, CN is convolution with kernel size N × N , <(·)
is the reshaping operation which reshapes the tensor back
to shape of Fin. � is matrix multiplication and δ(·) is the
softmax operation.

The fusion of density features into the queries in the
DAQM block allows the network to achieve a restoration
process that adapts to the density of haze present in the

image, promoting its robustness and generalization across
various types of hazy images. The effectiveness of the pro-
posed DAQM is provided in Sec. 5.

3.2. Cross Collaborative Feed-Forward Block

Aerial images contain a diverse range of structures, in-
cluding buildings, roads, vegetation, and water bodies, each
with distinct shapes and sizes. One of the challenges in im-
age restoration tasks is to learn such intricate and varying
structures. Traditional approaches often use a fixed-size
kernel to capture the variations in size, which limits their
effectiveness in handling complex structures. To address
this challenge, we have introduced the Cross Collaborative
Feed-Forward Block (CCF) in the proposed network archi-
tecture. The term “cross-collaborative” refers to the inter-
gating mechanism between features extracted using convo-
lutions with different kernel sizes. The output features from
CCF can be equated mathematically as:

FCCF (Fin) = Fin+〈℘
(
Cd

3 (φ), C
d
1 (φ)

)
, ℘

(
Cd

5 (φ), C
d
1 (φ)

)
〉

(2)
℘(x, y) = x ∗ ζ(y) (3)

φ = C1

(
FLN
DAQM

)
(4)

where, 〈a, b〉 represents concatenation of a, b, ℘(·) is the
gating operation, ζ(·) is GELU activation [11], and FLN

DAQM

represents layer norm of FDAQM . Incorporating cross-
kernel collaborative learning enables the ability to effec-
tively attend to diverse receptive fields within input features,
leading to enhanced perceptual quality in the resultant im-
ages. The effectiveness of the proposed CCF block is anal-
ysed in Sec. 5.

3.3. Adaptive Gated Feature Fusion

We observe that relevant feature fusion and propaga-
tion are important prerequisites for generalized aerial im-
age haze removal. The existing method outlined in [15]
employed a feature fusion strategy that involved the direct
merging of features extracted from distinct scales of the in-
put image. Such approach can be susceptible to the propa-
gation of irrelevant and degraded information. To avoid this,
we have introduced Adaptive Gated Feature Fusion Blocks
(AGFF) to merge and disseminate features from both origi-
nal scale stream and multi-scale stream. AGFF aims to of-
fer a two-tiered attention mechanism that enhances selec-
tivity during feature propagation. AGFF provides i) scale-
level feature attention and ii) intra-feature attention. To
provide relevant importance to features from either original
or multi-scale transformer stream, we utilize mixup strat-
egy [43] (originally proposed for data augmentation) weigh-
ing the features. We make the weighing parameter trainable
using a trainable tensor. This parameter is then multiplied
with the respective stream features for deciding their im-
portance. Following this, we provide gated attention to the
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Figure 3. Qualitative results on Sate-1K dataset. The compared methods are: DCP [10], Huang et al. [12], DehazeNet [2], SkyGAN [29],
UFormer [39], AIDNet [15] and the proposed method (Ours).

Table 1. Quantitative results comparison of the proposed method with existing methods on Sate-1K dataset having density splits: Thin,
Moderate and Thick. Here, TS: Task Specific, trained on separate datasets, C: Consolidated, trained in a consolidated manner. Red
represents best and Blue represents second best performance values.

Methods Thin Haze Moderate Haze Thick Haze
PSNR SSIM PSNR SSIM PSNR SSIM

DCP [10] 13.15 0.7246 9.78 0.5735 10.25 0.5850
SAR-Opt-cGAN [8] 20.19 0.8419 21.66 0.7941 19.65 0.7573
DehazeNet [2] 19.75 0.8950 18.12 0.8552 14.33 0.7064
Huang et al. [12] 24.16 0.9061 25.31 0.9264 25.07 0.8640
SkyGAN [29] 25.38 0.9248 25.58 0.9035 23.43 0.8925
UFormer [39] 25.79 0.9270 26.11 0.9308 25.15 0.9017
AIDNet [15] 27.68 0.9511 27.03 0.9472 26.72 0.9290
Proposed Method - TS 31.85 0.9750 30.53 0.9714 29.31 0.9589
Proposed Method - C 30.32 0.9723 29.65 0.9677 27.97 0.9413

weighted features to provide intra-feature importance to rel-
evant regions in the features. AGFF can be equated mathe-
matically as:

FAGFF = 〈f ′1 ∗ ζ(f ′1), f ′2 ∗ ζ(f ′2)〉 (5)

f ′1 = λ ∗ f1, f ′2 = (1− λ) ∗ f2 (6)

where, f1 and f2 are the inputs to AGFF block, where, the
f1 features are obtained from the original scale stream and
f2 are obtained from multi-scale stream. λ = σ(θ) is the
adaptive weighing parameter obtained with a trainable ten-
sor θ activated with Sigmoid activation σ(·).

All the proposed modules contribute towards providing a
consolidated solution for aerial hazy image restoration. The
effectiveness of each proposed module is elaborated in Sec.
5.

4. Experimental Discussion
4.1. Datasets

i) Sate-1K Dataset [12]: The dataset comprises of
pairs of aerial images, namely clean and degraded im-
ages, with varying levels of haze density - thin, moder-
ate, and thick. Through data augmentation techniques such
as random flipping, 640×3 = 1920 image pairs (degraded

and ground-truth) are used for training purpose, containing
light, medium, and dense haze, and 45 image pairs are ded-
icated for testing in each level of haze density.

ii) RICE Dataset [22]: The dataset includes aerial im-
ages degraded by haze that cover various types of earth sur-
faces such as urban scenes, oceans, deserts, mountains, and
more. With the help of data augmentation techniques, we
have utilized 800 pairs of images for training and 100 pairs
for testing purposes.

For consolidated training, we have merged these two
datasets for combined learning of the degradations. Hence,
a total 2720 pairs of training images are utilized. And the
testing is done on testing sets of respective datasets (45 per
density split for Sate-1K dataset, and 100 for RICE dataset).

4.2. Training Details

The input images are resized to 256× 256 for training
of the proposed network. We have utilized L1 and per-
ceptual loss [14] (calculated between the restored output
and ground truth) in a weighted manner for training of the
proposed network. Detailed equations of these loss func-
tions are provided in the supplementary material. During
training, we utilized the ADAM optimizer with an initial
learning rate of 1×10−3, and vary it using cosine anneal-
ing strategy. The proposed network is implemented us-
ing the PyTorch library and trained on NVIDIA-DGX sta-
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Figure 4. Qualitative results comparison on RICE dataset. The compared methods are: USID [20], MSBDN [5], TSDNet [26], RefineDNet
[45], SPA-GAN [30], UFormer [39], AIDNet [15] and the proposed method (Ours).

Figure 5. Qualitative results comparison of the proposed method (Ours) with existing state-of-the-art methods (USID [20], MSBDN [5],
TSDNet [26], RefineDNet [45], SPA-GAN [30], UFormer [39], AIDNet [15]) on realworld aerial images.

Table 2. Quantitative results comparison of the proposed method
with existing methods on RICE dataset.

Methods PSNR SSIM

MSBDN [5] 24.58 0.8341
RDNet [45] 28.81 0.9193
USID [20] 26.77 0.8733
TSDNet [26] 29.07 0.9274
SPA-GAN [30] 30.23 0.9540
UFormer [39] 30.17 0.9531
AIDNet [15] 33.79 0.9703
Proposed Method - TS 36.33 0.9881
Proposed Method - C 35.21 0.9815

Table 3. Computational complexity analysis in terms of number of
parameters, GFLOPs and run-time (with image size 256 × 256).

Methods # Par
(M) GFLOPs Run-time

(sec/image)
USID [20] 3.70 160 0.15
MSBDN [5] 31.35 83 0.12
RDNet [45] 65.13 154 0.20
UFormer [39] 50.88 89 0.16
AIDNet [15] 20.32 98 0.13
Proposed Method 1.49 12.1 0.07

tion equipped with an Intel Xeon E5-2698 processor and
NVIDIA Tesla V100 16 GB GPU for 400K iterations, tak-
ing approximately 25 GPU hours.

4.3. Quantitative Analysis

In this section, we evaluate performance of the pro-
posed method in quantitative manner. The performance

of the methods is evaluated in terms of peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM). We compare the quantitative results obtained by
our method with existing state-of-the-art techniques on the
Sate-1K dataset in Table 1, and on the RICE dataset in Ta-
ble 2. For fair comparison, the quantitative and qualitative
results are provided after re-training the existing methods
on RICE and Sate1K datasets. As seen from the results, the
proposed network performs better than the existing state-
of-the-art methods on both the datasets viz. having different
densities such as light, medium, and dense. It is noteworthy
that the proposed method is distinct from existing methods
which typically undergo separate training procedures and
have different checkpoints for each dataset and their respec-
tive splits. The proposed approach, on the other hand, is
designed to restore aerial images in a consolidated manner,
signifying that it requires only one checkpoint to effectively
restore images in density-invariant manner, ensuring its ap-
plicability in practical scenarios.

4.4. Qualitative Analysis

In this section, we evaluate the performance of proposed
method in terms of visual results. Figure 3 compares the
qualitative results obtained on the Sate1K dataset, while
Figure 4 presents the results obtained on the RICE dataset.
Further, we evaluate the proposed method on real-world
hazy images and display the results in Figure 5. As seen
from the results, the proposed method stands out to be more
effective in restoring images with better color and detail
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Figure 6. t-SNE visualization of the features extracted from DEB
after providing inputs with various haze densities.

preservation. More qualitative results are provided in the
supplementary material.

4.5. Computational Complexity Analysis

As a preprocessing step, it is crucial for any image
restoration module to have a low computational complex-
ity and fast inference speed. Table 3 presents a comparison
of the proposed method with prevailing methods in terms
of computational complexity. From the values presented
in the table, the proposed method has approximately half
the number of trainable parameters compared to the pre-
vailing methods. Moreover, the proposed method requires
only about one-seventh of the GFLOPs (floating-point op-
erations per second). Further, the proposed network has a
comparatively lower run-time requirement, only about half
of the runtime of existing approach [5]. The computational
complexity of normal convolutional layers is in the order
of O(C2K2HW ), where, C is the number of channels, K
is the kernel size of the convolution filter, H,W are height
and width of the feature map. The methods USID [20], MS-
BDN [5], and RDNet [45] contain convolution filters with
number of channels as much as upto 256. Whereas the
proposed Adaptive Gated Feature Fusion (AGFF) blocks,
and inter-sharing of multi-stream features, allows the net-
work to learn diverse features, and minimizes the need of
expanding the channels throughout the network (which are
upto 128 in the proposed network (please see architecture
details section in the supplementary material). As for the
transformer based methods, the computational complexity
of the key-query dot-product in UFormer [39] and AID-
Net [15] grows quadratically with the window-size (M ),
i.e., O(M4), whereas, inspired from Restormer [42], the
computational complexity of the proposed method grows
quadratically with the number of channels, i.e., O(C2),
where, C < M . These configurations result in the lesser
computational complexity and inference time of the pro-
posed method than existing methods. From this, it is ver-
ified that the proposed method can achieve better results in
efficient (faster) manner.

Table 4. Analysis on effectiveness of Query Modulation (QM) in
terms of PSNR and SSIM on Sate1K - Thin / Moderate/ Thick
dataset.

Setting PSNR SSIM

w/o QM 28.09/ 27.34/ 24.76 0.9483/ 0.9451/ 0.9083
with QM (Additive) 28.85/ 28.08/ 26.22 0.9634/ 0.9502/ 0.9295
with QM (Ours) 30.32/ 29.65/ 27.97 0.9723/ 0.9677/ 0.9413

Table 5. Evaluation of various feed-forward block settings.

Feed-Forward Block Setting PSNR SSIM

Includes FPN [23] 26.59 0.9421
Includes only ℘(Cd

1 , C
d
1 ) 25.87 0.9311

Includes only ℘(Cd
3 , C

d
3 ) 27.21 0.9516

Includes only ℘(Cd
5 , C

d
5 ) 26.73 0.9467

Includes only ℘(Cd
3 , C

d
1 ) 28.26 0.9599

Includes only ℘(Cd
5 , C

d
1 ) 27.91 0.9562

Ours (Includes 〈℘(Cd
3 , C

d
1 ), ℘(C

d
5 , C

d
1 )〉 ) 29.65 0.9677

Table 6. Evaluation of different feature fusion approaches.

Feature Fusion Approach PSNR SSIM

No Fusion 25.09 0.9287
Concatenation 26.55 0.9431
Gated Feature Fusion (without λ) 26.95 0.9489
Adaptive Feature Fusion (without gating) 28.15 0.9513
Adaptive Gated Feature Fusion 29.65 0.9677

Table 7. Evaluation of influence of loss functions.

Training Losses PSNR SSIM

Only L1 Loss 28.01 0.9511
Only Perceptual Loss 27.86 0.9485
L1 + Perceptual Loss 29.65 0.9677

5. Ablation Study
In this section, we analyse the influence of every key el-

ement and design choice in the formulation of the proposed
method. All the experimental settings follow the same train-
ing procedures explained in Sec. 4.

1) Effectiveness of the proposed query modulation:
For this, we train the network with different settings of
the density guided queries and report the corresponding re-
sults in Table 4. As seen from the results, incorporation
of query modulation provides favorable gain of 2.31 dB
PSNR. This can be justified with the feature discriminative
ability of the DEB. Figure 6 illustrates the learned varia-
tions of haze densities by DEB. The clusters in the Figure 6
show the ability of DEB for learning the haze density spe-
cific features effectively. Further, the qualitative results pro-
vided in Figure 7 obtained with and without inclusion of
query modulation proves effectiveness of DAQM in learn-
ing various densities of haze. 2) Influence of variations
in the Feed-Forward block: Upon inspection of Table 5
which provides performance of various settings in Feed-
Forward blocks, and Figure 7 which provides the result
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Figure 7. Qualitative evaluation of the influence of the proposed block. “w/o” refers to exclusion of a particular block from the network.

Table 8. Quantitative analysis on UIEB dataset for underwater
image enhancement.

Methods PSNR SSIM

CLUIE [21] 20.37 0.89
TACL [25] 22.30 0.88
Proposed Method 24.53 0.92

Figure 8. Qualitative results comparison on UIEB dataset.

when CCF is not used in the proposed network, it is verified
that utilizing different kernel sizes in a collaborative man-
ner (proposed CCF block) provide better performance than
other (non-collaborative) settings. 3) Performance evalu-
ation of other fusion mechanisms vs AGFF: The results
of this study are reported quantitatively in Table 6. Fur-
ther, the visual results obtained with and without incorpo-
ration of AGFF are provided in Figure 7. As seen from
the results, the proposed AGFF is able to produce better
perceptual quality. The architectural diagrams of the net-
works implemented for the ablation studies are displayed in
the supplementary material. 4) Loss Functions: We no-
tice that the performance of the proposed network enhances
when trained with combined loss functions (L1 + Percep-
tual Loss) than using each of these loss functions separately.
Table 7 provides the quantitative analysis for the same.

6. Applicability
Until now, we discussed and analysed the proposed

method on aerial image dehazing. In this section, we ver-
ify the applicability of the proposed network for another
widely utilized restoration task i.e. underwater image en-
hancement. We train the proposed transformer network on
UIEB dataset [19] containing 800 pairs (further augmented
to 2400 via random flipping) for training and 90 images for
testing. The quantitative results in comparison with existing

Figure 9. Qualitative results comparison for real-world underwater
image enhancement.

state-of-the-art methods for underwater image enhancement
are provided in Table 8. The qualitative results compari-
son on UIEB dataset is provided in Figure 8. We further
compare the qualitative results on challenging real-world
underwater images in Figure 9. As seen from the results
analysis, the proposed method shows superior performance
both qualitatively and quantitatively, hence proving the po-
tential applicability of the proposed method for other image
restoration tasks. More qualitative results are provided in
the supplementary material.

7. Conclusion
In this paper, we proposed a lightweight and consoli-

dated approach for aerial image dehazing, which has advan-
tages of generalizability (single trained model) and lower
computational complexity. To achieve this, a density aware
query modulated block is proposed for learning restoration
of aerial images with various haze densities in a consoli-
dated manner. Further, a cross collaborative feed-forward
network is proposed for extracting structures with varying
sizes within an image using depthwise convolutions with
varying kernel sizes. Lastly, an adaptive gated feature fu-
sion block is introduced for providing dual (scale-level and
intra-feature) attention while fusing and propagating the
features in the network. Substantial experiments on syn-
thetic as well as real-world images, along with extensive
ablation studies demonstrated the effectiveness of proposed
method for consolidated aerial hazy image restoration. We
further analysed the proposed approach for the task of un-
derwater image enhancement, which shows applicability of
the proposed approach for other image restoration task.
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