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Abstract

Unsupervised Domain Adaptation (UDA) aims to lever-
age the labeled source domain to solve the tasks on the un-
labeled target domain. Traditional UDA methods face the
challenge of the tradeoff between domain alignment and se-
mantic class discriminability, especially when a large do-
main gap exists between the source and target domains.
The efforts of applying large-scale pre-training to bridge
the domain gaps remain limited. In this work, we propose
that Vision-Language Models (VLMs) can empower UDA
tasks due to their training pattern with language alignment
and their large-scale pre-trained datasets. For example,
CLIP and GLIP have shown promising zero-shot general-
ization in classification and detection tasks. However, di-
rectly fine-tuning these VLMs into downstream tasks may
be computationally expensive and not scalable if we have
multiple domains that need to be adapted. Therefore, in this
work, we first study an efficient adaption of VLMs to pre-
serve the original knowledge while maximizing its flexibil-
ity for learning new knowledge. Then, we design a domain-
aware pseudo-labeling scheme tailored to VLMs for domain
disentanglement. We show the superiority of the proposed
methods in four UDA-classification and two UDA-detection
benchmarks, with a significant improvement (+9.9%) on
DomainNet.

1. Introduction
The domain gap between curated datasets from a source

domain and real-world applications (target domain) can sig-
nificantly downgrade the models’ performance, including
both image classification [21, 52, 60, 73] and object detec-
tion [2, 9]. However, curating the dataset by humans for
each application domain can be time-consuming and labor-
intensive. To relieve the annotation costs, unsupervised do-
main adaptation (UDA) is proposed to train a model for an
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Figure 1. Comparison between existing UDA methods and our
proposed CLIP-based method for UDA classification.

unlabeled target domain by leveraging a source domain that
is well-annotated to transfer the knowledge across the do-
main shift [11, 35, 52, 60, 73].

Prior standard UDA methods [3, 15, 32, 35] are built
on ImageNet pre-trained Convolutional Neural Networks
(CNN, e.g., ResNet [20]), which serves as the vision en-
coder and achieves impressive results on small-sized UDA
classification benchmarks, such as Office-31 [46]. To
get a better alignment across different domains, recent
works [52, 60, 78] use the pre-trained Vision Transformers
(ViT) [10] as the backbone since the cross-attention layer in
ViT can achieve better feature alignment between different
domains [60,78]. However, although pre-trained ViT-based
methods have shown improvement compared to the ResNet-
based methods, the results on large-scale benchmarks, such
as DomainNet [42], are still limited. As shown in Table 1,
the most recent method [78] can only get the average accu-
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Table 1. The importance of pre-trained architectures from Do-
mainNet [42]. The score is averaged on six domains.

Method Backbone Source Target Accuracy
RN-101 [20] ResNet-101 ✓ ✗ 26.6
MDD [28] ResNet-101 ✓ ✓ 28.6

MDD+SCDA [32] ResNet-101 ✓ ✓ 33.3
ViT-B [10] ViT-B-16 ✓ ✗ 38.1
SSRT [52] ViT-B-16 ✓ ✓ 45.2

PMTrans [78] ViT-B-16 ✓ ✓ 52.4

racy at 52.4%, which is far from satisfactory. Therefore, it
is urgent to strengthen the performance of UDA algorithms
on such large-scale datasets in real-world scenarios.

Moreover, the importance of pre-trained architectures is
barely mentioned in the previous works [60, 78]. As shown
in Table 1, we find a pre-trained ViT-B [10] fine-tuned
only on the labeled source dataset has already outperformed
other ResNet-based methods, including a complicated ap-
proach that combines MDD [28] and SCDA [32] (38.1%
vs 33.3%). In other words, ViT-B can beat these methods
even it has not seen any image from the unlabeled target do-
main. Therefore, from the above observation, we hypothe-
size that pre-trained model backbones and pre-trained data
are an important missing piece for effective UDA in prac-
tical settings. Vision-Language pre-trained models (e.g.,
CLIP [44] and GLIP [29, 70]) have shown their power in
learning generic and distinctive visual representations via
language supervision, where each image will have more de-
scriptive information compared to a single label [24,39,44].
However, there are very few works applying such models in
UDA tasks [16].

Existing UDA methods include discrepancy minimiza-
tion and adversarial training to learn domain-invariant rep-
resentations by applying domain discriminators [18,37,40].
However, aligning domains and reducing the discrepancy
could hurt the learning performance and result in the loss of
semantic information [16, 53]. Such loss occurs due to the
entangled nature of semantic and domain information, es-
pecially when dealing with intricate data distribution where
the manifold structures are complex [1]. To alleviate this
issue, another branch of methods [2, 5, 30] focuses on pre-
serving the semantic information to highlight class discrim-
inability. However, these techniques face a nuanced bal-
ance challenge between aligning domains and retaining se-
mantic attributes, as these two objectives could be adver-
sarial. Exploring disentangled semantic and domain rep-
resentations could provide an alternative avenue, allowing
for the potential disregard of domain alignment. Compared
to conventional UDA methods that aim to learn domain-
invariant representations by aligning the source and target
domains, we hypothesize that VLMs are naturally good do-
main adapters due to the language alignment involved dur-
ing training to disentangle the domain and class informa-

tion: vision-language alignment loss has the potential to
disentangle domain and class information. The main dif-
ference between traditional UDA and CLIP-based methods
is summarized in Fig. 1.

However, these large-scale pre-trained VLMs have the
following two challenges: 1) they have billions of param-
eters that require heavy computational resources to tune;
2) such big models may suffer from the overfitting prob-
lem, where the original knowledge learned from the 400M
dataset (CLIP [44]) can significantly deteriorate through
standard fine-tuning [27]. In this work, we propose an
end-to-end pipeline to efficiently adapt these VLMs to the
UDA tasks. We first freeze the text encoder and propose
Prompt Task-dependent Tuning to tune the prompt for the
downstream tasks carefully. Second, we freeze the vision
encoder but propose a Visual Feature Refinement to fine-
tune the visual representations instead of tuning the en-
tire encoder. Lastly, we adapt pseudo-labeling from semi-
supervised classifiers into language-based pseudo-labeling
and incorporate domain information, called Domain-aware
Pseudo-Labeling, to leverage the unlabeled target domain.

2. Related Works
Unsupervised Domain Adaptation (UDA) is initially

studied for image classification tasks [2, 12]. Recent UDA
methods aim to learn discriminative domain-invariant fea-
tures and achieve domain alignment via metric learning and
adversarial training. The metric learning-based methods
use various metrics to reduce the domain discrepancy and
learn the domain-invariant representations. For example,
some works [25, 31, 38] use Maximum Mean Discrepancy
(MMD) loss to measure the divergence between the source
and target domain. On the other hand, adversarial training-
based methods use an adversarial loss to encourage sam-
ples from different domains to be deprived from the domain
information, thus the model can fully focus on the seman-
tic attributes. Recent works [52, 60] found that the cross-
attention module in Vision Transformer (ViT) [10] is bene-
ficial to feature alignment. Hence these works [52, 60, 61]
use ViT as their encoder and achieve superior results than
CNNs.

Vision-Language Models (VLMs) have shown promis-
ing results in learning generic visual representations [24,
39, 44, 68] with language-vision alignment. Recent mod-
els scale up the architectures with Transformers [41, 54],
advancing the power via contrastive representation learn-
ing, and web-scale training datasets [76]. For example,
CLIP [44] was pre-trained on 400 million image-text pairs
and achieved state-of-the-art performance in various down-
stream tasks [44, 64, 66, 67]. On the other hand, GLIP [29]
was pre-trained on 27 million grounding data to leverage
massive image-text pairs. It can achieve 60.8 Average Pre-
cision (AP) on COCO validation set after fine-tuning, show-
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Figure 2. Overview. We propose Prompt Task-dependent Tuning (PTT) and Visual Feature Refinement (VFR) to adapt VLMs to the
specific task. Then we design a three-stage scheme to achieve domain adaptation: 1) learn class representations on the source domain with
domain-agnostic prompts; 2) generate pseudo labels on the target domain and convert them into domain-aware prompts; 3) joint training
with domain-aware prompts from both source and target domains.

ing its semantic-rich learned representations. However, the
best way to adapt VLMs for downstream tasks is still under
study.

Efficient adaptation of VLMs is the key to the down-
stream tasks. We focus on parameter-efficient learning
compared to full-model fine-tuning that may involve bil-
lions of parameters [65]. Existing works can be divided into
two groups: prompt tuning (PT) [23, 39, 47, 49, 57, 75, 76]
and adapter-style tuning (AT) [14, 65, 72]. PT-based meth-
ods focus on generating appropriate prompts for the down-
stream tasks. However, they freeze both vision and text en-
coders, limiting models’ learning ability. AT-based methods
focus on refining the vision or text features. For example,
CLIP-adapter [14] designed a residual feature connection to
preserve the original knowledge and learn the new knowl-
edge. However, such methods have a hyper-parameter to set
the residual amount for preservation, which requires addi-
tional experiments to tune manually. In this work, we aim to
propose a module that can preserve pre-trained knowledge
while keeping the maximum flexibility for gaining new vi-
sual concepts.

3. Methodology
Given a source domain of labeled data Ds =

{(xs
i , y

s
i )}

Ns
i=1 and a target domain of unlabeled data Dt =

{(xt
i)}

Nt
i=1, we aim to train a model to adapt from the source

domain to the unlabeled target domain. Ns and Nt denote
the source and target domain data samples, respectively. In
this section, we first propose a parameter-efficient method
for adapting VLMs to downstream tasks. We use CLIP [44]

for classification and GLIP [29] for detection as two ex-
amples. As shown in Fig. 2, We freeze both vision and
text encoders. Then, we propose Prompt Task-dependent
Tuning (PTT) to fine-tune the prompt to fit the downstream
task. Then, instead of fine-tuning the entire vision encoder,
we propose Visual Feature Refinement (VFR) for CLIP
and VFR+ designed in a pyramid architecture tailored for
GLIP on the source domain to learn the class representa-
tions. Lastly, we propose Domain-Aware Pseudo-labeling
to leverage the target domain and achieve domain disentan-
glement while preserving the semantic information.

3.1. Adapt VLM for UDA

We first modify CLIP to be suitable for UDA classifica-
tion tasks. CLIP [44] has a vision encoder f(·) that maps
images into low-dimensional visual representations and a
text encoder g(·) that converts sentences into text represen-
tations. CLIP requires image-text pairs to train these two
encoders jointly via contrastive loss [58]. Inspired by a re-
cent work that fine-tuning should follow the same way as
pre-training [19], we keep this contrastive loss by preparing
image-text pairs for training instead of building new linear
layers and using the loss associated with downstream tasks.
This is advantageous to preserve the original knowledge
and keep the language-vision alignment. Specifically, the
text for CLIP can be “a [DOMAIN] photo of a [CLASS]”,
where [CLASS] is the class name and [DOMAIN] is the
domain name in UDA tasks (e.g., a painting photo of a dog).
In the testing phase, we employ CLIP’s zero-shot inference
approach, where we assess image representations by match-
ing them against the classification weights produced by the
text encoder, denoted as {θz}Kz=1. By feeding K descrip-
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tions corresponding to K classes, we get the probability of
the image belonging to the k-th category.

pk = P (ŷz = k|x) = exp(cos(θk, f(x)/T )∑K
z=1 exp(cos(θz, f(x)/T )

(1)

where T is the temperature parameter learned by CLIP, cos
refers to cosine similarity [44]. We denote a vector of pk as
p (probability of a sample in a batch).

3.2. PTT: Prompt Task-dependent Tuning

For pre-trained VLMs, the text input (prompt) plays
an essential role in downstream tasks [76]. For example,
adding “a” before the class token can bring more than 5%
of accuracy improvement on CLIP’s zero-shot performance
on Caltech101 [76]. This illustrates that even a slight pertur-
bation in the prompt can result in a considerable difference
in performance. On the other hand, adding task-relevant
context and tuning the sentence structure can further im-
prove the zero-shot accuracy. However, manual tuning can
be labor-extensive, and there is no guarantee of obtaining
the optimal structure for the downstream tasks. Inspired
by GLIP [29], we incorporate a linear layer to convert the
prompt tokens to fit our specific task. In the fine-tuning
stage, we freeze the text encoder and will only tune this lin-
ear layer for the prompt, as shown in Fig. 2. The objective
of the linear layer is to introduce trainable perturbations to
the prompt, enhancing its adaptability to downstream tasks.
Specifically, if the original language embedding is denoted
as g, we add a linear layer to convert it to g′ and the vision-
language alignment is optimized via the fine-tuning stage.

3.3. VFR: Visual Feature Refinement

As the large-scale architectures of VLMs may involve
billions of parameters, it is impractical to fine-tune the en-
tire model on the downstream tasks in a low-data setting.
Instead of fine-tuning the entire vision encoder, we focus
on adapter-style tuning (AT) [14, 65, 72] to achieve the fol-
lowing two goals: 1) inheriting the large-scale pre-trained
knowledge, which has been verified as transferable; 2)
adapting and learning the task-specific knowledge from the
limited data. Existing methods such as CLIP-Adapter [14]
design a residual feature connection to fuse the pre-trained
and new knowledge. In general, their tuning can be formu-
lated as

f = f(x) + αW(f(x)), (2)

where f(x) is the pre-trained features from the vision en-
coder and α is the scaling factor. W is a trainable and
lightweight module consisting of several layers. However,
such methods [14, 65, 72] have two limitations. First, α
is a hyper-parameter that needs to be tuned to control the
weights between pre-trained and new knowledge, which
may not be scalable if we have multiple downstream tasks

and need to tune it for every new task. Second, they may
heavily rely on pre-trained knowledge, which prevents a
thorough exploitation of the new knowledge and thus results
in limited learning flexibility compared to the full-model
fine-tuning. Therefore, we aim to propose a visual feature
refinement module to alleviate the above two issues.

3.3.1 VFR for CLIP

Inspired by [65] that focuses on tuning the text-based clas-
sifier, we aim to tune the vision encoder for learning new
concepts in the downstream task, e.g., labeled source do-
main. To exploit new knowledge without being constrained
by pre-trained knowledge, we modify Eqn. 2 with a set
of tunable parameters w, which is independent of the pre-
trained knowledge to increase the flexibility of learning new
visual concepts. Therefore, new class-level representations
specific to the source domain can be appropriately supple-
mented with the pre-trained knowledge. We use a vector to
store and tune the set of parameters w, written as

f(x) = f(x) +w, (3)

where we do not introduce any scaling ratio as an additional
hyper-parameter. w is implemented as a linear parameter
layer and will be self-scaled in the backpropagation, en-
abling reliable preservation of pre-trained knowledge and
flexible exploitation of new visual concepts.

Figure 3. VFR+ for GLIP. We design a pyramid architecture to
refine the visual features from the backbone and then input them
into DyHead Module [7] for the detection objective. Note that
every single layer in VFR+ is independent of each other to increase
the flexibility of learning new knowledge.

3.3.2 VFR+ for GLIP

Although CLIP has shown strong image-level representa-
tions, it lacks a fine-grained understanding of images for
object detection tasks [29], which indicates that CLIP may
not be applicable to UDA detection tasks. We will focus on
GLIP [29] pre-trained on 27M grounding data. In this sub-
section, we modify VFR as VFR+ for adapting GLIP for
UDA object detection. The detection model typically has a
vision backbone, Feature Pyramid Network (FPN), and the
detector. We propose a pyramid architecture and modify
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VFR for GLIP on object detection tasks, called VFR+. As
GLIP uses Swin Transformer [36] as the vision backbone
and DyHead [7] as the detector, we design a five-layer pyra-
mid architecture to fine-tune the visual features outputted
from the vision backbone, as shown in Fig. 3. Note that the
five linear layers are independent of each other to increase
the learning flexibility.

3.4. DaPL: Domain-aware Pseudo-Labeling for Do-
main Disentanglement

After we verify the efficient adaptation of VLMs to
the downstream tasks, we design a three-stage pipeline to
achieve domain disentanglement for the UDA tasks. Specif-
ically, we first adapt VLMs to learn domain-agnostic se-
mantic attributes, e.g., class discrimination. Then, we pro-
pose a language-based pseudo-labeling scheme on the un-
labeled target domain to generate pseudo labels. Lastly, we
convert them into domain-aware pseudo labels and perform
domain-disentanglement training. We use CLIP as the ex-
ample for this subsection.

Domain-agnostic task adaptation on the source do-
main. In this stage, we aim to focus on the class repre-
sentations and adapt the VLMs to learn specific classes in
the downstream tasks. In other words, we will disregard
the domain information but rather entirely focus on adapt-
ing VLMs to semantic attributes. As the source domain is
labeled, we prepare a domain-agnostic prompt for each im-
age as “A photo of a [CLS]”, e.g., “A photo of a dog”. This
is similar to few-shot learning with VLMs. A recent pa-
per found that fine-tuning should use the same loss as the
pre-training [19]. Therefore, we keep the contrastive loss
used in CLIP to train the tuning layers (PTT and VFR) so
that CLIP can be well fine-tuned to this specific task (learn
the required classes in the task). The training objective is
shown below:

Lcon :=

B∑
i=1

− log
exp (f(xi) · g(ti))∑B
j=1 exp (f(xi) · g(tj))

+

B∑
i=1

− log
exp (f(xi) · g(ti))∑B
j=1 exp (f(xj) · g(ti))

,

(4)

where we set a batch with B images with their correspond-
ing prompts D = {(x1, t1), . . . (xB, tB)}. This is the
same pre-training objective in CLIP [44], which could be
interpreted as undergoing training using a substitute clas-
sification task that comprises one image and B classes de-
rived from text embeddings, and conversely, one text and B
classes obtained from image embeddings.

Domain-aware pseudo-labeling on the target domain.
Pseudo-labeling is a common way used in semi-supervised
learning [50, 69] to leverage unlabeled data. Subsequently,
it is introduced in UDA tasks [9,52,60] to leverage the unla-
beled target domain. However, previous pseudo-labeling is

based on traditional classifiers: use the prediction generated
from the classifier on the unlabeled sample and assign the
artificial label as supervision during the self-training pro-
cess. Now we introduce our adaptation of pseudo-labeling
in a format of pseudo prompt for VLMs. Since our prompts
in the source-domain fine-tuning are domain-agnostic, we
first prepare a domain-agnostic prompt for the inference,
such as “A photo of a [CLS]”. After CLIP’s inference on the
target domain (Eqn. 1), we will complete the pseudo prompt
with the classification results. Therefore, the prompt will be
“A photo of a [dog]”. Then we feed the domain information
from the target into the prompt and further refine it as “A
real-world photo of a [dog]” as our final pseudo prompt for
the unlabeled target domain.

Domain-disentanglement training for domain adap-
tation. We propose to use VLMs for the UDA tasks by
exploiting its mixed power from the visual encoder f(·)
and text encoder g(·). Specifically, both encoders can trans-
form the input pair into two disentangled latent representa-
tions: domain representation and intrinsic class represen-
tation. We argue that this structure may naturally bene-
fit the UDA tasks: the similarity score will be optimized
(the distance between the image and text embeddings will
be minimized) if the domain and the class representations
are aligned. From the above sections, we generate domain-
aware pseudo prompts from the target domain. Meanwhile,
we will also convert domain-agnostic prompts in the source
domain into domain-aware prompts. Therefore, our final
fine-tuning data will be from both the source and target do-
mains. Take “painting → real-world” as one example. We
have “A painting photo of a [CLS]” for the source domain
and “A real-world photo of a [CLS]” as the pseudo prompt
for the target domain. We optimize the training objective
by aligning the text and vision encoders via Eqn. 4, which
can disentangle the domain information while learning new
concepts via the loss optimization process. Optimizing this
contrastive loss (Eqn. 4) will maximize the distance be-
tween negative pairs while minimizing the distance between
positive pairs. The domain and class representations can be
disentangled naturally, which subsequently maximizes the
probability of the correct label in Eqn. 1. On the other hand,
a recent work [19] found that keeping the contrastive loss in
fine-tuning will help preserve the original knowledge.

4. Experimental Results
UDA classification datasets. For UDA classification

tasks, we select four popular benchmarks. (1) VisDA-
2017 [43] sets 152k synthetic images as the source domain
and 55k real-world images of 12 categories as the target
domain. (2) Office-Home [55] includes 15,500 images of
65 categories from four domains: Real-world (Rw), Art
(Ar), Clipart (Cl), and Product (Pr) images. (3) Office-
31 [46] has three domains: Webcam (W), Amazon (A),
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Table 2. Accuracies (%) on VisDA-2017. “-B” indicates ViT-B backbone. See full table in Appendix.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

RN-101 [20] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CaCo [22] 90.4 80.7 78.8 57.0 88.9 87.0 81.3 79.4 88.7 88.1 86.8 63.9 80.9
SUDA [71] 91.5 79.7 71.9 66.5 88.5 81.1 85.6 79.5 86.2 86.5 79.9 74.3 80.9
MCC+NWD [3] 96.1 82.7 76.8 71.4 92.5 96.8 88.2 81.3 92.2 88.7 84.1 53.7 83.7
SDAT [45] 95.8 85.5 76.9 69.0 93.5 97.4 88.5 78.2 93.1 91.6 86.3 55.3 84.3
MSGD [59] 97.5 83.4 84.4 69.4 95.9 94.1 90.9 75.5 95.5 94.6 88.1 44.9 84.6
CAN [26] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
AaD [62] 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
SDAT+MIC [21] 96.7 88.5 84.2 74.3 96.0 96.3 90.2 81.2 94.3 95.4 88.9 56.6 86.9
Ours (RN-101) 97.2 89.3 87.6 83.1 98.4 95.4 92.2 82.5 94.9 93.2 91.3 64.7 89.2

ViT-B [10] 99.1 60.7 70.6 82.7 96.5 73.1 97.1 19.7 64.5 94.7 97.2 15.4 72.6
TVT-B [61] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
SHOT-B [60] 97.9 90.3 86.0 73.4 96.9 98.8 94.3 54.8 95.4 87.1 93.4 62.7 85.9
CDTrans [60] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B [52] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
SDAT-B [45] 98.4 90.9 85.4 82.1 98.5 97.6 96.3 86.1 96.2 96.7 92.9 56.8 89.8
PMTrans [78] 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
Ours-B 98.4 94.3 89.0 85.4 98.5 98.3 96.1 86.3 95.1 95.2 92.5 70.9 91.7

Table 3. Accuracies (%) on Office-Home. “-B” indicates ViT-B. See full table in Appendix.

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg.

RN-50 [20] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
SDAT [45] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
MSGD [59] 58.7 76.9 78.9 70.1 76.2 76.6 69.0 57.2 82.3 74.9 62.7 84.5 72.4
AaD [62] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
KUDA [51] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9
DAPL [16] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
Ours (RN-50) 58.1 85.0 84.5 77.4 85.0 84.7 76.5 58.8 85.7 75.9 60.4 86.4 76.5

ViT-B [10] 54.7 83.0 87.2 77.3 83.4 85.5 74.4 50.9 87.2 79.6 53.8 88.8 75.5
CDTrans [60] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT-B [61] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
SDAT-B [45] 70.8 87.0 90.5 85.2 87.3 89.7 94.1 70.7 90.6 88.3 75.5 92.1 84.3
SSRT-B [52] 75.2 89.0 91.1 85.1 88.3 89.9 85.0 74.2 91.3 85.7 78.6 91.8 85.4
SDAT+MIC [21] 80.2 87.3 91.1 87.2 90.0 90.1 83.4 75.6 91.2 88.6 78.7 91.4 86.2
Ours-B 78.2 90.4 91.0 87.5 91.9 92.3 86.7 79.7 90.9 86.4 79.4 93.5 87.3

and DSLR (D). (4) DomainNet [42] is the most challeng-
ing and largest UDA benchmark that has 0.6M images of
345 categories from six domains: Real-world (rel), Quick-
draw (qdr), Painting (pnt), Infograph (inf), Clipart (clp), and
Sketch (skt) images. For Office-Home, Office-31, and Do-
mainNet, we will traverse every domain as the source do-
main and the rest as the target domains. For example, in
Table 3, we use Art (Ar) as the source domain and then use
Clipart (Cl), and Product (Pr) as the target domains.

Table 4. Accuracies (%) on Office-31.

Method A�W D�W W�D A�D D�A W�A Avg.

ViT-B [10] 91.2 99.2 100. 90.4 81.1 80.6 90.4
CDAN+TN [56] 95.7 98.7 100. 94.0 73.4 74.2 89.3
SHOT-B [35] 94.3 99.0 100. 95.3 79.4 80.2 91.4
CDTrans [60] 96.7 99.0 100. 97.0 81.1 81.9 92.6
SSRT-B [52] 97.7 99.2 100. 98.6 83.5 82.2 93.5
TVT-B [61] 96.4 99.4 100. 96.4 84.9 86.1 93.8
Ours-B 98.1 99.4 100. 98.7 84.4 85.5 94.4

UDA detection datasets. For UDA object detection, we

follow the previous works [2, 9, 34] and test it on the fol-
lowing settings. (1). Weather Shift: Cityscapes → Foggy
Cityscapes. We evaluate our method on the domain shift
from normal to adverse weather (foggy) for this setting. We
use the labeled images from Cityscapes [6] as the source
domain and then use Foggy Cityscapes [48] as the target
domain. (2). Camera Shit: KITTI → Cityscapes. In
this setting, we consider different cameras in domain adap-
tation. We use KITTI [17] as the source domain (collected
from vehicle-mounted cameras) and Cityscapes [6] as the
target domain. Following the recent works [2, 9, 34], we
report the performance of the car category.

5. Results
5.1. Adapt CLIP for UDA Classification

VisDA-2017. Table 2 summarizes the accuracies of dif-
ferent methods on VisDA-2017 [43]: we use “-B” to re-
fer to ViT-B backbone and “RN-101” to refer to ResNet-
101 backbone. To have a fair comparison, we first use
RN-101 and compare our results with the recent algo-
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Table 5. Accuracies (%) on DomainNet. In each sub-table, the column-wise means source domain and the row-wise means target domain.
“-B” indicates ViT-B (except CDTrans uses DeiT).

ResNet-
101 [20] clp inf pnt qdr rel skt Avg. MIMTFL

[13] clp inf pnt qdr rel skt Avg. CDAN [37] clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2 clp - 15.1 35.6 10.7 51.5 43.1 31.2 clp - 20.4 36.6 9.0 50.7 42.3 31.8
inf 30.2 - 31.2 3.6 44.0 27.9 27.4 inf 32.1 - 31.0 2.9 48.5 31.0 29.1 inf 27.5 - 25.7 1.8 34.7 20.1 22.0
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8 pnt 40.1 14.7 - 4.2 55.4 36.8 30.2 pnt 42.6 20.0 - 2.5 55.6 38.5 31.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3 qdr 18.8 3.1 5.0 - 16.0 13.8 11.3 qdr 21.0 4.5 8.1 - 14.3 15.7 12.7
rel 48.4 22.2 49.4 6.4 - 38.8 33.0 rel 48.5 19.0 47.6 5.8 - 39.4 32.1 rel 51.9 23.3 50.4 5.4 - 41.4 34.5
skt 46.9 15.4 37.0 10.9 47.0 - 31.4 skt 51.7 16.5 40.3 12.3 53.5 - 34.9 skt 50.8 20.3 43.0 2.9 50.8 - 33.6

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6 Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1 Avg. 38.8 17.7 32.8 4.3 41.2 31.6 27.7

MDD+
SCDA [32] clp inf pnt qdr rel skt Avg. ViT-B [10] clp inf pnt qdr rel skt Avg. CD-

Trans [60] clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9 clp - 27.2 53.1 13.2 71.2 53.3 43.6 clp - 29.4 57.2 26.0 72.6 58.1 48.7
inf 32.7 - 34.5 6.3 47.6 29.2 30.1 inf 51.4 - 49.3 4.0 66.3 41.1 42.4 inf 57.0 - 54.4 12.8 69.5 48.4 48.4
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2 pnt 53.1 25.6 - 4.8 70.0 41.8 39.1 pnt 62.9 27.4 - 15.8 72.1 53.9 46.4
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3 qdr 30.5 4.5 16.0 - 27.0 19.3 19.5 qdr 44.6 8.9 29.0 - 42.6 28.5 30.7
rel 55.5 23.7 52.9 9.5 - 45.2 37.4 rel 58.4 29.0 60.0 6.0 - 45.8 39.9 rel 66.2 31.0 61.5 16.2 - 52.9 45.6
skt 55.8 20.1 46.5 15.0 56.7 - 38.8 skt 63.9 23.8 52.3 14.4 67.4 - 44.4 skt 69.0 29.6 59.0 27.2 72.5 - 51.5

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3 Avg. 51.5 22.0 46.1 8.5 60.4 40.3 38.1 Avg. 59.9 25.3 52.2 19.6 65.9 48.4 45.2

PMTrans
[78] clp inf pnt qdr rel skt Avg. SSRT

-B [52] clp inf pnt qdr rel skt Avg. Ours
-B clp inf pnt qdr rel skt Avg.

clp - 34.2 62.7 32.5 79.3 63.7 54.5 clp - 33.8 60.2 19.4 75.8 59.8 49.8 clp - 70.2 72.4 73.1 75.5 74.9 73.2
inf 67.4 - 61.1 22.2 78.0 57.6 57.3 inf 55.5 - 54.0 9.0 68.2 44.7 46.3 inf 54.8 - 54.6 50.8 56.1 56.2 54.5
pnt 69.7 33.5 - 23.9 79.8 61.2 53.6 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0 pnt 69.9 68.5 - 64.3 74.6 70.2 69.5
qdr 54.6 17.4 38.9 - 49.5 41.0 40.3 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3 qdr 35.3 16.6 29.5 - 30.2 32.3 28.8
rel 74.1 35.3 70.0 25.4 - 61.1 53.2 rel 69.9 37.1 66.0 10.1 - 58.9 48.4 rel 85.1 82.2 83.0 81.2 - 80.3 82.4
skt 73.8 33.0 62.6 30.9 77.5 - 55.6 skt 70.6 32.8 62.2 21.7 73.2 - 52.1 skt 67.4 65.9 66.4 62.3 65.6 - 65.5

Avg. 67.9 30.7 59.1 27.0 72.8 56.9 52.4 Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg. 62.5 60.7 61.2 66.3 60.4 62.8 62.3

Table 6. Results on UDA detection: Cityscapes→Foggy Cityscapes (%). ZS refers to zero-shot, SO refers to source-only setting.

Method Reference person rider car truck bus train motor bike mAP

SIGMA [33] CVPR’22 44.0 43.9 60.3 31.6 50.4 51.5 31.7 40.6 44.2
AT [34] CVPR’22 45.5 55.1 64.2 35.0 56.3 54.3 38.5 51.9 50.9
OADA [63] ECCV’22 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4
MGA [77] CVPR’22 45.7 47.5 60.6 31.0 52.9 44.5 29.0 38.0 43.6
MIC [21] CVPR’23 50.9 55.3 67.0 33.9 52.4 33.7 40.6 47.5 47.6
HT [9] CVPR’23 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4

GLIP ZS [29] - 36.0 11.2 55.1 20.6 39.2 1.5 28.8 40.3 29.1
GLIP SO [29] - 52.5 53.1 63.3 37.8 53.6 43.1 38.0 49.3 48.8
Ours - 54.1 56.7 66.5 42.1 57.5 50.2 44.3 53.3 53.1

rithms [3,21,22,26,45,59,62,71]. We show that our method
consistently improves almost all classes and 4.2% of im-
provement on the average accuracy compared to SDAT [52].
Then we follow [52,60,78] to use ViT-B as the encoder and
show the superiority of our method under this setting.

Office-Home/31. We summarize the results on Office-
Home [55] in Table 3. We first follow the recent meth-
ods [16, 45, 51, 62] to use RN-50 (ResNet-50) as the image
encoder and show the superiority of our framework with
at least 2.0% of improvement compared to DAPL [16], a
recent work adapting CLIP to UDA. Then we follow ViT-
based methods [21, 45, 52, 60] to use ViT-B as the encoder.
It is worthwhile to mention that our framework can consis-
tently improve across different domains. We have similar
observations in Office-31 [46] in Table 4.

DomainNet. On the most challenging DomainNet [42]
(as shown in Table 5), we achieve 62.3% of average ac-
curacy, with an impressive 9.9% improvement over PM-

Trans [78]. Some domains in this benchmark have large
gaps from others, especially inf and qdr. Transferring the
knowledge from other domains to these two is difficult due
to the domain gap. On the other hand, the distributions are
heterogeneous and can be imbalanced among different do-
mains, which makes this benchmark more difficult. How-
ever, our proposed method can achieve improvement in al-
most all settings. We conclude that the VLMs are naturally
good at domain disentanglement, and the large-scale pre-
training is beneficial to UDA tasks.

5.2. Adapt GLIP for UDA Detection

Adverse Weather Adaptation. Object detectors may
face various weather conditions, and adverse weather con-
ditions can downgrade their performance. Therefore, for
this setting, we evaluate our model on weather shift: from
normal to adverse weather (foggy). The results are summa-
rized in Table 6. Our proposed methods can bring 2.7%
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improvement on mAP compared to HT [9]. Moreover,
our GLIP adapter consistently improves in almost all cate-
gories, showing the power of large-scale pre-training. GLIP
ZS refers to GLIP zero-shot performance on the target do-
main. GLIP SO refers to GLIP full-model fine-tuning on the
source domain only. We can see GLIP itself has a strong
ability during fine-tuning, achieving 48.8% of mAP. Our
proposed adaption can further improve it to 53.1%.

Camera Shift Adaptation. Real-world cameras have
significantly different configurations (e.g., resolutions, po-
sitions ), and such differences may affect the detectors’ per-
formance. Following the practice of previous work [2, 9,
33, 74, 77], we use KITTI → Cityscapes to study the ef-
fectiveness on camera shift adaptation: we only train and
test the detectors for the sharing category ”Car” in these
two datasets. The results are summarized in Table 7. Our
GLIP-adapted detector can achieve +1.9% compared to the
combination of PT and CMT [2].

Table 7. UDA detection task across different cameras (from KITTI
to Cityscapes).

Method Reference AP (Car) Gain

Source - 40.3 -

MGA [77] CVPR’22 48.5 +8.2
TIA [74] CVPR’22 44.0 +3.7

SIGMA [33] CVPR’22 45.8 +5.5
OADA [63] ECCV’22 47.8 +7.5

PT [4] ICML’22 60.2 +19.9
HT [9] CVPR’23 60.3 +20.0

PT + CMT [2] CVPR’23 64.3 +24.0
Ours - 66.2 +25.9

5.3. Ablation Studies

Ablation studies for PTT, VFR, and DaPL. We sum-
marize the ablation studies in Table 8. CLIP zero-shot per-
formance is strong in this case at 82.3%. Our PTT fine-
tuned on the source domain can achieve 2.2% improvement.
After we apply VFR to refine the visual features, we get
3.4% improvement. Lastly, we include the target domain
with Domain-aware Pseudo-Labeling (DaPL) and achieve
91.7%. This shows the effectiveness of the proposed mod-
ules for adapting VLMs for UDA classification tasks.

Effectiveness of adaptation and the comparison with
full-model fine-tuning. As VLMs have rich semantic
knowledge, it is essential to verify if we can preserve
CLIP’s performance and achieve knowledge fusion. In
Office-Home, our improvement in every single domain is
consistent compared to the original CLIP. For the Clipart
domain, we achieved over 14% of improvement, showing
the effectiveness of the proposed method. On the other
hand, we compare the proposed adaptation method with
full-model fine-tuning (FMFT). As shown in Table 8, our

Table 8. Ablation study on VisDA-2017 with ViT-B backbone.
(FMFT refers to Full-Model Fine-Tuning.)

# Source Target PTT VFR DaPL FMFT Accuracy

1 ✗ ✗ ✗ ✗ ✓ ✗ 82.3%
2 ✓ ✗ ✓ ✗ ✗ ✗ 84.5%
3 ✓ ✗ ✓ ✓ ✗ ✗ 87.9%
4 ✓ ✓ ✓ ✓ ✓ ✗ 91.7%

5 ✓ ✓ ✗ ✗ ✗ ✓ 88.1 %
6 ✓ ✓ ✗ ✗ ✓ ✓ 92.1 %

adaptation can achieve 87.9% if we only use the source do-
main, which is competitive compared to FMFT (88.1%).
With DaPL on the target domain, FMFT can further achieve
92.%. Considering that we only train a few layers instead
of the full model, our adaptation method is effective and
practical in reducing the computational cost.

Effectiveness of adapting VLMs with VFR. To test the
effectiveness of our adaptation way, we compare it in few-
shot learning settings with other VLM adaptation meth-
ods [14, 72, 76]. The results are summarized in Table 9.
Compared to the recent methods refining the visual fea-
tures [14,72,76], we achieve superior results via VFR under
16-shot learning setting.

Table 9. Few-shot classification on ImageNet [8].

Methods Shot Accuracy

CLIP [44] 0 62.53%
CLIP + CoOp [76] 16 66.60%
CLIP-Adapter [14] 16 65.39%
Tip-Adapter [72] 16 64.78%

Tip-Adapter-F [72] 16 68.56%
Ours 16 69.15%

6. Discussion

In this work, we apply Vision-Language Models (VLMs)
for UDA tasks: UDA classification and UDA detection. We
verify that VLMs are naturally advantageous in domain dis-
entanglement and thus can achieve domain alignment and
semantic-attributes retainment. We propose efficient adap-
tation for VLMs on both prompt tuning and visual feature
refinement. We formulate domain-aware pseudo-labeling
for VLMs by using zero-shot prediction and fuse domain in-
formation. Extensive experimental results on six challeng-
ing benchmarks verify the effectiveness of our proposed
method on both UDA classification and detection, espe-
cially on large-scale datasets.

Limitations. As VLMs are large-scale pre-trained, the
comparison may not be fully fair. Our main focus is to in-
troduce VLMs for UDA tasks and show the impact of lan-
guage supersion on vision tasks.
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