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Abstract

Deep learning models have demonstrated remarkable
success in object detection, yet their complexity and compu-
tational intensity pose a barrier to deploying them in real-
world applications (e.g., self-driving perception). Knowl-
edge Distillation (KD) is an effective way to derive effi-
cient models. However, only a small number of KD meth-
ods tackle object detection. Also, most of them focus
on mimicking the plain features of the teacher model but
rarely consider how the features contribute to the final de-
tection. In this paper, we propose a novel approach for
knowledge distillation in object detection, named Gradient-
guided Knowledge Distillation (GKD). Our GKD uses gra-
dient information to identify and assign more weights to
features that significantly impact the detection loss, allow-
ing the student to learn the most relevant features from
the teacher. Furthermore, we present bounding-box-aware
multi-grained feature imitation (BMFI) to further improve
the KD performance. Experiments on the KITTI and
COCO-Traffic datasets demonstrate our method’s efficacy
in knowledge distillation for object detection. On one-stage
and two-stage detectors, our GKD-BMFI leads to an av-
erage of 5.1% and 3.8% mAP improvement, respectively,
beating various state-of-the-art KD methods. Our codes are
available at: https://github.com/lanqz7766/GKD.

1. Introduction

Over the past few years, deep learning models have
achieved remarkable success in a variety of domains, in-
cluding computer vision [11, 12, 31]. Object detection
is one of the most critical tasks in computer vision and
has seen growing demand in various applications, such as
autonomous driving, surveillance, and medical imaging.
However, high detection performance often comes at the
cost of large and complex neural architectures, which re-
sults in slow inference speed on devices without powerful
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GPUs. To address this problem, various neural network
compression techniques have been proposed, such as prun-
ing [8, 33], quantization [19, 27], and knowledge distilla-
tion [14, 18]. In Knowledge Distillation (KD), a smaller,
lightweight student model mimics the behavior of an un-
wieldy pre-trained teacher model to achieve comparable or
even superior results. The information transferred across
the models is usually referred to as “dark knowledge” due
to its blackbox nature. Feature-based KD is one of the most
popular KD types, which aims to minimize the difference
between the teacher’s intermediate feature representations
and those of the student.

Most of the existing knowledge distillation methods
in computer vision are designed for image classification
[14, 18, 33, 39]. In the past few years, researchers have
started to explore how KD can be effectively applied to ob-
ject detection. Most state-of-the-art KD methods in object
detection use feature-based approaches where the student
is trained to mimic the teacher’s plain or human-selected
features. These methods aim to explore which parts of the
teacher’s features provide the most informative knowledge
for the student to distill. For example, [32] and [36] respec-
tively use the Gaussian Mask and the “fine-grained” imi-
tation mask to select a broader distillation area. [10] distills
the foreground and background separately. [37,40] leverage
highly activated features and non-local modules to guide the
student and distill the global relation of pixels, respectively.
However, few studies have considered how these features
contribute to the final detection outcome. Unlike previous
approaches, we propose a novel gradient-guided knowledge
distillation (GKD) method that incorporates gradient infor-
mation to weigh the importance of features. The gradients
of the detection loss function with respect to the model’s
features provide information about the features’ contribu-
tion to the final detection performance. By using the task
gradients to weigh the importance of features during knowl-
edge distillation, we can effectively transfer knowledge that
is more relevant to the task at hand and has a greater impact
on the model’s performance. To the best of our knowledge,
this is the first work that utilizes gradients to weight the
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importance of features for knowledge distillation in object
detection tasks. Moreover, we argue that foreground ob-
jects, including their surrounding pixels with abundant con-
textual information, should receive special attention during
KD. Unlike [36] that distills pixels around the foreground
object with fixed weights, we use a FlatGauss Mask (FGM)
to assign the highest weight to the pixels within the ground
truth bounding boxes and gradually decrease the weight of
surrounding pixels as the distance from the center point in-
creases. We also find that feature imitation at multiple gran-
ularities helps with the KD. In summary, the main contribu-
tions of this paper are as follows:

• We introduce a novel gradient-guided knowledge dis-
tillation (GKD) method that utilizes gradient informa-
tion to weigh the importance of features so that the
student model can focus on the more valuable knowl-
edge that is relevant to the final detection. As far as
we know, this is the first time that gradients are lever-
aged as a knowledge filter in knowledge distillation for
object detectors.

• We present bounding-box-aware multi-grained feature
imitation that takes bounding boxes and their contex-
tual information into consideration during KD and per-
forms distillation along different feature dimensions.

• Our KD method’s efficacy is tested on both one-stage
and two-stage detectors with different backbones our
method achieves an average 4.7 and 3.7 mAP boost
on the KITTI and COCO Traffic datasets, respectively,
outperforming state-of-the-art KD methods.

2. Related Works
2.1. Object Detection

Object Detection is a fundamental task in computer vi-
sion and is more challenging than classification since it in-
volves both localization and classification of objects in an
image. Over the past decade, convolutional neural networks
(CNNs) have achieved remarkable success in this domain.
There are three main categories of CNN-based object detec-
tion methods: two-stage detectors, anchor-based one-stage
detectors, and anchor-free one-stage detectors. Two-stage
detectors, such as [2, 11, 30], follow a two-step process.
Initially, they employ a region proposal network (RPN) to
generate region proposals, which are then refined and clas-
sified in a subsequent stage. Two-stage detectors tend to
have higher accuracy compared to one-stage detectors at
the expense of longer inference time. Anchor-based one-
stage detectors [22,24,29] directly predict the category and
bounding box of objects from feature maps and are thus
more efficient than two-stage detectors. That being said,
they use a large number of pre-defined anchor boxes as

reference points, which results in additional computation.
To reduce such computation, anchor-free one-stage detec-
tors [7, 34, 38] directly predict the critical points and place-
ments of objects without the use of anchor boxes, at the risk
of sacrificing accuracy. The difficulty lies in the fact that
objects can appear in various shapes, sizes, and orientations
within an image, making it hard to detect the different vari-
ations of objects. Furthermore, object detection requires a
more robust feature representation, as the features need to
be capable of identifying objects in different locations and
scales. Given the difficulty of the object detection task and
the need for robust feature representation, it is important to
find more valuable information from the features in order to
improve the performance of object detection models. Our
proposed method addresses this issue by incorporating gra-
dient information to weight the importance of features, pro-
viding a more fine-grained measure of feature importance.

2.2. Knowledge Distillation

Knowledge distillation is a model compression tech-
nique proposed by [14]. In its original version, the output
probabilities or logits of a pre-trained teacher network serve
as soft labels to guide the learning of a smaller student net-
work for classification tasks. Since then, there have been
many KD works (e.g., [13, 35, 39]) that further improve the
vanilla KD’s performance in classification tasks. Relatively
speaking, fewer works have applied knowledge distillation
to object detection. Chen et al. [3] first apply knowledge
distillation to object detection by distilling knowledge from
the neck features, the classification head, and the regression
head. Nevertheless, not all features in the teacher model are
useful and relevant. Naively distilling all the features may
mislead the student model. How to select the most valuable
features for knowledge distillation in object detection is an
active research area. Li et al. [18] choose the features sam-
pled from the region proposal network (RPN) to improve
the performance of the student model. Wang et al. [36] pro-
pose the fine-grained mask to distill the regions near the
ground-truth bounding boxes. Sun et al. [32] utilize Gaus-
sian masks to assign more importance to bounding boxes
and surrounding regions for distillation. Such methods at-
tempt to find the most informative spatial locations while
ignoring the channel-wise feature selection. Guo et al. [10]
show that both the foreground and background play impor-
tant roles for distillation, and distilling them separately ben-
efits the student. Dai et al. [5] distill the locations where the
performances of the student and teacher differ most. All
the above-mentioned methods try to infer the most infor-
mative spatial regions for knowledge distillation (e.g., the
foreground or background). However, they do not consider
the differences in importance across different feature chan-
nels and how the features contribute to the final detection.
FKD [40] and FGD [37] incorporate non-local modules and
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consider both spatial and channel attention. However, their
feature importance is only based on the magnitude of activa-
tion, which is not directly related to final detection. Li [16]
introduced a self-supervised distillation technique that em-
ploys more salient features to direct less salient ones within
a layer. Additionally, this method utilizes deep-layer se-
mantic features to guide shallow layers. Liu et al. [25] pro-
pose an N-to-one distillation framework. This approach ex-
tends the student model’s last CNN layer to encompass N
channels, where each channel corresponds to one teacher’s
feature segment, and they collectively guide the student.
Another approach by Li and Zhe [17] fuses features from
multiple layers to form a proxy teacher. This proxy teacher
enables bidirectional distillation between the students and
the fusion component. Dong et al. [6] propose to opti-
mize the student’s architecture and expedite the distillation
process. Unlike those works, we propose gradient-guided
knowledge distillation, which assigns larger weights to fea-
tures that contribute more to the final detection. Unlike pre-
viously mentioned KD approaches, we explicitly make use
of the gradient information that comes almost for free dur-
ing the backpropagation process.

3. Methodology
Most state-of-the-art feature-based KD methods have the

student model directly mimic the teacher model’s plain fea-
tures. Recently, some works like [37] and [40] direct more
focus to channels/locations that are highly activated. Unlike
previous approaches, we propose a novel gradient-guided
knowledge distillation (GKD) method that gives special at-
tention to knowledge contributing to the final detection per-
formance. In addition, we will present how to incorpo-
rate bounding box and context information in multi-grained
feature-based knowledge distillation.

3.1. Gradient-Guided Knowledge Distillation

We propose to utilize the gradients of the detection loss
with respect to features to represent the features’ contribu-
tion to the final detection. The features corresponding to
larger gradients are more influential on the decision making
and thus they deserve more attention during the knowledge
distillation process. Fig. 1 illustrates the general idea of our
GKD and how it guides the student model to better learn
the most valuable and relevant knowledge from the teacher.
Mathematically, we define the importance/weight of the k-
th feature map in layer l of a detector as:

wl
k =

1

WH

W∑
i=1

H∑
j=1

∂Ltask

∂Al
i,j,k

(1)

where Ltask denotes the total detection loss (including
bounding box regression loss and classification loss), Al

i,j,k

is the single activation value at location (i, j) in the k-th

feature map of the l-th layer. We first calculate the gradi-
ents of Ltask, with respect to feature Al

i,j,k. These gradi-
ents flowing back are global-average-pooled over the width
and height dimensions (indexed by i and j, with max value
W and H , respectively) to obtain the feature channel im-
portance wl

k. Then, we use wl
k to weigh the k-th activation

map Al
k:

Ãl
k = wl

kA
l
k (2)

where Ãl
k is the k-th gradient-weighted activation map of

the l-th layer. These maps are then linearly combined along
the channel dimension (before taking absolute values and
Norm) to obtain the final target map for distillation:

M l = Norm(|
C∑

k=1

Ãl
k|) (3)

where Norm represents the min-max normalization func-
tion. By weighting the features using these gradients, we
can effectively “highlight” the features that have a larger
impact on the overall detection loss. The same process can
be applied to both the teacher model and the student model.
The resulting target maps for the teacher and the student
are M l

T and M l
S , respectively. The goal of our gradient-

guided knowledge distillation is to minimize the difference
between the target maps:

LGKD =
1

HW

L∑
l=1

W∑
i=1

H∑
j=1

|M l
i,j,T −M l

i,j,S | (4)

where l indicates an intermediate layer, L is the total num-
ber of intermediate layers being considered for distillation.
We use L1-norm loss instead of L2-norm loss because L2
can be more susceptible to outliers when there is a large
discrepancy between the teacher and student models at the
beginning of training. Using L1-norm loss encourages
teacher-student consistency in more locations.

To handle objects of various scales, most modern object
detectors employ Feature Pyramid Networks (FPN) [21]
or its variants. In our experiments, to enhance knowledge
transfer across different scales, we choose the output layers
of FPN as the target layers for distillation.

3.2. Bounding-box-aware Multi-grained Feature
Imitation

In object detector KD, the background features are usu-
ally less informative and overwhelming, potentially mis-
leading the distillation process. Prior approaches attempted
to employ different distillation masks to extract more valu-
able information. Fig. 2 illustrates the differences be-
tween our proposed FlatGauss Mask and previous meth-
ods [10, 32, 36].
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Figure 1. Illustration of the proposed Gradient-Guided Knowledge Distillation (GKD) method.

Figure 2. Popular attention regions for knowledge distillation in object detection. Different colors indicate different weights for different
areas (red: high, blue: low). (a) Guo et al. [10] focused on the region inside the ground-truth bounding boxes and assigned different
weights to the background. (b) Wang et al. [36] distilled the anchor-covered regions around the foreground object. (c) Sun et al. [32] used
a Gaussian Mask to cover the ground truth bounding box for distillation. In contrast to previous methods, our approach (d) focuses on
foreground objects and their neighboring pixels with gradually diminishing weights.

The previous methods either ignore the adjacent pixels
or cover too many unnecessary regions. Unlike these ap-
proaches, we propose a flat gauss mask F , which is defined
as:

Fi,j =


1, if (i, j) ∈ o

e−
1
2 (

x−x̄
x̄ + y−ȳ

ȳ )
2

, elif (i, j) ∈ ô

0, otherwise

(5)

where o and ô stand for the region inside the ground truth
bounding box and the surrounding region, respectively. The
surrounding region doubles the width and height of the orig-
inal ground truth bounding box. (x, y) represent a specific

point in the surrounding region. (x̄, ȳ) indicates the cen-
ter point of the ground truth bounding box. Eq. (5) directs
enough attention to the foreground while taking the neigh-
bouring pixels/regions into consideration as well.

We also incorporate position and channel attention
(based on highly-activated features from [37]) when distill-
ing features. The position attention mask MP and channel
attention mask MC can be defined as follows:

MP = WH · softmax(

∑C
k=1 |Ak|
CT

) (6)

MC = C · softmax(

∑W
i=1

∑H
j=1 |Ai,j |

WHT
) (7)
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where A represents the plain feature maps, and W,H,C
are the width, height, and channel number of A indexed by
i, j, k, respectively. T is the temperature hyper-parameter
introduced by [14] to modulate the distribution. Based on
Eq. (5), Eq. (6), and Eq. (7), we propose our Bounding-
box-aware Multi-grained Feature Imitation (BMFI) loss as
follow:

LBMFI =

C∑
k=1

H∑
i=1

W∑
j=1

Fi,jM
P,T
i,j MC,T

k (AT
i,j,k −AS

i,j,k)
2

+ α(|MP,T −MP,S |+ |MC,T −MC,S |)
(8)

where the subscript T ,S denotes the teacher and student de-
tector, respectively. By adding our Gradient-guided knowl-
edge distillation loss from Sec. 3.1, our total distillation loss
is:

LKD = LGKD + βLBMFI (9)

The balancing hyperparameters (α in Eq. (8) and β in
Eq. (9)) are empirically set in our experiments to achieve
the best validation results.

4. Experiments and Results
4.1. Datasets

KITTI [9] is a 2D-object detection dataset that includes
seven different types of road objects. It includes 7481 im-
ages with annotations. We split it into a training set and a
validation set in the ratio of 8:2. As suggested in [1], we
group similar categories into one. Specifically, we perform
the following modification to the original KITTI dataset:
car, van, truck, tram as Car, pedestrian, person as Pedes-
trian, and cyclist as Cyclist.

COCO-Traffic is obtained by selecting categories re-
lated to self-driving from MS COCO 2017 [23]. We keep
only images containing at least one road-related object to
filter out images containing only indoor objects. The se-
lection is applied to both the training and validation sets.
The COCO-Traffic dataset contains 13 traffic-related cate-
gories: person, bicycle, car, motorcycle, bus, train, truck,
traffic light, fire hydrant, stop sign, parking meter, cat, dog.

4.2. Implementation Details

All the detection experiments are conducted in the
MMDetection framework [4] using Pytorch [28]. We em-
ployed Faster-RCNN [30] as a representative of two-stage
detectors and chose Generalized Focal Loss (GFL) [20] as
an example of one-stage detectors. The teacher and student
models (without any knowledge distillation) were trained
directly using the default configuration of MMDetection

[4]. The teacher models were based on a ResNet-101 back-
bone, and we tested two different student backbone archi-
tectures (i.e., ResNet-50 and ResNet-18). The temperature
hyper-parameter T is set to 0.5. We adopt the inheriting
strategy proposed in [15], where the student model is ini-
tialized with the teacher’s neck and head parameters. All
the models are sufficiently trained to convergence with an
SGD optimizer, an initial learning rate of 0.02, momentum
of 0.9, and weight decay of 0.0001. All models are evalu-
ated in terms of mean averaged precision (mAP) with 0.5
as the Intersection over Union (IoU) threshold. For com-
parison, we re-implemented the following state-of-the-art
KD methods in object detection: FGFI [36], FKD [40],
GID [5], DeFeat [10], and FGD [37], which were published
in recent years’ top CV/ML conferences. All the competing
knowledge distillation methods and our method are applied
to FPN output layers.

4.3. Experiment Results

In our experiments, we evaluated the performance of our
proposed gradient-guided knowledge distillation (GKD)
method against several state-of-the-art KD methods on the
KITTI and COCO-Traffic datasets using both single-stage
(e.g., GFL) and two-stage (e.g., Faster RCNN) object detec-
tors. The results on the single-stage and two-stage detectors
are shown in Tab. 1 and Tab. 2, respectively.

As we can see from Tab. 1, our GKD method provides
a significant boost in mAP for single-stage student detec-
tors. Specifically, when using a ResNet-50 backbone, our
GKD method achieves 4.9 and 1.8 mAP improvement on
the KITTI and COCO-Traffic datasets, respectively. On
the ResNet-18 backbone, the two numbers become 6.2 and
4.3. Our GKD-BMFI, which incorporates Bounding-box-
aware Multi-grained Feature Imitation, outperforms all stu-
dent baseline models and other state-of-the-art distillation
methods. For example, on the KITTI dataset, our GKD-
BMFI outperforms FGD [37] by 1.1 mAP with a ResNet-
50 backbone and 2 mAP with a ResNet-18 backbone. On
the COCO-Traffic dataset, it surpasses other five different
KD methods by an average of 1.66 mAP with a ResNet-50
backbone and 3.14 mAP with a ResNet-18 backbone.

As shown in Tab. 2, our proposed GKD method is also
effective for two-stage detectors. Specifically, when utiliz-
ing a ResNet-50 backbone on the COCO-Traffic dataset,
our GKD method demonstrates a remarkable improvement
of 2.6 mAP over the student-baseline and outperforms other
state-of-the-art distillation methods, including FKD [40]
and FGD [37], by an average of 2.35 mAP. In addition,
our GKD-BMFI can further improve the distillation per-
formance. For example, when comparing to the student-
baseline with a ResNet-18 backbone on the KITTI dataset,
our GKD-BMFI method demonstrates an impressive im-
provement of 5 mAP.
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KD methods
Student backbones ResNet-50 ResNet-18

KITTI COCO
Traffic KITTI COCO

Traffic
Teacher (w ResNet-101) 89.4 71.8 89.4 71.8

Student-baseline 85.1 67.7 81.9 61.9
FKD [40] 86.4 69.5 84.4 62.6
GID [5] 86.1 69.3 84.6 63.7

DeFeat [10] 85.4 69.3 83.3 62.7
FGD [37] 89.2 71.0 86.7 65.9
FGFI [36] 84.4 68.6 82.6 62.4
Our GKD 90.0 69.5 88.1 66.2

Our GKD-BMFI 90.3 71.2 88.7 66.6

Table 1. Performance (mAP) of different distillation methods with GFL detector [20] on the KITTI and COCO traffic datasets. (The
teacher model and the student-baseline are non-distillation GFL models with ResNet-101 and ResNet-50/18 as backbones, respectively.)
The highest mAP in each column is highlighted.

KD methods
Student backbones ResNet-50 ResNet-18

KITTI COCO
Traffic KITTI COCO

Traffic
Teacher (w ResNet-101) 89.3 67.9 89.3 67.9

Student-baseline 88.9 67.5 84.1 63.1
FKD [40] 89.0 67.8 87.2 65.3
FGD [37] 88.9 67.7 87.0 64.1
Our GKD 90.6 70.1 89.0 66.5

Our GKD-BMFI 90.8 70.3 89.1 66.9

Table 2. Performance (mAP) of different distillation methods with Faster R-CNN detector [30] on the KITTI and COCO traffic datasets.
(The teacher model and the student-baseline are non-distillation Faster-RCNN models with ResNet-101 and ResNet-50/18 backbones,
respectively.) The highest mAP in each column is highlighted.

Most KD methods employ homogeneous backbone
pairs. In contrast, our approach can deal with heterogeneous
backbone pairs as well. As shown in Tab. 3, for faster R-
CNN [30] detection, we successfully distill the knowledge
from the Swin teacher backbone (a vision transformer [26])
to the student ResNet-18 backbone and achieve a promising
student mAP of 68.2.

4.4. Qualitative Analysis

In Fig. 3, we visualize the gradient-guided masks from
the teacher detector and different training stages of the stu-
dent detector. This example comes from our experiments
on the KITTI dataset using the GFL detector. By compar-
ing the gradient-guided masks between the teacher and the
students at different training stages, we can observe the stu-
dent’s gradual learning process and see how it tries to fol-
low the teacher’s guidance. According to the figure, the
teacher detector (Fig. 3 (b)) focuses on the objects in the
image (e.g cars and pedestrians) more accurately than the
student detector that has only been trained for one epoch
(Fig. 3 (c)). However, as our gradient-guided knowledge
distillation process goes on, we can see that the student’s
attention becomes more and more similar to the teacher’s,
as seen in Fig. 3 (d). In Fig. 3 (e), we can see that the stu-
dent even develops some new high-attention areas (e.g., the
smaller-scale car in front of the vehicle). This potentially

explains why our much smaller distilled model can some-
times surpass the teacher model (Tab. 1).

Fig. 4 illustrates a random detection example on the
KITTI dataset. The qualitative results of four GFL [20]
models are demonstrated. They are (from top to bottom):
(a) Student baseline model, (b) FKD [40] distilled model,
(c) FGD [37] distilled model, and (d) our GKD distilled
model. All employ a ResNet-50 backbone. In Fig. 4, our
GKD distilled model outperforms both the student baseline
model and other distilled models. (a), (b), and (c) have a
hard time identifying objects obscured by the wall, leading
to the generation of multiple/inaccurate bounding boxes. In
contrast, our method accurately detects the pedestrian and
the car behind the wall with higher confidence scores.

4.5. Ablation Study

To analyze the contribution of the components of our
method, we perform ablation experiments. To ensure the re-
liability of this study, we use two combinations of detectors
and datasets. Specifically, we use GFL [20] on the KITTI
dataset, and use Faster R-CNN [30] on the COCO Traffic
dataset. All detectors use ResNet-50 as the student back-
bone. We consider the following three components in this
study: our Gradient-guided Knowledge Distillation (GKD,
without bells and whistles), bounding-box-aware FlatGauss
Mask (FGM), and Multi-grained Feature Imitation (MFI)
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Backbone Swin-S ResNet-18

Faster R-CNN [30] Teacher Student-baseline FGD [37] our GKD-BMFI
mAP 75.3 63.1 67.5 68.2

Table 3. Performance (mAP) of different distillation methods with Faster R-CNN detector [30] on the COCO traffic datasets (The teacher
model and the student-baseline are non-distillation GFL models with Swin-small and ResNet-18 as backbones, respectively.)

Figure 3. Visualization of the gradient-guided masks from the teacher detector and different training stages of the student detector using
GKD. Different colors indicate different attention levels, with the red color representing the highest attention and the blue color representing
the lowest.

Modules
GKD × × × ✓ ✓
FGM × × ✓ ✓ ×
MFI × ✓ ✓ ✓ ×

GFL KITTI 85.1 88.5 89.7 90.3 90.0
Faster R-CNN COCO Traffic 67.5 69.0 69.9 70.3 70.1

Table 4. Ablation study of the three different components of our GKD-BMFI. GKD: Gradient-guided Knowledge Distillation (with no
bells and whistles), FGM: FlatGauss Mask, MFI: Multi-grained Feature Imitation (MP and MC related). This ablation study is conducted
on the KITTI/COCO Traffic dataset using GFL/Faster R-CNN with a ResNet-50 backbone, respectively.

Model Backbones Parameters(M) GFLOPs mAP (KITTI) mAP (COCO Traffic)

GFL [20] ResNet-101 51.03 13.79 89.4 71.8
ResNet-50 32.04 10.05 90.3 71.2
ResNet-18 19.09 7.61 88.7 66.6

Faster R-CNN [30] ResNet-101 60.13 27.09 89.3 67.9
ResNet-50 41.13 23.36 90.8 70.3
ResNet-18 28.13 20.77 89.1 66.9

Table 5. Model complexity (with 224×224 input resolution), the mAP are of the teacher-baseline model (with ResNet-101 backbone) and
our GKD-BMFI distilled student (with ResNet-50/18 backbone) on KITTI/COCO Traffic dataset, respectively.

methods. According to the results in Tab. 4, all three com-
ponents play a positive role in the mAP boost, but the GKD
with no bells and whistles makes the most contribution. To
be more specific, GKD alone can improve the GFL detector
baseline mAP from 85.1 to 90.0 on the KITTI dataset. The
combination of the three components results in a 3.85 mAP
improvement on average. From Tab. 4, we can also observe
that using only the MFI component results in an average of

2.45 mAP improvement. By incorporating the bounding-
box-aware FlatGauss Mask into MFI, we get BMFI (as de-
scribed in Eq. (8)), which leads to an average of 3.9 mAP
improvement over the student detector.

4.6. Efficiency

Our gradient-guided KD does not add much to the
training burden as gradients come almost for free during
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Figure 4. Qualitative analysis - This analysis is conducted on the KITTI dataset using the GFL [20] detector. The detection results are
from (a) the Student baseline model, (b) the model distilled by FKD [40], (c) the model distilled by FGD [37], and (d) the model distilled
by our GKD.

backpropagation. Also, the negligible increase in train-
ing cost is incurred only once during training (offline).
Here, we mainly focus on inference efficiency, which is
of paramount importance to many real-world applications
(e.g., autonomous driving perception). In Tab. 5, we com-
pared different architectures in terms of FLOPs (multiply
and add) and parameters. According to the results, our
ResNet-50/18 distilled student model enjoys an average of
34.41%/67.90% reduction in model size and an average of
20.22%/33.70% savings in FLOPs. Also, our GKD-BMFI
distilled student model with ResNet-50 backbone can even
outperform the teacher model (e.g. 90.3 vs 89.3 mAP for
GFL on KITTI and 70.3 vs 67.9 mAP for Faster R-CNN on
COCO Traffic) while enjoying the complexity reduction.

5. Conclusion

In this paper, we have proposed a novel gradient-guided
knowledge distillation (GKD) method. It leverages the gra-

dients of the detection loss w.r.t. feature maps to iden-
tify valuable and relevant knowledge for knowledge distilla-
tion. Our GKD gives special attention to feature maps con-
tributing more to the final detection. In addition, we have
presented bounding-box-aware multi-grained feature imita-
tion (BMFI) to further improve the distilled model’s per-
formance. Experiments on the KITTI and COCO-Traffic
datasets, using various detectors and backbones, demon-
strate our method’s efficacy. The qualitative analysis shows
that our gradient-guided knowledge distillation allows the
student to get similar or even more informative attention
maps than the teacher.
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