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Abstract

Transductive few-shot learning algorithms have showed
substantially superior performance over their inductive
counterparts by leveraging the unlabeled queries at infer-
ence. However, the vast majority of transductive methods
are evaluated on perfectly class-balanced benchmarks. It
has been shown that they undergo remarkable drop in per-
formance under a more realistic, imbalanced setting.

To this end, we propose a novel algorithm to address im-
balanced transductive few-shot learning, named Adaptive
Manifold. Our algorithm exploits the underlying manifold
of the labeled examples and unlabeled queries by using man-
ifold similarity to predict the class probability distribution
of every query. It is parameterized by one centroid per class
and a set of manifold parameters that determine the manifold.
All parameters are optimized by minimizing a loss function
that can be tuned towards class-balanced or imbalanced
distributions. The manifold similarity shows substantial im-
provement over Euclidean distance, especially in the 1-shot
setting.

Our algorithm outperforms all other state of the art meth-
ods in three benchmark datasets, namely miniImageNet,
tieredImageNet and CUB, and two different backbones,
namely ResNet-18 and WideResNet-28-10. In certain
cases, our algorithm outperforms the previous state of
the art by as much as 4.2%. The publicly available
source code can be found in https://github.com/
MichalisLazarou/AM

1. Introduction
Despite the success of deep learning models for visual

recognition, their reliance on large labeled datasets still re-
mains a fundamental limitation. This is because obtain-
ing large labeled datasets requires significant human labour
to manually annotate images which is expensive and time-
consuming.

The few-shot learning paradigm has attracted significant
interest because it investigates how to make deep learning
models acquire knowledge from limited labeled data [9, 36,

40]. Different methodologies have been proposed to address
few-shot learning such as meta-learning [9, 15, 36], transfer
learning [21,25,38] and synthetic data generation [18,19,24].
The vast majority of these methods focus on the inductive
setting, where the assumption is that at inference, every
query example is classified independently of the others.

Recent studies explored the transductive few-shot learn-
ing setting, where all query examples can be exploited to-
gether at inference time, showing remarkable improvement
in performance [12, 17, 30, 41, 46]. Some approaches ex-
ploit all query examples at the same time by utilizing the
data manifold through label propagation [17] and embed-
ding propagation [33]. Other approaches utilize the available
query examples to improve the class centroids by optimizing
specialized loss functions [2], using soft K-means [12] or by
minimizing the cross-class and intra-class variance [22].

While the query set of transductive few-shot learning
benchmarks is unlabeled, it is still curated in the sense that
the tasks are perfectly class-balanced. Several state of the
art methods exploit this assumption and use class balancing
approaches to improve their performance [2,12,17,46]. How-
ever, it has been argued that this is not a realistic setting [39].
As a way to address this flaw, the latter study introduced a
new imbalanced transductive few-shot learning setting, com-
paring numerous state of the art methods under a fair setting
and showing that their performance drops dramatically.

In this work, focusing on this imbalanced transductive
setting [39], we introduce a new algorithm, called Adaptive
Manifold (AM), that exploits the complementary merits of
class centroid and data manifold approaches. In particular,
we hypothesize that class centroid approaches will benefit
from exploiting the data manifold to obtain more represen-
tative centroids. As illustrated in Figure 1, we initialize
the class centroids from the labeled support examples and
we propagate the labels along the data manifold, using a k-
nearest neighbour graph [14]. We iteratively update both the
class centroids and the manifold-specific parameters by min-
imizing the loss function proposed in [39]. Our algorithm
achieves new state of the art performance in the imbalanced
transductive few-shot learning setting.

In summary, we make the following contributions:
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Figure 1. Overview of our method. 1) Given a support set, S, and a query set, Q, we extract features V s and V q using the pre-trained
backbone fθ . 2) We calculate class centroids, C, using (1). 3) We calculate the k-nearest neighbour graph using (3), (4), (5) and (6). 4) We
perform label propagation using (8). 5) We optimize the manifold parameters, Φ, using (14) or (17). 6) We iterate the procedure from graph
construction for r steps. 7) We predict pseudo-labels using (18).

• We are the first, to the best of our knowledge, to op-
timize the class centroids along with the manifold-
specific parameters using manifold class similarity.

• We achieve new state of the art performance on the im-
balanced transductive few-shot setting under multiple
datasets and networks, outperforming by as much as
4.2% the previous state of the art in the 1-shot setting.

• Our method can also perform on par or even outperform
many state of the art methods in the standard balanced
transductive few-shot setting.

2. Related work
2.1. Few-shot learning

Learning from limited data is a long-standing prob-
lem [8]. A large number of the current methods focus on
the meta-learning paradigm. These can be grouped into
three directions: model-based [11, 26, 27, 35], optimization
based [9,28,31,34] and metric-based [15,36,37,40]. Model-
based methods utilize specialized networks such as mem-
ory augmented networks [35] and meta-networks [27] to
aid the meta-learning process. Optimization-based meth-
ods focus on learning a robust model initialization, through
gradient-based solutions [9, 28], closed-form solutions [1]
or an LSTM [32]. Metric-based approaches operate in the
embedding space and compare an individual query to all ex-
amples of a class [40] or to the class centroid [36]. Learning
the similarity function has also been proposed [37].

Recent works [5,38] have shown that the transfer learning
paradigm can outperform meta-learning methods. Transfer
learning methods decouple the training from the inference
stage and aim at learning powerful representations through
the use of well-designed pre-training regimes to train the
backbone network. This often involves training with aux-
iliary loss functions along with the standard cross entropy
loss, such as knowledge-distillation [38], mixup-based data
augmentation [25] and self-supervision, such as predicting

rotations [10] and contrastive learning [42].
Another way to address the data deficiency is to augment

the support set with synthetic data. Synthetic data can be
generated either in the image space or in the feature space,
by using a hallucinator trained on the base classes. The
hallucinator can be trained using common generative models,
such as generative adversarial networks (GANs) [19,23,44]
and variational autoencoders (VAEs) [24]. Hallucinators
have also been specifically designed for the few-shot learning
paradigm [4, 6, 18, 43].

2.2. Transductive few-shot learning

Transductive few-shot learning studies the case where all
queries are available at inference time and can be exploited to
improve predictions. Several methods exploit the data mani-
fold by using label propagation [17, 20], embedding propa-
gation [33] or by exploiting Riemannian geometry through
the use of the oblique manifold [30]. Another direction is
to use both labeled and unlabelled examples to refine the
class centroids. For example, one may use soft k-means to
iteratively update the class centroids [12], rectify prototypes
by minimizing the inter-class and intra-class variance [22],
or iteratively adapt the class centroids by minimizing a mod-
ified mutual information loss between query features and
their label predictions [2]. It has also been proposed to itera-
tively select the most confident pseudo-labeled queries, for
example by interpreting this problem as label denoising [17]
or by calculating the credibility of each pseudo-label [41].

Concurrently to our work, ProtoLP [47] has been pro-
posed to find and update class centroids using label propaga-
tion. However, this method focuses mainly on the few-shot
balanced setting while ours is effective in both balanced and
imbalanced settings. Furthermore, our AM adapts manifold-
specific parameters, while ProtoLP does not. Each method
uses a different way to update parameters: We minimize
the modified mutual information loss [39], while ProtoLP
uses soft k-means. Our AM outperforms ProtoLP in both
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imbalanced and balanced transductive few-shot learning, as
it can be seen in section 4.

2.3. Class balancing

The commonly used transductive few-shot learning
benchmarks use perfectly class-balanced tasks [2]. Several
methods exploit this bias by encouraging class-balanced pre-
dictions over queries, thereby improving their performance.
One way is to optimize the query probability matrix, P , to
have specific row and column sums p and q respectively
by using the Sinkhorn-Knopp algorithm [12, 17]. The row
sum p amounts to the probability distribution of every query,
while the column sum q corresponds to the total number of
queries per class. Another way is to maximize the entropy
of the marginal distribution of predicted labels over queries,
thus encouraging it to follow a uniform distribution [2].

However, the authors of [39] argue that using perfectly
class-balanced tasks is unrealistic. They propose a more real-
istic imbalanced setting and protocol, benchmarking the per-
formance of several methods. They also introduce a relaxed
version of [2] based on α-divergence, which can effectively
address class-imbalanced tasks. This imbalanced setting
is also addressed by adaptive dimensionality reduction and
clustering based on Variational Bayesian inference [13].

3. Method
3.1. Problem formulation

Representation learning We assume access to a base
dataset Dbase = {(xi,yi)}Ii=1 of I images, where each
image xi has a one-hot encoded label yi corresponding to a
class from a set of base classes Cbase. Denoting by X the
image space, we assume access to a network fθ : X → Rd

that has been trained on Dbase, which maps an image x ∈ X
to an embedding fθ(x) ∈ Rd.

Inference We assume access to a novel dataset Dnovel con-
sisting of images with corresponding one-hot encoded labels
from a set Cnovel of novel classes, where Cnovel∩Cbase = ∅.
We sample N -way K-shot tasks, each consisting of a labeled
support set, S = {(xs

i ,y
s
i )}Li=1, where each image xs

i has
a corresponding one-hot encoded label ys

i = (ysji)
N
j=1 ∈

{0, 1}N over Cnovel, with N novel classes in total and K
examples per class, such that the number of examples in
S is L = |S| = NK. We focus on the transductive set-
ting, therefore a task also contains an unlabeled query set
Q = {xq

i }Mi=1 sampled from the same N classes as the sup-
port set S where the number of examples in Q is M = |Q|.
Feature extraction Given a novel task, we embed all im-
ages in S and Q using fθ and apply a feature pre-processing
function η : Rd → Rd, to be discussed in section 4. Let
V s = (vs

1 · · · vs
L) be the d× L matrix containing the em-

beddings of S, where vs
i = η(fθ(x

s
i )) ∈ Rd. Similarly, let

V q = (vq
1 · · · vq

M ) be the d × M matrix containing the
embeddings of Q, where vq

i = η(fθ(x
q
i )) ∈ Rd. We also

represent V s, V q as sets Vs = {vs
i }Li=1, Vq = {vq

i }Mi=1.
Both sets remain fixed in our method.

3.2. Class centroids

Following [36], we define a class centroid cj ∈ Rd in the
embedding space for each class j in the support set S. The
centroids are learnable variables but initialized by standard
class prototypes [36]. That is, the centroid cj of class j is
initialized by the mean

cj =
1

K

∑
vs
i∈Vs

ysjiv
s
i (1)

of support embeddings of class j. Let C = (c1 · · · cN ) be
the d×N matrix containing the learnable centroids of all N
support classes. We also represent C as a set C = {cj}Nj=1.

3.3. Nearest neighbour graph

We collect centroids, support and query embeddings in a
single d× T matrix

V = (v1 · · · vT ) = (C V s V q), (2)

where T = N + L + M . We also represent V as a set
V = {vi}Ti=1. Following [14, 17], we construct a k-nearest
neighbour graph of V . We define edges between distinct
nearest neighbours in V that are both not centroids:

E = {(vi,vj) ∈ V2 \ C2 : vi ∈ NNk(vj)}, (3)

where NNk(v) is the set of k-nearest neighbours of v in V ,
excluding v. Given E, we define the T × T affinity matrix
A = (aij) as

aij =

{
exp

(
−∥vi−vj∥2

gijσ2

)
, if (vi,vj) ∈ E

0, otherwise,
(4)

where gij is a learnable pairwise scaling factor for every pair
(vi,vj), collectively represented by T×T matrix G = (gij),
and σ2 is a global scaling factor set equal to the standard
deviation of ∥vi − vj∥2 for (vi,vj) ∈ V2 as in [33]. We
symmetrize A into the T ×T adjacency matrix, W = 1

2 (A+
A⊤). We calculate WB which is a scaled version of W
defined as:

WB = W ◦B (5)

where B ∈ [0, 1)T×T is a learnable T × T matrix and ◦ is
the Hadamard product. We normalize WB by

W = D−1/2WBD
−1/2, (6)

where D = diag(WB1T ) is the T × T degree matrix of
WB .
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3.4. Label Propagation

Labels Following [45], we define the N × T label matrix

Y = (Y c Y s Y q) = (IN 0N×L 0N×M ). (7)

That is, Y has one row per class and one column per example,
which is an one-hot encoded label for every class centroid in
C and a zero vector for both support embeddings in Vs and
query embeddings in Vq .

Label propagation Given the graph represented by W
and the label matrix Y , label propagation amounts to

Z = Y (I − βW)−1, (8)

where β ∈ [0, 1) is a scalar hyperparameter that is referred
to as α in the standard label propagation [45].

Predicted probabilities The resulting N × T matrix Z =
(z1 · · · zT ) is called manifold class similarity matrix, in the
sense that column zi ∈ RN expresses how similar embed-
ding vector vi is to each of the N support classes. By taking
softmax over columns

pi =
exp(τzi)∑N

j=1 exp(τzji)
, (9)

with τ > 0 being a positive scalar hyperparameter, we define
the N × T probability matrix

P = (p1 · · · pT ) = (P c P s P q). (10)

Matrix P expresses the predicted probability distributions
over the support classes. If P = (pji), element pji expresses
the predicted probability of class j for example i. Similarly
for class centroids P c = (pcji) ∈ RN×N , support examples
P s = (psji) ∈ RN×L and queries P q = (pqji) ∈ RN×M .

3.5. Loss function: Class balancing or not

The set of all learnable parameters is Φ = {C,G,B}
is optimized jointly using a modified mutual information
loss [2, 39]. We distinguish between class-balanced and
imbalanced tasks.

3.5.1 Class-balanced tasks

Following [2], we optimize parameters Φ using three loss
terms. The first is the standard average cross-entropy over
the labeled support examples:

LCE(P
s) = − 1

L

L∑
i=1

N∑
j=1

ysji log(p
s
ji). (11)

The second is the average, over queries, entropy of predicted
class probability distributions per query

H(P q) = − 1

M

M∑
i=1

N∑
j=1

pqji log(p
q
ji). (12)

This term aims at minimizing the uncertainty of the predicted
probability distribution of every query, hence encouraging
confident predictions. The third term is

−H(p̄q) =

N∑
j=1

p̄qj log(p̄
q
j), (13)

where p̄qj = 1
M

∑M
i=1 p

q
ji and p̄q = (p̄qj)

N
j=1 = P q1M ∈

RN is a vector representing the average predicted probability
distribution of set Q. By maximizing its entropy, this term
aims at maximizing its uncertainty, encouraging it to be
uniform, hence balancing over classes.

The complete loss function to be minimized w.r.t. Φ is

Lbal = λ3LCE(P
s) + λ2H(P q)− λ1H(p̄q), (14)

where λ1, λ2, λ3 are scalar hyperparameters.

3.5.2 Imbalanced tasks

By encouraging the average predicted probability distribu-
tion to be uniform, the third term (13) is strongly biased
towards class-balanced tasks. To make the loss more toler-
ant to imbalanced distributions, a relaxed version has been
proposed based on the α-divergence [39]. In particular, the
second (12) and third term (13) become respectively

Hα(P
q) = − 1

α− 1

1

M

M∑
i=1

N∑
j=1

(pqji)
α (15)

−Hα(p̄
q) =

1

α− 1

N∑
j=1

(p̄qj)
α (16)

In this case, the complete loss function (14) to be mini-
mized with respect to Φ is modified as

Limbal = λ3LCE(P
s) + λ2Hα(P

q)− λ1Hα(p̄
q). (17)

3.6. Manifold parameter optimization

In contrast to [2] and [39], rather than only optimizing
the class centroids, we optimize the entire set of manifold
parameters Φ, which includes the class centroids C as well
as the manifold-specific parameters G (4) and B (5). We
update Φ by minimizing (14) or (17) through any gradient-
based optimization algorithm with learning rate ϵ. The entire
procedure from graph construction in subsection 3.3 to man-
ifold parameter optimization in subsection 3.6 is iterated for
r steps. Algorithm 1 summarizes the complete optimization
procedure of our method.

3.7. Transductive Inference

Upon convergence of the optimization of manifold param-
eters Φ, we obtain the final query probability matrix P q (10)
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Algorithm 1: Adaptive Manifold (AM).
input : Pre-trained backbone fθ
input : labeled support set S with |S| = L
input : unlabeled query set Q with |Q| = M

1 (V s, V q)← (fθ(S), fθ(Q))
2 C ← CENTROIDS(V s) ▷ class centroids (1)
3 V ← {C, V s, V q}
4 (G,B)← INITIALIZE()
5 Φ← {C,G,B}
6 for r steps do
7 A← AFFINITY(V;G, k) ▷ affinity matrix (4)
8 W ← 1

2
(A+AT ) ▷ symmetric adjacency matrix

9 WB ←W ◦B ▷ scaled adjacency matrix (5)
10 W ← D−1/2WBD−1/2 ▷ adjacency matrix (6)
11 Y ← (IN 0N×L 0N×M ) ▷ label matrix (7)
12 Z ← Y (I − βW)−1 ▷ label propagation (8)
13 P ← SOFTMAX(Z) ▷ class probabilities (9)
14 Lbal/Limbal ← LOSS(P ; Φ) ▷ loss function (14) or (17)
15 Φ← UPDATE(Φ;Lbal/Limbal) ▷ update Φ

16 return P q

and for each query xq
i ∈ Q, we predict the pseudo-label

ŷqi = argmax
j

pqji (18)

corresponding to the maximum element of the i-th column
of matrix P q .

4. Experiments
4.1. Setup

Datasets In the state of the art comparisons regarding
the imbalanced setting we experiment with the follow-
ing datasets, miniImageNet [40], tieredImageNet [3] and
CUB [5]. In the state of the art comparisons regarding the
balanced setting, we also experiment on CIFAR-FS [5, 16].

Backbones We use the two pre-trained backbones from
the publicly available code [39], namely ResNet-18 and
WideResNet-28-10 (WRN-28-10). All backbones are trained
using standard cross entropy loss on Dbase for 90 epochs
with learning rate 0.1, divided by 10 at epochs 45 and 66.
Color jittering, random cropping and random horizontal
flipping augmentations are used during training. We also
carry out experiments using the publicly available code and
the pre-trained WRN-28-10 backbones provided by [17].

Tasks Unless otherwise stated, we consider N -way, K-
shot tasks with N = 5 randomly sampled classes from
Cnovel and K ∈ {1, 5} random labeled examples for the
support set S. The query set Q contains M = 75 query
examples in total. In the balanced setting, there are M

N =
75
5 = 15 queries per class. In the imbalanced setting, the

total number of queries remains M = 75. Following [39],
we sample imbalanced tasks by modeling the proportion of
examples from each class in Q as a vector π = (π1, . . . , πN )

sampled from a symmetric Dirichlet distribution Dir(γ) with
parameter γ = 2. We follow [39] and [17], performing
10000 and 1000 tasks respectively when using the code and
settings of each work.

Implementation details Our implementation is in Py-
torch [29]. We carry out experiments for balanced and im-
balanced transductive few-shot learning using the publicly
available code provided by [39]1. For additional experi-
ments in the balanced setting, we use the publicly available
code provided from [17]2. We used Adam optimizer for the
manifold parameter optimization in subsection 3.6.

Hyperparameters Following [39], we keep the same val-
ues of hyper-parameters τ , λ1, λ2, λ3, ϵ and r. We set
ϵ = 0.0001, r = 1000, τ = 15 (9). In the imbalanced
setting we set λ1 = λ2 = λ3 = 1, while in the balanced
setting we set λ1 = λ3 = 1 and λ2 = 10. Regarding hyper-
parameter α (15),(16) we ablate it in section subsection 4.2
and set α = 2 for 1-shot and α = 5 for 5-shot for all experi-
ments unless stated otherwise. For label propagation, we set
k = 20 (3) for 1-shot and k = 10 for 5-shot; we initialize
G = JT (4) and B = JT (5) where JT is the T ×T all-ones
matrix; we initialize β = 0.8 (8) for 1-shot and β = 0.9 for
5-shot. We optimized k, β and the initialization of G and
B on the miniImageNet validation set using ResNet-18. To
avoid hyperparameter overfitting, all hyper-parameters are
kept fixed across all datasets and backbones.

Baselines In the imbalanced setting, we carry out exper-
iments using the publicly available source code provided
by α-TIM [39]. We compare against all available methods
implemented in the code as well as an imbalanced variant
of ProtoLP [47], which we obtain from the official code
of ProtoLP [47]3 by removing Sinkhorn-Knopp balancing.
We do not compare against [13] since there is no publicly
available source code.

In the balanced setting, we compare against all methods
provided in the official code of [39] as well as ProtoLP [47].
Further comparisons are made against [12, 17] using the
reported results from [17]. For fair comparisons we use the
publicly available source code from [17] to reproduce results
for EASE+SIAMESE [46]4, ProtoLP [47], TIM and AM. It
should be noted that [47] uses data augmentations to improve
their performance. In order to compare all algorithms fairly
we do not use data augmentations in our comparisons.

Feature pre-processing We experiment with two com-
monly used feature pre-processing methods, denoted as η
in subsection 3.1, namely ℓ2-normalization and the method
used in [12, 17], which we refer to as PLC. ℓ2-normalization

1https : / / github . com / oveilleux / Realistic _
Transductive_Few_Shot

2https://github.com/MichalisLazarou/iLPC
3https://github.com/allenhaozhu/protoLP
4https://github.com/allenhaozhu/EASE
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Table 1. Ablation study of algorithmic components of both balanced and imbalanced versions of our method AM on miniImageNet. NNk:
k-nearest neighbour graph; otherwise, complete graph. C: learnable class centroids. G: learnable pairwise scaling factors G (4). B:
learnable adjacency matrix B (5). PLC: feature pre-processing as defined in subsection 4.1.

IMBALANCED BALANCED

COMPONENTS RESNET-18 WRN-28-10 RESNET-18 WRN-28-10
NNk C G B PLC 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

60.21±0.27 74.24±0.21 63.34±0.27 76.19±0.21 59.09±0.21 71.54±0.19 62.38±0.21 73.46±0.19

✓ 63.95±0.27 81.15±0.17 67.14±0.27 83.40±0.16 63.82±0.22 80.47±0.15 67.22±0.21 82.58±0.16

✓ ✓ 68.57±0.28 82.69±0.16 71.22±0.26 84.74±0.16 73.43±0.23 84.37±0.14 75.94±0.22 86.55±0.13

✓ ✓ ✓ 70.16±0.29 82.62±0.17 72.89±0.28 84.89±0.16 75.59±0.27 84.80±0.15 78.72±0.25 87.11±0.13

✓ ✓ ✓ 69.11±0.29 82.97±0.16 71.64±0.28 85.16±0.15 74.85±0.25 84.66±0.14 77.70±0.23 86.91±0.13

✓ ✓ ✓ ✓ 70.24±0.29 82.71±0.17 73.22±0.29 85.00±0.16 76.06±0.28 84.82±0.15 79.37±0.26 87.12±0.13

✓ ✓ ✓ ✓ ✓ 69.97±0.29 83.31±0.17 71.98±0.29 85.66±0.15 77.35±0.27 85.47±0.14 80.99±0.26 87.86±0.13

is defined as v
||v||2 for v ∈ V . PLC, standing for power

transform, ℓ2-normalization, centering, performs elemen-
twise power transform v

1
2 for v ∈ V , followed by ℓ2-

normalization and centering, subtracting the mean over V .
In the balanced and imbalanced settings respectively,

we refer to our method as AM, α-AM when using ℓ2-
normalization and as AMPLC, α-AMPLC when using PLC
pre-processing. TIM [2] and α-TIM [39] use only ℓ2-
normalization originally. For fair comparison, we apply
PLC pre-processing on TIM and α-TIM, referring to them
as TIMPLC and α-TIMPLC in the balanced and imbalanced
settings respectively.

Reporting results In every table we denote the best per-
forming results with bold regardless the pre-processing
method used. Nevertheless, since our work is influenced
by [2] and [39], we also compare with these two methods
under the same feature pre-processing settings. In Table 2,
Table 3, Table 4 and Table 5, we use the code by [39], report-
ing the mean accuracy over 10000 tasks [39]. In Table 6, we
use the code by [17], reporting the mean accuracy and 95%
confidence interval over 1000 tasks. In the ablation study in
Table 1 we use the code by [39], however, since we ablate
our own method, we report both the mean accuracy and the
95% confidence interval.

4.2. Ablation study

Ablation of hyper-parameter α Figure 2 ablates α-AM
and α-TIM with respect to α. It is evident that the value of
α has a lot more effect in the 1-shot setting. Furthermore, α
behaves similarly for both α-AM and α-TIM. Nevertheless,
in the majority of the cases α-AM outperforms α-TIM. Since
the optimal value of α for α-AM is 2 and 5 for the 1-shot
and 5-shot settings respectively, we choose these values in
our imbalanced experiments unless stated otherwise.

Algorithmic components We ablate all components of our
method under both the imbalanced (17) and balanced (14)
settings in Table 1. As it can be seen from the first and second
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1-shot α-AM 1-shot α-TIM
5-shot α-AM 5-shot α-TIM

Figure 2. Effect of parameter α on α-AM and α-TIM, on 1-shot
and 5-shot miniImageNet using ResNet-18.

rows, using a k-nearest neighbour graph gives significant
performance improvement over using a dense graph. Adapt-
ing the centroids, C, brings further substantial improvement.
Adapting the centroids, C, along with either G or B brings
further performance improvement. Adapting both manifold
parameters G and B along with C provides better perfor-
mance than just adapting either G or B in most experiments,
especially in the balanced setting. Using PLC pre-processing
yields further performance improvement except in the 1-shot
imbalanced setting.

4.3. Comparison with state of the art

Imbalanced transductive few-shot learning Table 2 and
Table 3 show that our method achieves new state of the art
performance using both ResNet-18 and WRN-28-10 on all
three datasets and both 1-shot and 5-shot settings. Impres-
sively, we improve the 1-shot state of the art performance
in all cases significantly, by as much as 4.2% on CUB with
ResNet-18. Even though we outperform α-TIM without PLC
pre-processing in every experiment, PLC brings further im-
provement in 5-shot, while is not being beneficial in 1-shot.
Interestingly, PLC pre-processing does not have the same
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Table 2. Imbalanced transductive inference on miniImageNet and
tieredImageNet. Results as reported by [39]. *: Results were repro-
duced using the official code provided by [39]. † Our reproduction
of the imbalanced ProtoLP using the official code.

METHOD
miniIMAGENET tieredIMAGENET

1-shot 5-shot 1-shot 5-shot

RESNET-18

Entropy-min [7] 58.50 74.80 61.20 75.50
LR+ICI [41] 58.70 73.50 74.60 85.10
PT-MAP [12] 60.10 67.10 64.10 70.00
LaplacianShot [48] 65.40 81.60 72.30 85.70
BD-CSPN [22] 67.00 80.20 74.10 84.80
ProtoLP [47]† 65.42 78.48 71.12 82.51
TIM [2] 67.30 79.80 74.10 84.10

α-TIM [39] 67.40 82.50 74.40 86.60
α-TIMPLC* [39] 63.38 82.80 70.17 86.82
α-AM 70.24 82.71 77.28 86.97
α-AMPLC 69.97 83.31 76.44 87.19

WRN-28-10

Entropy-min [7] 60.40 76.20 62.90 77.30
PT-MAP [12] 60.60 66.80 65.10 71.00
LaplacianShot [48] 68.10 83.20 73.50 86.80
BD-CSPN [22] 70.40 82.30 75.40 85.90
ProtoLP [47]† 68.90 80.97 72.92 83.95
TIM [2] 69.80 81.60 75.80 85.40

α-TIM [39] 69.80 84.80 76.00 87.80
α-TIMPLC* [39] 66.50 85.12 71.97 88.28
α-AM 73.22 85.00 78.94 88.44
α-AMPLC 71.98 85.66 78.75 88.69

Table 3. Imbalanced transductive inference on CUB. Results as
reported by [39]. *: Results were reproduced using the official code
provided by [39]. † Our reproduction of the imbalanced ProtoLP
using the official code.

METHOD
CUB

1-shot 5-shot

RESNET-18

PT-MAP [12] 65.10 71.30
Entropy-min [7] 67.50 82.90
LaplacianShot [48] 73.70 87.70
BD-CSPN [22] 74.50 87.10
ProtoLP [47]† 74.47 86.01
TIM [2] 74.80 86.90

α-TIM [39] 75.70 89.80
α-TIMPLC* [39] 70.95 89.56
α-AM 79.92 89.83
α-AMPLC 78.62 89.86

effect on α-TIM, providing only marginal improvement in
the 5-shot while being detrimental in the 1-shot.

Table 4. Balanced transductive inference on miniImageNet and
tieredImageNet. All results were reproduced using the official code
provided by [39]. †: Our reproduction using the official code [47].

METHOD
miniIMAGENET tieredIMAGENET

1-shot 5-shot 1-shot 5-shot

RESNET-18

LaplacianShot [48] 70.24 82.10 77.28 86.22
BD-CSPN [22] 69.36 82.06 76.36 86.18
PT-MAP [12] 76.88 85.18 82.89 88.64
protoLP [47]† 76.96 84.90 83.06 88.55
TIM [2] 73.81 84.91 80.13 88.61
TIMPLC [2] 69.33 84.53 76.36 88.33
AM 76.06 84.82 82.42 88.61
AMPLC 77.35 85.47 83.40 89.07

WRN-28-10

LaplacianShot [48] 72.91 83.85 78.85 87.27
BD-CSPN [22] 72.16 83.78 77.88 87.23
PT-MAP [12] 80.35 87.37 84.84 89.86
ProtoLP [47]† 80.45 87.21 84.92 89.80
TIM [2] 77.78 87.43 82.28 89.84
TIMPLC [2] 73.52 86.95 78.23 89.56
AM 79.37 87.12 84.07 89.69
AMPLC 80.99 87.86 85.26 90.30

Table 5. Balanced transductive inference on CUB. All results
were reproduced using the official code provided by [39]. †: Our
reproduction using the official code [47].

METHOD
CUB

1-shot 5-shot

LaplacianShot [48] 79.55 88.96
BD-CSPN [22] 78.52 89.02
PT-MAP [12] 86.05 91.28
ProtoLP [47]† 86.39 91.07
TIM [2] 82.87 91.58
TIMPLC [2] 77.69 91.17
AM 85.59 91.24
AMPLC 86.64 91.78

Balanced transductive few-shot learning Tables 4 and 5
show that AMPLC outperforms all other methods, with its
closest competitors being PT-MAP [12] and ProtoLP [47].
Notably, our superiority is not due to pre-processing since
PT-MAP and ProtoLP also use PLC. AMPLC also signifi-
cantly outperforms both versions of TIM. Interestingly, the
performance of TIM always drops when PLC pre-processing
is used, while AM always improves. Even without PLC, AM
significantly outperforms TIM by 2− 4% in 1-shot, while
being on par or slightly worse by 0.1− 0.3% in 5-shot.

We use the publicly available code and pre-trained WRN-
28-10 provided by [17] to compare AM with other state
of the art methods that were not included in the code pro-
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Table 6. Balanced transductive inference state of the art. Results were reproduced using the official code provided by [17] and the official
codes of these method [2, 46, 47]. *: Results as reported by [17].

METHOD
miniIMAGENET tieredIMAGENET CIFAR-FS CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

WRN-28-10

PT+MAP [12]∗ 82.88±0.73 88.78±0.40 88.15±0.71 92.32±0.40 86.91±0.72 90.50±0.49 91.37±0.61 93.93±0.32

iLPC [17]∗ 83.05±0.79 88.82±0.42 88.50±0.75 92.46±0.42 86.51±0.75 90.60±0.48 91.03±0.63 94.11±0.30

EASE+SIAMESE [46] 83.44±0.77 88.66±0.43 88.69±0.73 92.47±0.41 86.71±0.77 90.28±0.51 91.44±0.63 93.85±0.32

EASE+SIAMESEPLC [46] 82.13±0.81 87.34±0.46 88.42±0.73 92.19±0.41 86.74±0.78 90.22±0.51 91.49±0.63 93.32±0.32

ProtoLP [47] 83.22±0.80 88.64±0.43 88.55±0.75 92.42±0.42 86.73±0.79 90.21±0.52 91.39±0.65 93.93±0.32

TIM [2] 77.65±0.72 88.21±0.40 83.88±0.74 91.89±0.41 82.63±0.70 90.28±0.46 87.50±0.62 93.59±0.30

TIMPLC [2] 75.77±0.67 88.37±0.40 83.22±0.70 92.13±0.40 80.52±0.70 90.25±0.46 85.58±0.61 93.48±0.31

AM 80.74±0.81 87.75±0.42 86.38±0.78 91.85±0.85 85.93±0.74 90.13±0.47 90.24±0.65 93.43±0.30

AMPLC 83.40±0.74 89.08±0.40 88.31±0.73 92.60±0.39 86.91±0.74 90.80±0.46 91.32±0.60 94.14±0.29

vided by [39] such as EASE+SIAMESE [46] and iLPC [17].
Table 6 shows that AMPLC outperforms all methods in the
majority of the experiments. Our superiority is not due
to pre-processing since we provided results for TIM and
EASE+SIAMESE using PLC while PT-MAP, iLPC and Pro-
toLP use PLC as part of their method.

4.4. Effect of unlabeled data

We investigate the effect of the quantity of unlabeled
queries M , comparing α-AM against α-TIM. It can be seen
from Figure 3 that α-AM outperforms α-TIM in both 1-shot
and 5-shot settings using both ℓ2-normalization and PLC.
The performance gap is impressive in the 1-shot setting since
α-AM and α-AMPLC outperform α-TIM and α-TIMplc by as
much as 3.7% and 8.7% respectively when M = 300. Inter-
estingly, the performance gap tends to increase as the number
of unlabeled queries increases. This is because α-AM ex-
ploits the data manifold through the k-nearest neighbour
graph while α-TIM works in Euclidean space.

Furthermore, the robustness of our method is evident from
the performance gap between α-AM and α-AMPLC, which
is much smaller than the gap between α-TIM and α-TIMplc
in the 1-shot setting (Figure 3a) while is about the same in
the 5-shot setting (Figure 3b).

5. Conclusion
In this work we propose a novel method named Adap-

tive Manifold, AM, that achieves new state of the art per-
formance in the imbalanced transductive few-shot learning.
Our method significantly outperforms other state of the art
methods on multiple datasets using multiple backbones espe-
cially in the 1-shot setting. AM combines the complementary
strengths of iterative class centroid adaptation and exploit-
ing the underlying data manifold through label propagation.
Specifically, our method leverages the manifold class simi-
larities to measure class probabilities for the unlabeled query
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Figure 3. Effect of number of unlabeled queries M on α-AM and
α-TIM using ResNet-18.

examples and iteratively adapts the manifold parameters by
minimizing a specialized loss function. The robustness of
our method is further validated by our findings that it can
be combined effectively with PLC pre-processing and that it
can outperform its competitors in other settings such as on
the traditional balanced transductive few-shot setting as well
as with more unlabeled queries.
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