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Figure 1. Overview of Kinetics→BABEL dataset. We introduce a challenging unsupervised domain adaptation (UDA) dataset,
Kinetics→BABEL. (a) We formulate the problem of action recognition as UDA where we have labeled source dataset, e.g., Kinet-
ics, and unlabeled target dataset, e.g., BABEL. The dataset presents two challenges: (b) Background distribution shift: The source dataset
(Kinetics) exhibits diverse backgrounds, while the target dataset (BABEL) consistently features the same background across videos. (c)
Video length distribution shift: Videos in the source dataset (Kinetics) tend to be longer, while videos in the target dataset (BABEL) are
typically shorter. These challenges make the Kinetics→BABEL dataset a valuable benchmark for studying UDA for action recognition.

Abstract

In this work, we tackle the challenging problem of unsu-
pervised video domain adaptation (UVDA) for action recog-
nition. We specifically focus on scenarios with a substantial
domain gap, in contrast to existing works primarily deal
with small domain gaps between labeled source domains
and unlabeled target domains. To establish a more realis-
tic setting, we introduce a novel UVDA scenario, denoted
as Kinetics→BABEL, with a more considerable domain
gap in terms of both temporal dynamics and background
shifts. To tackle the temporal shift, i.e., action duration
difference between the source and target domains, we pro-
pose a global-local view alignment approach. To mitigate
the background shift, we propose to learn temporal order
sensitive representations by temporal order learning and
background invariant representations by background aug-
mentation. We empirically validate that the proposed method
shows significant improvement over the existing methods
on the Kinetics→BABEL dataset with a large domain gap.

*Equally contributed first authors.
†Corresponding authors.

The code is available at https://github.com/KHU-
VLL/GLAD.

1. Introduction

Human action recognition in videos is an interesting prob-
lem in computer vision. There are immense practical appli-
cations of action recognition: video surveillance, retrieval,
captioning, sports analysis, health care, and autonomous
driving. Achieving accurate and robust action recognition
performance enables improved security and efficient video
analysis.

Recent advances in action recognition have witnessed
remarkable progress, primarily attributed to the availability
of extensive labeled datasets and the successful deployment
of deep learning architectures, such as convolutional neural
networks (CNNs) [4,11,24,38] and transformers [1,3,25,29].
However, collecting large-scale annotated video data remains
a challenging and costly endeavor due to the additional tem-
poral dimension compared to image annotation. Due to the
high annotation cost, labeled video datasets do not scale
sufficiently, resulting in poor generalization in unseen do-
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main [6].
To address the aforementioned challenge of poor general-

ization, an effective approach is to formulate the action recog-
nition task as an unsupervised domain adaptation (UDA)
problem. In the UDA setting, we leverage a labeled source
dataset to achieve good performance on an unlabeled target
dataset. The recent works on unsupervised video domain
adaptation (UVDA) for action recognitionhave shown im-
pressive performance improvement [5, 7, 9, 26, 28, 33, 36, 43]
on the standard UCF-HMDB [5] and EPIC-KITCHENS [26]
datasets.

However, the impressive performance on the UCF-
HMDB and EPIC-KITCHENS datasets may not necessarily
reflect real-world scenarios. This discrepancy arises due to
several reasons. Firstly, these datasets have a relatively small
scale. The UCF-HMDB dataset consists of 3,209 videos
from both the source and target domains, which is consid-
erably smaller compared to the original UCF-101 [37] and
HMDB-51 [21] datasets. This limited data can lead to over-
fitting issues as models struggle to effectively generalize.
Secondly, the UCF-HMDB and EPIC-KITCHENS datasets
do not exhibit significant domain gaps. As shown in Table 1,
the accuracy gap between the model trained with target labels
and the model trained with only the source data and labels
is 11.4 points for UCF-HMDB and 26.2 points for EPIC-
KITCHENS. However, real-world scenarios often involve
more substantial domain gaps, such as the real-synthetic gap,
day-night gap, sunny-snowy gap, and others. These domain
gaps present additional challenges that need to be addressed
for action recognition models to reliably perform in diverse
and complex environments.

To address the limitations of existing datasets, we intro-
duce Kinetics→BABEL, a new and comprehensive dataset
designed to present greater challenges for unsupervised
video domain adaptation. The Kinetics→BABEL dataset
significantly expands the scale, comprising a total of 18,946
videos. As depicted in Figure 1, the Kinetics→BABEL
dataset exhibits substantial temporal and background dis-
tribution shifts between the source and target domains. In
Figure 1 (c), it is evident that the videos from the Kinet-
ics dataset tend to be longer compared to the videos from
BABEL. Furthermore, the background distributions differ
between the two datasets, with Kinetics displaying real but
biased backgrounds for different actions, while BABEL
features a consistent gray-scale checkerboard background
across actions as shown in Figure 1 (b). In Figure 2, we
compare the proposed Kinetics→BABEL dataset with exist-
ing datasets in terms of the scene distance (∆bg), temporal
distance (∆temp), and scale. The Kinetics→BABEL dataset
shows more substantial domain gaps between the source and
target, and is much larger than the existing datasets. The
proposed dataset is much more realistic and challenging
compared to the existing datasets. Please refer to Section 3
for more details on the dataset.

To tackle the challenging UVDA with a large domain

Figure 2. Comparison between Kinetics→BABEL and the exist-
ing UVDA datasets. We compare the scene distance (∆bg), the
temporal distance (∆temp), and the scale of the UCF-HMDB, EPIC-
KITCHENS, and the proposed Kinetics→BABEL datasets. The
Kinetics→BABEL dataset shows more substantial domain gaps
between the source and target, and is much larger than the existing
datasets.

gap in Kinetics→BABEL, we propose i) Global-Local view
Alignment and ii) background Debiasing for unsupervised
video domain adaptation (GLAD). i) To address the tem-
poral duration shift between the source and target domains,
we propose a Global-Local temporal view Alignment ap-
proach, GLA. GLA aligns a set of source clips, sampled at
diverse temporal sampling rates, with a set of target clips that
also exhibit varying sampling rates. By considering global
and local temporal perspectives, our approach facilitates the
learning of domain-invariant representations, particularly ef-
fective in scenarios with large temporal shifts. ii) To address
the background distribution shift between the source and
target domains, we propose a background-invariant represen-
tation learning to debias background bias, inspired by prior
works [7, 33]. The proposed debiasing method leverages
both background augmentation via background mixing and
temporal order learning. By incorporating these techniques,
we mitigate the impact of background distribution shift be-
tween domains, thereby improving the performance on the
target domain. To validate the efficacy of our proposed
method, we conduct extensive empirical evaluations on the
challenging Kinetics→BABEL dataset. Our experimental
results demonstrate the superiority of GLAD in handling
UVDA with a significant domain gap, showcasing its effec-
tiveness in achieving robust action recognition performance
in real-world scenarios. To facilitate further research, we
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plan to publicly release the Kinetics→BABEL dataset and
code upon acceptance of this paper.

In summary, our work makes the following key contribu-
tions:

• We introduce the novel Kinetics→BABEL dataset,
specifically designed for unsupervised video domain
adaptation with a substantial domain gap. The
Kinetics→BABEL dataset exhibits significantly larger
temporal and background distribution shifts compared
to existing datasets, making it a more challenging and
realistic benchmark.

• To tackle the temporal and background shifts between
the source and target domains, we propose a novel ap-
proach called Global-Local view Alignment and back-
ground Debiasing (GLAD). GLAD incorporates global-
local view alignment techniques to address temporal
shifts and employs background debiasing methods to
mitigate the background distribution shift.

• We empirically demonstrate the effectiveness of the
proposed method via extensive experiments on the chal-
lenging Kinetics→BABEL dataset.

2. Related Work
Action Recognition. Deep neural networks have demon-
strated remarkable progress in the field of action recogni-
tion. Various approaches have been explored to recognize
actions from videos. One common approach is to utilize
2D CNNs [10, 18, 24, 27, 35, 46], which extract features
from individual frames of a video and incorporate temporal
modeling techniques. Another popular approach involves
3D CNNs [4, 11, 16, 38], which learn to capture spatio-
temporal features from short video clips. Recently, trans-
formers with spatio-temporal attention mechanisms have
also demonstrated impressive performance in action recogni-
tion [1, 3, 29]. However, most of the existing action recogni-
tion methods heavily rely on large amounts of labeled data.
In contrast, our work takes a different approach by formulat-
ing the action recognition problem as unsupervised domain
adaptation. In this setting, we no longer require labeled data
from the target domain, but instead leverage labeled data
from the source domain.

Unsupervised Domain Adaptation. In recent years, sub-
stantial efforts have been dedicated to unsupervised domain
adaptation (UDA) for both image domains [13, 34, 44, 45]
and video domains (UVDA) [5,7,20,33,40,42,43]. To tackle
the UVDA problem, adversarial-based methods [5, 26, 28],
semantic-based methods [9, 33], and self-supervised meth-
ods [7, 26] have shown significant progress. However, the
majority of existing UVDA works evaluate their perfor-
mance on small-scale and less challenging datasets such
as UCF-HMDB [5] or EPIC-KITCHENS [26]. This lim-
itation hampers the comprehensive evaluation of UVDA

methods in more demanding scenarios. To address this gap,
we introduce a novel and large-scale UVDA dataset called
Kinetics→BABEL, which exhibits a significant domain gap.
Our proposed method is specifically designed to tackle the
challenges presented by this dataset. We anticipate that the
Kinetics→BABEL dataset serves as a new standard bench-
mark for evaluating UVDA methods, facilitating further ad-
vancements in this field.

Background bias. The research community has recog-
nized background bias as a significant challenge in video
action recognition [6, 22, 23]. When an action recognition
model is biased toward the background, it relies on spuri-
ous correlations between actions and backgrounds rather
than understanding the true semantics of the human actions.
The background bias becomes even more detrimental in the
context of UVDA, where the model needs to adapt to a tar-
get domain with different background distributions without
action labels. Several approaches demonstrate the benefits
of background debiasing in UVDA [7, 33]. In this work,
we also address the significant background bias present in
the source domain, Kinetics, aiming to achieve favorable
performance on the target domain, BABEL, which exhibits
entirely different background distributions. By mitigating
the background bias, we encourage the action recognition
model to focus on genuine action semantics and enhance
its ability to adapt to diverse target domains with varying
background characteristics.

3. Kinetics→BABEL Dataset
We introduce a new dataset called Kinetics→BABEL,

designed to evaluate the performance of UVDA methods
in a more realistic and challenging setting. In this work,
we set Kinetics as the source domain and BABEL as the
target domain. The Kinetics→BABEL dataset is constructed
by re-organizing two existing datasets: Kinetics [19]
and BABEL [31]. Kinetics→BABEL consists of 12
classes, specifically selected from the overlapping classes
of Kinetics and BABEL: jump, run, throw, kick,
bend, dance, clean something, squat, punch,
crawl, clap, pick up. The dataset comprises 14,881
training and 650 test videos from the Kinetics dataset, and
2,963 training and 452 test videos from the BABEL dataset.

The proposed UVDA dataset encompasses both the real-
world Kinetics dataset and the synthetic BABEL dataset.
Leveraging synthetic datasets is cost-effective compared
to real-world data collection, making their integration as
source or target datasets a commonly adopted approach. As
shown in the previous works [5, 15, 39], real-to-synthetic
and synthetic-to-real domain adaptation problems are quite
challenging which makes the proposed dataset interesting. In
this work, we focus on the Kinetics→BABEL domain adap-
tation setting, leaving BABEL→Kinetics domain adaptation
setting as a future work.
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The Kinetics→BABEL domain adaptation presents two
significant challenges: the appearance gap and the tempo-
ral gap between the source and target data. The BABEL
dataset lacks background information, in contrast to the
Kinetics dataset which consists of videos with realistic back-
grounds. Moreover, while Kinetics videos exhibit similar
durations, BABEL videos encompass a wider range of du-
rations. Consequently, addressing both the background and
temporal gaps in a comprehensive domain adaptation strat-
egy becomes crucial to achieve a good performance on the
Kinetics→BABEL dataset.

Notably, the proposed Kinetics→BABEL dataset exhibits
a larger domain gap compared to existing UVDA datasets,
such as UCF-HMDB [5] and EPIC-KITCHENS [26]. To
quantify the background gap, denoted as ∆bg, we calculate
the average minimum scene feature distance between each
source video and all target videos and vice versa as follows:

∆bg =
1

2
[
1

LS

LS∑
i=1

min
j
d(ui,vj) +

1

LT

LT∑
j=1

min
i
d(ui,vj)].

(1)

Here, ui represents the scene feature vector of the source
domain with LS videos, vj denotes the scene feature vector
of the target domain with LT videos, and d(u,v) = 1−uTv
is the cosine distance between them. We employ a ResNet-
50 [14] model pre-trained on the Places365 dataset [47] to
extract scene features.

Furthermore, Kinetics→BABEL also shows the huge do-
main gap in the temporal perspective. To assess the temporal
gap, we leverage the earth mover’s distance (EMD) [17, 32].
The EMD quantifies the minimal cost required to transform
one distribution into another, providing an intuitive measure
of similarity between distributions. We compute the EMD
between two video length distributions p, q as follows:

∆temp = EMD(p, q) =

∫
|CDFp(x)− CDFq(x)| dx . (2)

In Table 1, we show three domain gaps between the
source and target data: the scene distance (∆bg), the tempo-
ral distance (∆temp), and the accuracy gap (∆Acc) for various
UVDA datasets. It is evident that both the UCF-HMDB and
EPIC-KITCHENS datasets exhibit relatively smaller scene
distances of 0.17 and 0.11 respectively. In contrast, the
proposed Kinetics→BABEL dataset demonstrates a signifi-
cantly larger scene distance of 0.31, indicating a more pro-
nounced background gap between the domains. Furthermore,
Kinetics→BABEL shows a more realistic temporal gap for
UVDA settings. The temporal distance of Kinetics→BABEL
is 182.1 frames which is 2× bigger than the temporal gap
of the UCF-HMDB and 3× bigger than the temporal gap of
the EPIC-KITCHENS. To achieve good performance on the
Kinetics→BABEL dataset, a model should be able to focus
on the action instead of the background as well as learn to
represent videos with various lengths.

Table 1. UVDA dataset statistics. We provide a quantitative
evaluation of commonly used benchmarks in the field of UVDA.
The table includes the number of shared classes (# classes), the
total number of videos (# videos), the scene distance (∆bg) in
frames calculated by (1) and the temporal distance (∆temp) in frames
calculated by (2), and the accuracy gap (∆Acc) between “target only”
and “source only” performances. The best quantities are in bold.

Dataset # classes # videos ∆bg ∆temp ∆Acc

UCF-HMDB [5] 12 3,209 0.17 90.9 11.4

EPIC-KITCHENS UDA [26] 8 ∗6,729 0.11 62.7 26.2

Mixamo→Kinetics [9] 14 36,195 0.24 66.7 †68.1
Kinetics→BABEL 12 18,946 0.31 182.1 65.0

∗The average number of videos across 6 settings.
†The reported value from the paper.

Due to the presence of background and temporal gaps,
the model performance decreases on the target domain, as in-
dicated by ∆Acc. ∆Acc denotes the performance gap between
the model trained with target labels and the model trained
with the source data and labels only. The Kinetics→BABEL
shows a significant gap of 65.0 points while UCF-HMDB
shows 11.4 points and EPIC-KITCHENS shows 26.2 points
respectively. Moreover, the Kinetics→BABEL dataset com-
prises 18,946 videos, making it substantially larger in scale
compared to both UCF-HMDB (3,209 videos) and EPIC-
KITCHENS (6,729 videos). These observations clearly
demonstrate that the proposed Kinetics→BABEL dataset is
a large-scale and challenging benchmark to properly evaluate
the performance of unsupervised video domain adaptation
methods.

Comparison with other synthetic-real datasets. There
are a few synthetic-real datasets for the problem of domain-
adaptive action recognition: Kinetics-Gameplay [5] and
Mixamo-Kinetics [9]. Compared to these existing datasets,
the proposed dataset has some advantages. As shown in
Table 1, the proposed Kinetics→BABEL dataset offers the
larger scene distance (∆bg) and temporal distance (∆temp)
between domains, compared to the existing synthetic-real
datasets. Also, note that the raw RGB data of the Kinetics-
Gameplay dataset is not publicly available while we make
the raw data of the Kinetics→BABEL dataset public.

4. Method
We formulate the video action recognition task as an un-

supervised video domain adaptation (UVDA). In UVDA,
we have a labeled source video dataset Ds = {(xsi , ysi )},
where xsi represents the input video and ysi denotes the corre-
sponding label, as well as an unlabeled target video dataset
Dt = {xti}. The source and target datasets share the same
label space K between the source and target data. Our ob-
jective is to learn a model that performs well in the target
domain. Simply applying a model trained solely on the
source data to the target data leads to suboptimal perfor-
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(a) Method overview. (b) Global-Local View Alignment.
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Figure 3. Overview of GLAD. (a) GLAD consists of several key components. Firstly, we mix a video with a different background from
another video to mitigate background bias. Next, a feature extractor extracts spatio-temporal feature vectors from the augmented videos.
Then we feed the source feature vectors into a linear classifier to learn action labels. We employ a global-local view alignment module
following a gradient reversal layer to align the source and target features. To further address background bias, the model learns the temporal
order of shuffled clips in a self-supervised manner. (b) To tackle the temporal shift between the source and target domains, GLAD utilizes
three temporal view alignment methods: global-global, local-local, and global × local. Each method employs dedicated domain classifiers
to align the source and target features.

mance [12, 13]. Therefore, a UVDA method should effec-
tively leverage not only the labeled source data but also the
unlabeled target data to achieve superior performance in the
target domain.

We show an overview of the proposed method, GLAD,
in Figure 3 (a). Given a video, we mix it with a different
background from another video for background debiasing
(Section 4.2). Then we extract a spatio-temporal feature
vector from the augmented background mixed. We feed a
source video feature vector into a linear classifier to learn
actions with the standard cross-entropy loss. To align the
source and target domains, we feed both the source and target
feature vectors into the global-local view alignment module
following a gradient reversal layer [12, 13] (Section 4.1). To
further mitigate the background shift between domains, we
encourage the model to learn the temporal order of multiple
clips in either a source or target video (Section 4.2). We
provide more details on each component in the following
subsections.

4.1. Global-Local View Alignment
We propose Global-Local view Alignment (GLA) to align

features of different domains even if action durations are
significantly different across domains. As illustrated in Fig-
ure 1 (c), we observe action duration shifts across different
domains, such as in the Kinetics→BABEL dataset. For ex-
ample, the jump action in Kinetics spans a duration of 10
seconds, involving a sequence of a run-up, a jump, and a
landing. In contrast, the jump action in BABEL lasts only
1 second, consisting of a brief jump. Due to these temporal
shifts, simply aligning the source and target feature vectors
of clips using the same sampling strategy across domains
may lead to suboptimal performance in UVDA, particularly
when a large temporal distribution shift exists, as in the case

of the Kinetics→BABEL dataset.

Global and local temporal views. We define a uniformly
sampled clip as a global clip and a densely sampled clip as
a local clip. For uniform sampling, we divide a video into
equal-sized subsequences and randomly select one frame
from each subsequence to construct a clip. On the other hand,
for dense sampling, we select frames with regular intervals,
starting from a randomly chosen point, to construct a clip.

Let ϕgm, ϕ
l
n denote global and local clip feature vectors,

respectively, extracted by the feature extractor. Then, we can
define aggregated global/local feature vectors ψ as follows:

ψg =
1

M

M∑
m=1

ϕgm , ψl =
1

N

N∑
n=1

ϕln , (3)

where M,N are the number of global and local clips sam-
pled from a single video respectively.

Domain alignment. As shown in Figure 3 (b), we employ
individual domain classifiers to align feature vectors with
different temporal granularities from the source and target
domains. Specifically, we align the global feature vectors
from the source and target domains (global-global), the local
feature vectors from the source and target domains (local-
local), and a global feature vector from one domain with
a local feature vector from another domain (global-local).
For the global-global alignment, we use an MLP denoted as
Fg. Similarly, we employ another MLP F l for local-local
alignment and yet another MLP F cross for cross-scale (global-
local) alignment. To introduce adversarial training, we insert
a gradient reversal layer (GRL) [12] between the feature
extractor and the domain classifiers. The GRL negates gradi-
ents during backpropagation, effectively making the domain
classifier adversarial.
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Then, we define an adversarial loss ℓadv for an arbitrary
temporal view as follows:

ℓadv(F , ψ)= − 1

2B

∑
i≤B

logF(ψi)+
∑
i>B

log(1−F(ψi))

.
(4)

Here, B represents the batch size, and we differentiate be-
tween the two domains using their batch indices: 1 ≤ i ≤ B
for the source domain and B < i ≤ 2B for the target do-
main. We define the final global-local view alignment loss
as follows:

LGLA = ℓadv(Fg, ψg) + ℓadv(F l, ψl) + ℓadv(F cross, ψcross),
(5)

where ψg, ψl, and ψcross = (ψg, ψl) denote the feature vec-
tors for global-global, local-local, and global-local align-
ments, respectively. With the loss function (5), we effec-
tively align the feature vectors from different domains with
significantly different action durations.

4.2. Background Debiasing
As depicted in Figure 1, the Kinetics→BABEL dataset

exhibits a significant and realistic background distribution
shift. To effectively address this background distribution
shift, we incorporate two essential debiasing methods: i)
background augmentation and ii) temporal order learning.
These debiasing methods play a crucial role in enhancing
the performance of UVDA, as demonstrated in the ablation
study presented in Section 5.2. It is worth emphasizing
that the careful selection and utilization of these debiasing
methods contribute to achieving superior performance in
UVDA tasks.

Background augmentation. To encourage a model to
learn background-invariant representations, we employ a
background augmentation technique. For each video in the
dataset, we extract a background frame b using a tempo-
ral median filter (TMF) [30] and store these background
frames for later use. The backgrounds obtained through
TMF typically exhibit clear and appropriate backgrounds for
the majority of videos.

During training, we randomly select a background from
the stored background database and mix it with each frame
of every video in a minibatch. We define the mixing process
as follows:

x̃(t) = (1− λ)x(t) + λb, t = 1, . . . , T. (6)

Here, x(t) represents the t-th frame of the input video
x ∈ RT×H×W×C , λ is a mix-up ratio uniformly sampled
from the range [0, 1]. By providing action sequences against
diverse backgrounds, we encourage the model to focus on
the actions themselves rather than being overly influenced
by the background context. This facilitates the learning of
background-invariant representations that are essential for
domain-adaptive action recognition [7, 33].

Temporal ordering learning. To account for significant
background shifts across different datasets [7], we incor-
porate an additional learning objective, namely temporal
order learning, to further regularize the model training in
conjunction with background augmentation. We adopt the
temporal clip order prediction [7, 41] as a pre-text task for
this purpose.

In the clip order prediction task, the model tries to solve
a puzzle of predicting the true order of N shuffled clips. By
solving this clip order prediction task, the model is encour-
aged to focus more on the action itself rather than being
influenced by the static background. As illustrated in Fig-
ure 3 (a), we feed both the source and target videos into the
temporal order learning (TOL) module.

The TOL module shuffles the order of N clip features
ϕ = (ϕn)

N
n=1 for each video. Consequently, we obtain

ϕ̃ =
(
ϕσ(n)

)N
n=1

, where σ denotes a permutation randomly
chosen from the set of all possible permutations SN . We pass
the shuffled clip features ϕ̃ through a simple MLP, denoted
as FΩ, followed by a softmax operation to predict the correct
order ω̂i ∈ [0, 1]N !, where

∑
j ω̂i,j = 1. We define the TOL

loss as follows:

LTOL = − 1

2B ·N !

2B∑
i=1

N !∑
j=1

ωi,j log ω̂i,j . (7)

A background-biased model is likely to struggle in predicting
the correct order of clips, as its focus remains on the static
background. Conversely, a model that focues on the actions
is more likely to predict the correct order. By incorporating
the TOL loss, we encourage the model to learn background-
invariant representations.

4.3. Training
We define the final optimization objective as follows:

L := LCE(θf , θc) + LTOL(θf , θσ)− LGLA(θf , θd),

(θ∗f , θ
∗
c , θ

∗
σ) = argmin

θf ,θc,θσ

L(θ∗d), θ∗d = argmax
θd

L(θ∗f , θ∗c , θ∗σ),

(8)

where θf , θc, θσ , and θd denote the parameters of the feature
extractor, action classifier, an MLP of TOL, and domain
classifiers of GLA, respectively.

4.4. Inference
During the inference stage, we remove all auxiliary com-

ponents, including TOL and GLA, and retain only the feature
extractor and linear action classifier. We do not utilize back-
ground augmentation.

Given an input video during inference, we extract one
global feature vector and two local feature vectors. These
features capture both global and local temporal information.
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Table 2. Ablation study. To validate the effect of each component, we show experimental results on the Kinetics→BABEL dataset. We
conduct all experiments using the TSM [24] backbone. We report the mean class accuracy (MCA) with the corresponding standard deviation.
The best performance is in bold and the second best is underscored.

(a) Effect of various temporal alignments.
Temporal Alignment Strategies MCA

Global-Global Local-Local Cross K→B

Source-only baseline 18.5 ± 1.5

✓ 25.5 ± 4.9
✓ 27.6 ± 3.7

✓ 26.7 ± 1.6
✓ ✓ 28.4 ± 6.1
✓ ✓ ✓ 29.6 ± 1.7

(b) Effect of different
temporal views.

Temporal View MCA

Global Local K→B

1 0 18.5 ± 1.5
0 1 21.5 ± 5.1

3 0 28.3 ± 1.8
2 1 30.1 ± 4.4
1 2 29.6 ± 1.7
0 3 25.1 ± 2.4

(c) Effect of various
debiasing methods.
Debias MCA

Bg. Aug. TOL K→B

26.9 ± 3.2
✓ 29.6 ± 1.7

✓ 33.4 ± 1.7
✓ ✓ 37.7 ± 2.5

(d) Effect of combining GLA and
background debiasing.

Method MCA

Debiasing GLA K→B

26.4 ± 2.4
✓ 36.7 ± 3.6

✓ 26.9 ± 3.2
✓ ✓ 37.7 ± 2.5

We then average these feature vectors to obtain a single
consensus feature vector that effectively represents the entire
video. Finally, we feed the consensus feature vector into a
linear classifier to predict the corresponding action label.

5. Experiments
We conduct all the experiments on the Kinetics→BABEL

dataset. We use mean-class accuracy as an evaluation metric.

5.1. Implementation details

We implement the proposed method using PyTorch and
the mmaction library [8]. We choose I3D [4] as the feature
extractor for benchmarking against state-of-the-art methods,
and TSM [24] for conducting ablation studies. The fea-
ture extractors are initialized with Kinetics400 pre-trained
weights. In the GLA module, we employ a 4-layer MLP for
each domain classifier. To stabilize the training process, we
employ curriculum learning [2]. We first pre-train the model
with LTOL for 500 epochs using 3 local clips to warm up
the model. Then, we train the model with the final training
objective (8) for 50 epochs. We use SGD as the optimizer
with a momentum of 0.9, a weight decay of 1e-4, and an
initial learning rate of 2e-3. The learning rate is reduced
by a factor of 10 at the 5th and 10th epochs. During warm-
up, the batch size is set to 384 per GPU, while during the
main training, it is set to 24 per GPU for both the source
and target domains. Background augmentation is applied
only to the source domain clips, with a probability of 25%
and a fixed λ value of 0.75. To better capture the temporal
context in videos, we adopt two different sampling strategies:
uniform sampling for global clips and dense sampling for
local clips, maintaining a frame interval of 2 in both domains.
All experiments are conducted using 8 NVIDIA RTX 3090
GPUs.

5.2. Ablation Study

We conduct an extensive ablation study to verify the effec-
tiveness of each component and show the results in Table 2.

Effect of various temporal alignment methods in GLA.
In Table 2 (a), we show experimental results demonstrating

the impact of different temporal alignment methods in the
GLA module. The Global-Global refers to employing a
domain classifier with global clips from source and target do-
mains. Local-Local refers to employing a domain classifier
with local clips. Cross refers to employing a domain classi-
fier with a global clip from one domain and a local clip from
another domain. As shown in the table, incorporating both
global and local alignments leads to superior performance
(28.4%) compared to focusing on either one alone (25.5%,
27.6%). Notably, we achieve the highest performance of
29.6% when we employ all three alignments together. Fur-
thermore, the collaborative operation of these alignment
methods results in a relatively more stable performance, as
indicated by the lower standard deviation value.

Effect of the number of global and local views. From
the results presented in Table 2 (b), aligning only local clips
surpasses aligning only global clips (21.5% versus 18.5%).
However, combining both global and local alignments leads
to even higher accuracy. Specifically, employing a combina-
tion of two global and one local view per video for alignment
achieves the highest accuracy of 30.1% with a standard devi-
ation of 4.4. Notably, using one global and two local views
per video for alignment demonstrates comparable accuracy
of 29.6%, with a lower standard deviation of 1.7. Based on
these findings, we utilize one global and two local views per
video for alignment in the subsequent experiments.

Effect of background debiasing. As shown in Table 2 (c),
both background augmentation and TOL demonstrate per-
formance improvements of 2.7 and 6.5 points, respectively,
compared to the baseline without debiasing. Furthermore,
when we combine both debiasing methods, we observe a
substantial gain of 10.8 points. These results highlight the
complementary nature of the two debiasing methods, empha-
sizing the importance of employing them together. Please
note that GLA is enabled for all experiments conducted.

Complementary nature of GLA and background debias-
ing. Table 2 (d) demonstrates the complementary nature
of background debiasing and GLA. When applying back-
ground debiasing without GLA, we observe a substantial
improvement of 10.3 points compared to the baseline. Simi-
larly, applying GLA without debiasing results in a modest
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Table 3. Comparison with state-of-the-art on the
Kinetics→BABEL dataset. We show the mean class ac-
curacy (MCA) For a fair comparison, we indicate the number
of clips Nc and the number of frames per clip Nf . All methods
employ I3D [4] as the backbone. The best performance is in bold
and the second best is underscored.

Method Nc ×Nf Kinetics→BABEL

Source only 3× 8 = 24 11.7 ± 0.7
DANN [12] 3× 8 = 24 29.3 ± 1.5
CoMix [33] 16× 8 = 128 21.4 ± 0.3
CO2A [9] 4× 16 = 64 24.7 ± 0.8
GLAD (Ours) 3× 8 = 24 33.7 ± 1.8

Supervised target 3× 8 = 24 76.7 ± 2.1

improvement of 0.5 points. However, when we employ both
debiasing and GLA together, we achieve a remarkable im-
provement of 11.3 points compared to the baseline, with a
lower standard deviation (3.6 vs. 2.5). These results clearly
indicate that the two methods are complementary to each
other, generating a synergistic effect that enhances the over-
all performance of the UVDA model.

5.3. Comparison with state-of-the-arts
In this section, we compare the proposed method with

state-of-the-art UVDA methods. We show the results in
Table 3. “Source only” refers to the baseline method of train-
ing on labeled source data and testing on target data, which
sets the lower bound for UVDA. “Supervised target” is an
upper bound performance: a model trained with target data
with labels. DANN [12] is an image-based domain adapta-
tion method extended to UVDA. CoMix [33] and CO2A [9]
are state-of-the-art UVDA methods. Surprisingly, we ob-
serve that the simple DANN method outperforms CoMix and
CO2A on the challenging Kinetics→BABEL dataset. Our
proposed method, GLAD, achieves the highest performance
of 33.7%, surpassing DANN by 4.4 points. Notably, we
achieve superior results with significantly fewer clips and
frames compared to CoMix and CO2A, which highlights the
high efficiency and accuracy of the proposed method.

5.4. Qualitative evaluation
In Figure 4, we show some qualitative examples from the

Kinetics→BABEL to validate the effectiveness of GLAD.
We compare the predictions of the baseline (DANN [13])
and GLAD on the BABEL dataset. The ground-truths for
the four example videos are dance, clean_something,
crawl and pick_up with durations of 27.0, 10.0, 2.7 and
1.9 seconds, respectively. In the example shown in Figure 4
(a) with dance action, the baseline fails to understand a
long video of 27.0 seconds. The prediction bend implies
the model focuses only on the bending motion which lasts for
only 3 seconds in the video. The result might imply that the
baseline tries to focus on a few key frames or local motions
instead of focusing on the global temporal context when the

Figure 4. Qualitative examples from Kinetics→BABEL. We
compare predictions of ours (GLAD) with predictions of a baseline
(DANN [13]). GT denotes ground-truth, correct predictions are in
green, and incorrect predictions are in red. We observe the baseline
fails to predict correct actions due to the challenging temporal gap
while GLAD consistently predicts correct actions.

action duration differs from the source data. Furthermore,
for the example shown in Figure 4 (b), the baseline fails
to distinguish clean_something from throw which
involves understanding different speeds. In contrast, GLAD
correctly predicts clean_something.

6. Conclusions
In this paper, we have addressed the challenging problem

of unsupervised video domain adaptation for action recog-
nition, specifically focusing on scenarios with a significant
domain gap between the source and target domains. To over-
come the limitations of existing datasets that are small in
scale and lack significant domain gaps, we have introduced
the Kinetics→BABEL dataset, which provides a more chal-
lenging, realistic, and large-scale benchmark. Our proposed
method, GLAD, incorporates global-local view alignment to
tackle temporal distribution shifts and background debiasing
to address background distribution shifts. We have demon-
strated the effectiveness of our proposed method through
extensive experiments. Despite using fewer clips and frames
compared to existing methods, GLAD has achieved favor-
able performance. The promising results highlight the ef-
ficacy and efficiency of our proposed method, paving the
way for further advancements in unsupervised video domain
adaptation for action recognition.
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