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Abstract

Enabling effective learning using only a few presented
examples is a crucial but difficult computer vision objec-
tive. Few-shot learning have been proposed to address the
challenges, and more recently variational inference-based
approaches are incorporated to enhance few-shot classi-
fication performances. However, the current dominant
strategy utilized the Kullback-Leibler (KL) divergences to
find the log marginal likelihood of the target class dis-
tribution, while neglecting the possibility of other prob-
abilistic comparative measures, as well as the possibility
of incorporating attention in the feature extraction stages,
which can increase the effectiveness of the few-shot
model. To this end, we proposed the HELlinger-Attention
Variational Feature Aggregation network (HELA-VFA),
which utilized the Hellinger distance along with atten-
tion in the encoder to fulfill the aforementioned gaps. We
show that our approach enables the derivation of an al-
ternate form of the lower bound commonly presented in
prior works, thus making the variational optimization fea-
sible and be trained on the same footing in a given set-
ting. Extensive experiments performed on four bench-
marked few-shot classification datasets demonstrated the
feasibility and superiority of our approach relative to the
State-Of-The-Arts (SOTAs) approaches.

1. Introduction

Computer vision has achieved numerous breakthroughs
in recent decades, and can be attributed mainly to deep
learning along with the availability of huge data for effective
supervised learning. However, this is still a far cry from our
human visual and brain system’s ability to learn and recog-
nize new objects and classes by virtue from being exposed
to only its few instances. Few-Shot Learning (FSL) has
been recently introduced and leveraged in attempts to mimic
the aforementioned recognition capability and has found
promising results relative to the standard CNN-based super-

Figure 1. The differences between point-based and VAE-based
FSL feature processing in the embedded space, using a 3-class
classification scheme as an example. The support set images con-
sisted of images belonging to the same class (column) and are ex-
tracted from the miniImageNet. The dotted lines represents the
Euclidean distance between the sample feature points and the cen-
troid of each class prototype.

vised learning networks in benchmark datasets. Therefore,
interest among machine and deep learning practitioners and
researchers has been on the rise. An example of a recent
review of FSL can be found at [1].

Prior works in FSL involved learning the degree of sim-
ilarity between images presented to the model and defining
a distance measure in which similar objects are assigned the
same class label, while vastly different objects are assigned
a different class label. All these can be performed either
directly (e.g., Siamese network [2]), or by embedding the
visual features into a higher-dimensional space (e.g., proto-
typical network [3]). For the latter, this results in embed-
ded feature points of the same class clustered in the same
region, and the regions can be segmented and represented
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pictorially as on the left of Figure 1. Specifically, the pro-
totypical network utilized a point estimate approach, which
although has been shown to yield State-Of-the-Art (SOTA)
performance in many benchmark datasets, still has its lim-
itations [4]. The first is that the point estimations may be
inaccurate when there are limited support sample points un-
evenly distributed in the embedded space. This is supported
by [5] which emphasized that the quality of the support sets
is a crucial factor and it can be difficult to estimate the mean
of a class via only a few samples. The second is that a single
embedding of the feature point is insufficient to indicate a
class and may lack interpretability. The third is that if there
is any data distribution inconsistency between the training
and the test phase, overfitting can easily occur.

To address these limitations, the aforementioned work
proposed a distribution-based estimation approach which
reduces sample biases and account for intra-class variances
in a better manner than that of point estimation approaches.
A pictorial representation is shown on the right of Fig.1.
Still, an intractable integral needs to be computed if one opts
for a probabilistic computation, and hence a variational ap-
proximation that involves minimizing the Kullback-Leibler
(KL) divergence (DKL) [6] was invoked. Currently, most,
if not all, existing image-based variational few-shot ap-
proaches invoked DKL, while we have noted the existence
of other possible classes of divergences (in which DKL is
a subset of) that are very less explored, but which can po-
tentially be utilized and compared with the DKL baseline.
The Hellinger distance (DH ) [7] is one such example. It
is the probabilistic analog of the Euclidean distance, and
make computations and comparisons more straightforward
and easier than the DKL. Furthermore, one does not have
to worry about its value diverging to infinity as one of the
input probability distribution goes to zero during a compu-
tational workflow. Lastly, there are existing works on utiliz-
ing the Hellinger distance for classification in other domains
( [8], [9], [10]) and, as far as we know, there are little to no
works on incorporating such distance in FSL classification
on benchmark datasets.

Another emerging aspect is the incorporation of atten-
tion in the feature extractor stage of the few-shot model.
Introducing attention allows the model to focus on essen-
tial visual features and omit irrelevant ones, which increases
the model’s efficiency. Various attention mechanisms have
been increasingly introduced to FSL approaches, which in-
clude dual attention [11], self-attention [12], and attention
with weight fusion [13]. These works has also demonstrated
in their ablation studies that incorporating attention leads to
improvement in the classification accuracy scores, as com-
pared to when such mechanisms were omitted. We also
noted the existence of variational-based FSL that incorpo-
rates attention (e.g., [14] for AE-GAN with self-attention).
However, the latter’s design focused on addressing some

limits of KL divergence-based VAE (e.g.,the retention of
image border features). All these considerations motivate
us to explore a VAE with an alternate divergence measure
with attention and observe how it could enhance the base-
line variational FSL classification performances.

Therefore, in this paper, we introduce a HELlinger-
Attention Variational Feature Aggregation (HELA-VFA)
network that performs variational inference via DH , and
improves upon the VFA-Net via introducing attention dur-
ing the feature extraction pipeline. While contrastive
loss (ℓcontrastive) and categorical cross-entropy (ℓCCE) are
commonly utilized during the training of the FSL, we ad-
ditionally introduced the Hellinger similarity softmax loss
(ℓHess), which replaces the cosine similarity in the simCLR
[15] softmax loss with the Hellinger distance, and serves as
the Euclidean distance-like variation of the loss function but
in a probability distribution space. We combined our pro-
posed loss with the other relevant loss functions commonly
utilized in variational inference-based FSL to enhance our
network’s training performance. Overall, our contributions
to this work are as follows:

• We proposed the HELA-VFA, which pioneered a
Hellinger distance-based feature aggregation scheme
with attention mechanism imbued in the feature ex-
traction stages. We show that in spite of a difference
in probability distribution distance measures, we can
still derive our form of the Evidence Lower BOund
(ELBO) and cast the optimization problem in a sim-
ilar manner as that of KL divergences.

• We deployed the designated ℓHess, amalgamating it
linearly with the traditionally employed loss function
in variational inference-based FSL methodologies, like
ℓCCE and the reconstruction loss ℓrec. This integration
serves to augment the training performance of our net-
work.

• Empirical simulations were conducted on four widely
recognized FSL benchmark datasets: FC-100 [16],
CIFAR-FS [17], miniImageNet [18], and tieredIma-
geNet [19]. The results illustrate the practicability and
supremacy of our method in comparison to the current
SOTA FSL approaches.

2. Related Works
One of the first variational-inference based FSL is pre-

sented by [4] which highlights the limitations and bene-
fits of approaching a distributive-based distance measure in
the embedded space instead of feature points as in many
prototypical-based FSL approaches. A variational few-shot
feature aggregation approach was proposed by [5] which
fused the support and query features during the batch train-
ing, which is then utilized for few-shot object detection.
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Figure 2. HELA-VFA algorithmic architecture (top) and the attention mechanism architecture (bottom). In the top diagram, S and S′

denotes the original and reconstructed images respectively , while Q and Q′ denotes the corresponding quantity but for the query set. ŷ and
y denotes the predicted label after training and ground truth label respectively. The rest of the quantities are introduced along in section 3.
The above network is allows a general a N -way-k-shot training and evaluation.

This encourages inter-class interactions which promotes
class-agnostic representations and reduces the confusion
between the base and novel classes in the prediction phase.
The transductive decoupled variational inference network
(TRIDENT) was introduced by [20] which decoupled the
image representation into semantic and label latent vari-
ables, and performed inference via fusing the informative
in the support and query set, similar to the feature aggrega-
tion work. However, unlike the two aforementioned stud-
ies, the TRIDENT incorporated attention in the feature ex-
traction phase. We realized that there also exists attention-
based FSL works but in the aspect of query point embed-
ding, such as [21]. However, to the best of our knowledge,
TRIDENT is one of the first work that incorporated both at-
tention and variational inference simultaneously, and that it
demonstrated the feasibility of combining both components
in the same network to enhance the classification perfor-
mances. However, all of the methods described approached
the log marginal likelihood optimization via associating the
link between ELBO and the KL divergence. The KL diver-
gences is a subset of the f-divergences which also include
the Hellinger distance. Unlike the KL divergences which
used the ratio of the logarithm between two probability dis-

tributions, the Hellinger distance manifests as the square
of the differences between the square root of the distribu-
tions. Apart from the advantages of such distance measure
as mentioned in the introductory section, the corresponding
link between the ELBO and the Hellinger distance can be
derived, meaning that the variational optimization process
can be performed on the same footing as that of the prior
related works regardless of the datasets used.

3. Our Approach
We illustrate the algorithmic architecture of our HELA-

VFA at the top of Figure 2. In summary, the key additions
in our network include the attention mechanism in the en-
coder, the usage of the Hellinger distance, and the introduc-
tion of our ℓHess along with the standard losses utilized in
related previous works.

3.1. Attention Mechanism

The attention mechanism is incorporated in our net-
work’s feature encoder and involved the channel and spa-
tial attention modules. For the channel module, the spatial
dimension of the extracted intermediate feature maps φ)
are processed using both average (φc

avg) and max pool-
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ing (φc
max). The output features are then inputted into

a shared Multi-Layer Perceptron (MLP), with the resultant
features Mc(φ) combined using an element-wise summa-
tion. Mathematically speaking,

Mc(φ) = σ(MLP (φc
avg) +MLP (φc

max)). (1)

where σ is the sigmoid activation function. For the spa-
tial module, the features obtained from both pooling in the
spatial domain, φs

avg and φs
max, are concatenated in the

channel axis. A 2D convolutional layer with a filter size of
7×7 (f7×7) is applied to compute the spatial attention map
Ms(φ).

Ms(φ
′) = σ(f7×7([φ

′s
avg;φ

′s
max])). (2)

Combining our attention modules,

φ′ = Mc(φ)⊗φ,

φ′′ = Ms(φ
′)⊗φ′.

(3)

⊗ represents the outer product between the extracted fea-
tures (φ′, φ′′) and the attention maps. The algorithmic
structure of our attention mechanism is illustrated at the bot-
tom of Figure 2.

3.2. HELA-VFA Optimization

The goal of variational inference in our HELA-VFA is
to minimize the divergence measure, which is equivalent
to maximizing the Evidence Lower Bound (ELBO). The
bound obtained for the previous works involved the KL di-
vergence DKL. Here we will show that such bound also
exist, and can also be obtained via the Hellinger distance
(DH ). We start with the square of its definition:

D2
H = 1−

∫ (√
pθ(z|T )qϕ(z|S)

)
dz, (4)

where pθ(z|T ) denotes the prior distribution of z with
our knowledge of T , and qϕ(z|S) represents the true pa-
rameterized distribution conditioned on S. Swapping the
positions and taking the logarithm of both sides,

log
∫ (√

pθ(z|T )qϕ(z|S)
)
dz = log

(
1−D2

H

)
. (5)

The mathematical definition of the ELBO is

ELBO =

∫
qϕ(z|S)log

(
pθ(T , z)

qϕ(z|S)

)
dz. (6)

The derivation of the bounds in terms of DH is long and
hence its proof is provided in the supplementary mate-
rial. Here we simply state the result, which serves as our
HELA-VFA optimization condition:

ELBO′ =

∫
log(pθ(T ))dz + log

(
1−D2

H

)2
(7)

where
∫

log(pθ(T ))dz is the evidence term, and the new
ELBO term, ELBO′ is written as ELBO

qϕ(z|S) .
For comparison, we included the ELBO for model utiliz-

ing the KL divergence:

ELBO =

∫
log(pθ(T ))dz −DKL(qϕ(z|S)||pθ(z|T ))),

(8)

and we can see that the differences lie in that for our
approach, not only the square of the logarithm of the differ-
ence in D2

H with respect to 1 is needed, which ensured that
the range of D2

H , and hence DH lies in [0, 1], our ELBO′

is manifested as the linear sum of the evidence and the log-
arithm of the square of the parenthesis containing the DH ,
rather than the linear differences between the evidence and
the relevant divergence (as in the case of DKL). How-
ever, note that log

(
1−D2

H

)2
took on the range (−∞, 0],

while DKL(qϕ(z|S)||pθ(z|T ))) took on the range [0,∞),
and when both terms approaches zero (which occurs when
qϕ(z|S) = pθ(z|T )), the respective ELBO values equate
to the evidence. Hence maximizing the evidence term is
equivalent to maximizing the respective lower bounds.

Similar to the KL divergence, we can express DH in
terms of the means and standard deviations of the ith class
prototypes in the prior distribution (µi, σi) and jth poste-
rior distribution (µj , σj). The mathematical form is of
a Hellinger distance between two Gaussian distribution,
which is derived in [22], and we simply state the form here:

D2
H = 1−

√
2σiσj

σ2
i + σ2

j

exp

(
−1

4

(µi − µj)
2

(σ2
i + σ2

j )

)
. (9)

3.3. HELA-VFA Model Training

We utilized the ResNet-12 [23] encoder backbone for
the feature extraction. Regardless of the divergence mea-
sure used, in a N -way FSL scheme, the support and tar-
get set are partitioned into N subset each of a certain class
(i.e., S1,S2, ...,SN ). Therefore there are N posterior class-
specific distribution required for estimation, all conditioned
on S. These distributions satisfies a Gaussian with a di-
agonal covariance structure N (µ,σ2), where the mean µ
and standard deviation σ are a set of class distributed val-
ues (i.e., µ = {µi|i = 1, 2, ...N}, and σ = {σi|i =
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1, 2, ...N}). The sampling process from these distribution
parameterized by our model to obtain the latent variable z
is not a differentiable process, which makes any gradient-
based learning processes not feasible. To overcome this, we
employed the reparameterization trick on the latent variable
distribution following [24], i.e., z = µ + σ ⊙ ϵ, where ϵ is
generated from a standard normal distribution N (0, 1), and
⊙ denotes the Hadamard product.

Once the specific distributions are estimated, the proba-
bility of the target data samples belonging to their respec-
tive classes are calculated and the maximum values ob-
tained serves as the predicted label, which is compared to
the ground-truth label yi via a categorical cross entropy loss
ℓCCE [25]

ℓCCE = −
Q∑
i=1

yilog(p(ŷi = yi|Tmeta)) (10)

where Q is the number of query samples in a batch-
trained meta task Tmeta.

In addition to ℓCCE , we introduced the Hellinger Simi-
larity softmax loss function ℓHess, which is motivated by
the cosine similarity softmax loss utilized in contrastive
similarity FSL approaches, but replaces the similarity in the
latter with the Hellinger similarity. The motivation is that
the cosine similarity can be thought of as the dot product
between the class-relevant feature vector and the class pro-
totype, and since the Hellinger distance can be thought of
as the probabilistic analog of the vector computation in a
Euclidean distance-like manner, we can first compute the
class-specific distributions of the query vectors v(Q,i) along
with the prototype vectors before computing its probability
of belonging to the kth-class and applying the loss. Mathe-
matically speaking, our ℓHess manifests as

ℓHess = −
Nt∑
i=1

yilog(p(y = j|v(Q,i))) (11)

where Nt denotes the number of training samples, and
p(y = j|v(Q,i)) is computed from

p(y = j|v(Q,i)) =
exp(−{v(Q,i), c(Q,j)})∑N

i=1 exp
(
−{v(Q,i), c(Q,j)}

) (12)

in which c(Q,j) denotes the jth-class prototype from
query set. Note that in the denominator, the sum is taken
over the total number of classes N . The Hellinger simi-
larity is hence contained in the term {v(Q,i), c(Q,j)} in the
parenthesis of p(y = j|v(Q,i)) and consequently, ℓHess.

The other loss required in our network is the reconstruc-
tion loss ℓrec, also utilized in prior related works, which aids
in image reconstruction via the decoder Fdec in our HELA-
VFA, and manifests as the L1-norm between the input and
the reconstructed support image, S and S′ respectively.

ℓrec = ||Fdec(z)− S|| = ||S′ − S||. (13)

Overall, the loss function for our HELA-VFA network
training, ℓHELA is as follows:

ℓHELA = ℓCCE + λ1 · ℓHess + λ2 · ℓrec, (14)

where λ1, λ2 represents the weight parameters of ℓHess

and ℓrec with respect to ℓCCE .

4. Experiments
We evaluated our approach relative to the State-Of-The-

Arts (SOTAs) FSL approaches on the FC-100, CIFAR-FS,
miniImageNet, and tieredImageNet. The selected SOTAs
for each dataset is the same as that laid out in [26].

The FC-100 dataset is a subset of the CIFAR-100 and
comprises 60 meta-training classes, 20 meta-validation
classes, and 20 meta-testing classes. Each train-valid-test
split contains 600 images, each of size 32 × 32. The
small image size corresponds to low image quality, and
hence make few-shot learning a challenge. The CIFAR-FS
dataset is also a subset of CIFAR-100 and contains 64 meta-
training classes, 16 meta-validation classes, and 20 meta-
testing classes. The image size is also of 32 × 32, and the
high intra-class similarity among the images also makes the
few-shot tasks challenging.

The miniImageNet dataset comprises a wide variety of
images from 100 classes, and each class has 600 images.
The image size is set to 84 × 84, and the train-valid-test
split comprises images of 64, 16, and 20 classes, respec-
tively. Finally, the tieredImageNet, like the miniImageNet,
is a subset of the ImageNet in which 351 classes are uti-
lized for meta-training, 97 classes are for meta-validation,
and 160 classes are for meta-testing.

All simulations were performed using the Google Co-
lab’s Tesla A100, V100 and T4 Graphical Processing Units
(GPU), with PyTorch as the underlying libraries. In line
with numerous FSL literatures, we reported the few-shot
classification accuracy (in %) for our method, adopting the
N -way-1-shot and N -way-5-shot strategies, where N is the
number of classes utilized for the evaluation. Regarding
the training of our network, the Adam optimization algo-
rithm was employed, featuring a learning rate of 1e-3. Fur-
thermore, the training incorporated an epoch count of 200,
weight decay parameter of 1e-5, and a batch size compris-
ing of 32 instances.

5. Results and Discussions
Table 1, 2, and 3 present the results of the 5-way-1-

shot and 5-way-5-shot evaluations for our HELA-VFA ap-
proach and its comparison with previous works, specifically
on CIFAR-FS, FC-100, miniImageNet, and tieredImageNet
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Table 1. The classification accuracy (in %) using the 5-way 1-shot
and 5-way 5-shot learning evaluation for our HELA-VFA relative
to the SOTAs on the CIFAR-FS.

Methods 5-way-1-shot 5-way-5-shot
ProtoNet [3] 72.7±0.7 83.5±0.5
MetaOptNet [27] 72.6±0.7 84.3±0.5
DSN-MR [28] 75.6±0.9 86.2±0.6
RFS-Simple [29] 71.5±0.8 86.0±0.5
RFS-distill [29] 73.9±0.8 86.9±0.5
IER-distill [30] 77.6±1.0 89.7±0.6
PAL [31] 77.1±0.7 88.0±0.5
SKD-Gen1 [32] 76.6±0.9 88.6±0.5
Label Halluc [33] 78.0±1.0 89.4±0.6
FeLMi [26] 78.2±0.7 89.5±0.5
HELA-VFA 78.9±0.4 90.7±0.7

All CNN backbone used is the ResNet-12.

Table 2. The classification accuracy (in %) using the 5-way 1-shot
and 5-way 5-shot learning evaluation for our HELA-VFA relative
to the SOTAs on the FC-100.

Methods 5-way-1-shot 5-way-5-shot
ProtoNet 37.5±0.6 52.5±0.6
MetaOptNet 41.1±0.6 55.5±0.6
TADAM [16] 40.1±0.4 56.1±0.4
MTL [34] 45.1±1.8 57.6±0.9
RFS-Simple 42.6±0.7 59.1±0.6
Deep-EMD [35] 46.5±0.8 63.2±0.7
RFS-Simple 42.6±0.7 59.1±0.6
RFS-distill 44.6±0.7 60.9±0.6
IER-distill 48.1±0.8 65.0±0.7
PAL 47.2±0.6 64.0±0.6
SKD-Gen1 46.5 ±0.8 64.2±0.8
AssoAlign [36] 45.8 ±0.5 59.7±0.6
InfoPatch [37] 43.8 ±0.4 58.0±0.4
Label Halluc 47.3±0.7 67.9±0.7
FeLMi 49.0±0.7 68.7±0.7
HELA-VFA 50.3±0.3 69.1±0.2

All CNN backbone used is the ResNet-12, except for
AssoAlign which utilized a ResNet-18 backbone.

datasets. With the exception of AssoAlign, all the chosen
techniques employed ResNet-12 as their encoder backbone.

One notable observation is that for all the methods, the
accuracy derived from the 5-way-5-shot evaluations invari-
ably surpasses that of the 5-way-1-shot evaluations. This
can be attributed to the heightened challenge posed by us-
ing few-shot learning when there are fewer examples per
training batch, given that the support set offers less sup-
plementary information to guide the model towards accu-
rate predictions. A second point of note is that for both
5-way-1-shot and 5-way-5-shot evaluations, the classifica-
tion accuracies procured by all assessed methodologies are

lower for FC-100 compared to CIFAR-FS. This indicates
that the FC-100 poses a more significant challenge for Few-
Shot Learning (FSL) methods to achieve accurate classifi-
cations than CIFAR-FS. As per the accuracy figures tabu-
lated for miniImageNet and tieredImageNet, the difficulty
in executing few-shot classification falls between the afore-
mentioned two datasets. Among these, miniImageNet is
slightly more challenging than tieredImageNet. Our HELA-
VFA method consistently excels over other state-of-the-art
approaches across almost all datasets, albeit with marginal
enhancement. For example, in the CIFAR-FS evaluation,
our HELA-VFA model improves upon FeLMi (which holds
the second-best classification accuracy across all outlined
datasets, barring tieredImageNet in the 5-way-1-shot ap-
proach) by 0.90% in the 5-way-1-shot evaluation, and by
1.34% in the 5-way-5-shot evaluation. Similarly, for FC-
100, our approach once again surpasses FeLMi, this time
by 2.65% and 0.58% in the 5-way-1-shot and 5-way-5-
shot evaluations, respectively. In the miniImageNet analy-
sis, our method exhibited better classification performances
than FeLMi by 1.04% and 0.70% in the 5-way-1-shot and
5-way-5-shot evaluations, respectively. Lastly, for tiered-
ImageNet, our method outperformed FeLMi by 1.26% and
0.57% in the 5-way-1-shot and 5-way-5-shot evaluations,
respectively. Nonetheless, it is critical to mention that our
approach’s performance remains marginally lower than that
of IER-distill in the 5-way-1-shot evaluation for tieredIma-
geNet.

5.1. Ablation Studies

We conducted an ablation study to analyze the role of
each novel components in our HELA-VFA on the clas-
sification performances, and reported the results for each
shot setting in Table 4 for miniImageNet and 5 for FC-100
(although we have experimented and noted similar trends
for the remaining two datasets). The configurations at-
tempted are illustrated in the tables, with the listed third and
fourth configurations involved replacing ℓHess in ℓHELA

with ℓKL to compare the role of DKL and DH in the classi-
fication performances. We can observe from the tables that
relatively lower values are reported for all shot setting when
attention was not incorporated, regardless of whether ℓKL

or ℓHess is used (or when both are not used). This quanti-
tatively emphasized the role of attention in the feature ex-
traction stage. However, we also observed that the obtained
values utilizing ℓKL were lower than that of ℓHess, regard-
less of whether attention is incorporated or not. This can
be attributed to DKL not being an actual distance metric
(since it does not satisfied the triangle inequality), thus for
a pair of not-so-distant distribution configurations in which
the value are closely similar to one another, (p, q), (p′, q′)
where p = q′ and q = p′, ℓKL may yield different values
which affects our network’s feature clustering computation.
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Table 3. The classification accuracy (in %) using the 5-way 1-shot and 5-way 5-shot learning evaluation for our HELA-VFA relative to the
SOTAs on the miniImageNet and tieredImageNet.

Datasets
miniImageNet tieredImageNet

Methods 5-way-1-shot 5-way-5-shot 5-way-1-shot 5-way-5-shot
ProtoNet 60.4±0.8 78.0±0.6 65.7±0.9 83.4±0.7
MetaOptNet 62.6±0.6 78.6±0.5 66.0±0.7 81.6±0.5
MTL 61.2±1.8 75.5±0.8 65.6±1.8 80.6±0.9
TADAM 58.5±0.3 76.7±0.3 - -
Shot-Free [38] 59.0±0.4 77.6±0.4 66.9±0.4 82.6±0.4
Deep-EMD 65.9±0.8 82.4±0.6 71.2±0.9 86.0±0.6
FEAT [39] 66.8±0.2 82.1±0.1 70.8±0.2 84.8±0.2
DSN-MR 64.6±0.7 79.5±0.5 67.4±0.8 82.9±0.6
Neg-Cosine [40] 63.9±0.8 81.6±0.6 - -
P-Transfer [41] 64.2±0.8 80.4± 0.6 - -
MELR [42] 67.4±0.4 83.4±0.3 72.1±0.5 87.0±0.4
TapNet [43] 61.7±0.2 76.4±0.1 63.1±0.2 80.3±0.1
IEPT [44] 67.1±0.4 82.9±0.3 72.2±0.5 86.7±0.3
RFS-Simple 62.0±0.6 79.6±0.4 69.7±0.7 84.4±0.6
RFS-distill 64.8±0.8 82.4±0.4 71.5±0.7 86.0±0.5
IER-distill 66.9±0.8 84.5±0.5 72.7±0.9 86.6±0.8
SKD-Gen1 66.5±1.0 83.2±0.5 72.4 ±1.2 86.0±0.6
AssoAlign 60.0±0.7 80.4±0.7 69.3±0.6 86.0±0.5
Label Halluc 67.0±0.7 85.9±0.5 72.0±0.9 86.8±0.6
FeLMi 67.5±0.8 86.1±0.4 71.6±0.9 87.1±0.6
HELA-VFA 68.2±0.3 86.7±0.7 72.5±0.5 87.6±0.1

All CNN backbone used is the ResNet-12, except for AssoAlign which utilized a ResNet-18 backbone.

Figure 3. The t-SNE plots as a function of epochs for the 5-way-5-shot miniImageNet scenario. The respective support label (0-4) and its
corresponding query label (with a Q after the number label) are also summarized in the legend (zoom in to better see the labels).
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Table 4. Ablation study results on the HELA-VFA for the various
configurations tabulated below on the miniImageNet dataset.

Configuration 5-way-1-shot 5-way-5-shot
Attention + ℓHess 68.2±0.3 86.7±0.7
No Attention + ℓHess 63.3±0.5 82.6±1.0
Attention + ℓKL 61.5±0.6 75.8±0.8
No Attention + ℓKL 58.9±0.9 71.7±0.5
W/o ℓHess or ℓKL 57.5±0.9 73.4±0.4
W/o Att, ℓHess or ℓKL 56.7±0.3 72.6±0.6

Table 5. Ablation study results on the HELA-VFA for the various
configurations tabulated below on the FC-100 dataset.

Configuration 5-way-1-shot 5-way-5-shot
Attention + ℓHess 50.3±0.3 69.1±0.2
No Attention + ℓHess 46.2±1.2 65.9±0.9
Attention + ℓKL 45.6±0.5 65.1±0.6
No Attention + ℓKL 43.5±1.1 63.5±0.7
W/o ℓHess or ℓKL 40.7±0.4 47.6±1.1
W/o Att, ℓHess or ℓKL 37.6±1.0 42.0±0.8

When we mentioned ℓKL as above, we mean replacing the
ℓHess with ℓKL in the ℓHELA.

5.2. t-SNE analysis

We also offered an examination of our model’s ability
to differentiate latent feature variables from respective test
classes, examined as a function of t-SNE epochs, by using
the miniImageNet dataset as a representative example. This
analysis is visually depicted in Figure 3, with the epochs
selected for scrutiny being 1, 7, 34, 50, and 75. Query labels
within the dataset’s testing set are designated as 0−4, while
the labels corresponding to the support set are denoted as
0 Q−4 Q. To facilitate a more straightforward illustration,
the depicted plots correspond to the 5-way-5-shot scenarios;
however, it should be noted that comparable trends can be
extrapolated from the other configuration results.

Upon analysis, it becomes evident that the test set plots
exhibit a progressive degree of class cluster segmentation
as the epochs increase. This trend mirrors the improvement
in our model’s classification accuracy throughout the t-SNE
runs. More specifically, it is observed that the query set
labels generally become more proximate to the clusters of
the support set labels. The (2, 2 Q) set, highlighted in red
and purple respectively, and the (4, 4 Q) set, depicted in
pink and gray respectively, are found to be the initial sets
to achieve such clustering, a trend that is clearly observ-
able from epoch 34 onwards. This pattern is then followed
by the (0, 0 Q) set, highlighted in dark blue and orange,
which demonstrates evidence of clustering from epoch 50
and beyond. Subsequently, the (3, 3 Q) set exhibits a simi-
lar clustering pattern from epoch 75 onwards. Notably, the
(1, 1 Q) set presents a distinctive challenge in terms of clus-

tering, with the latent variable distance displaying fluctu-
ations across the epochs. Despite this, a gradual narrow-
ing of these distances has been observed as the epochs ad-
vance. The latent feature plots presented in epoch 1 serve
to reinforce earlier assertions regarding the high intra-class
similarity present within the data, as the majority of the
latent features are closely entwined prior to the learning
process. Undoubtedly, these prominent challenges eluci-
date the complexities inherent in the selected dataset and
the resultant obstacles to achieving effective few-shot learn-
ing. Despite these challenges, the methodological approach
we have employed has delivered notable success, surpass-
ing the accuracy values recorded by existing state-of-the-art
models, and achieving the desired clustering of the support
and query set subsequent to the training process, as is cor-
roborated by the epoch lapses displayed in Figure 3.

This victory, however, should be interpreted in the cor-
rect context. While our method has indeed exceeded previ-
ous benchmarks, it must be acknowledged that the margin
of surpassing is not overwhelmingly extensive. The ma-
jority of the values obtained by our methodology do not
register an improvement exceeding 5%. This proportion
serves as a reminder of the inherent intricacies associated
with few-shot learning and the perennial need for further
advancements in this field. It simultaneously stands as a
testament to the method’s potential, illustrating its capac-
ity to perform commendably even within the constraints of
this challenging arena. This nuanced understanding of our
method’s achievements underscores both the opportunities
for and the constraints on significant advancement within
the field of few-shot learning. The ongoing challenge is to
continue to refine and improve these techniques to consis-
tently yield even greater improvements.

6. Conclusions

We put forth HELA-VFA, an innovative solution imple-
menting variational inference-based few-shot classification.
Our method employs the Hellinger distance metric, along
with an attention mechanism embedded in the network’s en-
coder, to extract and aggregate pivotal features from both
the support and query sets. HELA-VFA distinguishes it-
self as one of the first methodologies to incorporate atten-
tion and variational inference within few-shot learning, thus
offering a new avenue for the incorporation of alternative
probability distribution-based distance metrics in compara-
tive FSL studies. Our methodology was subjected to rigor-
ous testing on four of the aforementioned prominent few-
shot benchmark datasets, with our approach exceeding the
classification performances of the FSL SOTAs in both the 5-
way-1-shot and 5-way-5-shot evaluations. This underlines
the feasibility and efficacy of our algorithmic design within
the benchmark context.
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